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Relationship between circulating 
metabolites and diabetic 
retinopathy: a two‑sample 
Mendelian randomization analysis
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Diabetic retinopathy (DR) is the most frequent microvascular complication of diabetes mellitus, 
however, its underlying biological mechanisms remain poorly understood. We examined single 
nucleotide polymorphisms linked to 486 blood metabolites through extensive genome‑wide 
association studies conducted on individuals of European ancestry. The FinnGen Biobank database 
served as a reference to define DR. Two‑sample MR analysis was conducted to reveal the association 
between the levels of genetically predicted circulating metabolites and the susceptibility to DR. 
To validate the robustness of the obtained findings, sensitivity analyses with weighted median, 
weighted mode, and MR‑Egger were conducted. 1‑oleoylglycerophosphoethanolamine (odds 
ratio [OR] (OR per one standard deviation [SD] increase) = 0.414; 95% confidence interval [CI] 
0.292–0.587; P = 7.613E−07,  PFDR = 6.849E−06), pyroglutamine (OR per one SD increase = 0.414; 95% 
confidence interval [CI] 0.292–0.587; P = 8.31E−04,  PFDR = 0.007), phenyllactate (PLA) (OR per one 
SD increase = 0.591; 95% confidence interval [CI] 0.418–0.836; P = 0.003,  PFDR = 0.026), metoprolol 
acid metabolite (OR per one SD increase = 0.978; 95% confidence interval [CI] 0.962–0.993; P = 0.005, 
 PFDR = 0.042), 10‑undecenoate (OR per one SD increase = 0.788; 95% confidence interval [CI] 
0.667–0.932; P = 0.005,  PFDR = 0.049), erythritol (OR per one SD increase = 0.691; 95% confidence 
interval [CI] 0.513–0.932; P = 0.015,  PFDR = 0.034), 1‑stearoylglycerophosphoethanolamine (OR 
per one SD increase = 0.636; 95% confidence interval [CI] 0.431–0.937; P = 0.022,  PFDR = 0.099), 
1‑arachidonoylglycerophosphoethanolamine (OR per one SD increase = 0.636; 95% confidence 
interval [CI] 0.431–0.937; P = 0.030,  PFDR = 0.099) showed a significant causal relationship with DR and 
could have protective effects. stachydrine (OR per one SD increase = 1.146; 95% confidence interval 
[CI] 1.066–1.233; P = 2.270E−04,  PFDR = 0.002), butyrylcarnitine (OR per one SD increase = 1.117; 
95% confidence interval [CI] 1.023–1.219; P = 0.014,  PFDR = 0.062), 5‑oxoproline (OR per one SD 
increase = 1.569; 95% confidence interval [CI] 1.056–2.335; P = 0.026,  PFDR = 0.082), and kynurenine 
(OR = 1.623; 95% CI 1.042–2.526; P = 0.041,  PFDR = 0.097) were significantly associated with an 
increased risk of DR. This study identified metabolites have the potential to be considered prospective 
compounds for investigating the underlying mechanisms of DR and for selecting appropriate drug 
targets.
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CI  Confidence interval
T1D  Type 1 diabetes
T2D  Type 2 diabetes
Trp  Tryptophan
IDO  Indoleamine 2,2-dioxygenase
DM  Diabetes mellitus
Pan  Pantothenic acid
HFD  High-fat diet

Diabetic retinopathy (DR) is the most common microvascular complication of diabetes and the leading cause 
of preventable blindness in the adult working  population1,2. According to the Global Burden of Disease study, 
DR ranks fifth as the most common cause of blindness and substantial visual impairment in individuals aged 
50 years and  older3. Based on projections, the global count of individuals afflicted by DR is expected to increase 
to 129.84 million by 2030, with an estimated surge to 160.5 million by  20451.

DR is characterized by neurovascular degeneration due to chronic hyperglycemia. Proliferative diabetic 
retinopathy (PDR) is a severe complication of DR, with a risk of progression to complete loss of both central 
and peripheral  vision4. The global prevalence of DR among diabetic patients has reached 34.6%. The incidence 
of PDR, diabetic macular edema, and vision-threatening DR are 7.0%, 6.8%, and 10.2%,  respectively5. Moreover, 
the prevalence of DR in prediabetic patients is 6.6% (with a quartile range of 1.9–9.8%), suggesting that there is 
a long asymptomatic period before DR  diagnosis6; hence, it is critical to perform frequent retinal examinations 
in all diabetic patients. Regular retinal screening is an effective approach to prevent DR-related complications. 
Although significant developments have been made in the recognition and management of DR in recent decades, 
there is a lack of optimal diagnostic indicators and therapeutic approaches. Furthermore, meeting the demands 
of eye screening and eye health services for diabetic patients remains a challenging  task7; therefore, the early 
identification of prognostic factors that indicate the risk of vision loss is essential to prevent DR progression and 
reduce the incidence of vision loss.

In recent years, several studies have used the combination of metabolomics and genomics to explore potential 
markers and reveal the underlying mechanisms of diabetes-related complications, thus broadening the under-
standing of the pathogenesis of microvascular complications in  diabetes8–11. Metabolomics is an innovative and 
efficient analytical method that can comprehensively determine the levels of small metabolites (< 1500 Da)12. 
Because the metabolome is located downstream of the genome, transcriptome, and proteome, it provides key 
information regarding the dynamics of intricate biological systems. Consequently, metabolomics can facilitate 
a thorough integrated depiction of the biology of an  organism13,14. The revolutionary sequencing of the human 
genome has brought a new era of personalized healthcare, where genetic variations can be used to predict the 
effects of a particular therapeutic approach for optimizing disease treatment in an  individual13.

Many previous studies have examined the association between specific metabolites and diseases through 
metabolomics; however, an apparent limitation of these studies is the inability to determine whether these dif-
ferences in metabolites or endogenous insulin loss and the subsequent metabolic disturbances contribute to the 
underlying disease etiology. Mendelian randomization (MR) analysis is an effective technique that utilizes genetic 
variation as an unconfounded instrumental variable to investigate causal relationships between exposures and 
 outcomes15,16. Considering the random allocation of genetic diversity during conception, MR shows less vulner-
ability to confounding bias and has the potential to establish reverse causation as compared to observational 
 studies17, and it has been described as a “naturally occurring randomized double-blind trial.”

Recently, the scope of genome-wide association study (GWAS) has been expanded to include metabolic pro-
filing. This has led to the development of metabolic profiles for genetically determined metabolites (GDMs)18. 
Based on this context, in the present study, a two-sample MR approach was used to analyze the causal impact 
of human serum metabolites on DR. The study also aimed to identify any common metabolites that may have 
a potential causal impact on DR. Lastly, we attempted to reveal the metabolic pathways that could potentially 
contribute to the development of DR.

Methods and materials
Study design
A two-sample MR design was used to thoroughly evaluate the causal relationship between metabolites detected 
in the blood of individuals and the probability of developing DR. To effectively design an MR study, the follow-
ing three assumptions should be met: (1) the genetic instruments exhibit a robust association with the exposure; 
(2) the genetic instruments are not linked with potential confounding factors; and (3) the genetic instruments 
exclusively affect the outcome through the specific exposure of interest. The second and third assumptions, 
commonly referred to as the independence of horizontal pleiotropy, can be evaluated by various statistical 
methods. We obtained the genetic data for DR from two independent GWAS consortia for the primary analysis 
(UK Biobank: IEU analysis of UK Biobank phenotypes) and replication analysis (Finnish Biobank: FinnGen 
biobank analysis round 5). Figure 1 shows an overview of the study design. Statistical analyses were conducted 
using the “TwoSampleMR” package (version 0.5.7) in the R program (version 3.4.2) and the Review Manager 
software (version 5.4.1).

GWAS data for human blood metabolites
The genetic information of each blood metabolite was extracted from the Metabolomics GWAS server (http:// 
metab olomi cs. helmh oltz- muenc hen. de/ gwas/). Specifically, we collected data on genetic variations from the 
GWAS conducted by Shin et al.18, which involved high-throughput metabolic profiling. A total of 7824 individuals 

http://metabolomics.helmholtz-muenchen.de/gwas/
http://metabolomics.helmholtz-muenchen.de/gwas/
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of European descent were registered, and approximately 2.1 million single nucleotide polymorphisms (SNPs) 
were screened for 486 metabolites. Among these 486 metabolites, 208 remain unidentified because of the lack of 
conclusive evidence regarding their chemical nature. The remaining 278 metabolites were successfully recognized 
and classified into eight metabolic groups based on the Kyoto Encyclopedia of Genes and Genomes (KEGG) 
database. These groups include amino acids, cofactors and vitamins, energy, carbohydrates, lipids, peptides, 
nucleotides, and xenobiotics.

GWAS data for DR
The GWAS statistics for DR were obtained from the FinnGen Biobank (GWASID: finn-b-DM_RETINOPATHY; 
https:// gwas. mrcieu. ac. uk/ datas ets/ finn-b- DM_ RETIN OPATHY/), which comprised 14,584 DR patients and 
202,082 control subjects.

Instrument selection
We performed several procedures to select genetic variants linked to metabolites. Initially, based on the limited 
number of SNPs attaining genome-wide significance, we fine-tuned the association threshold to P < 1 ×  10−6. 
We also applied pairwise linkage disequilibrium  (r2 < 0.001) within a 1000 kb range to identify top independent 
SNPs. This widely applied method has been used in previous MR studies. Simultaneously, we calculated F sta-
tistics for each SNP to assess its statistical  strength19, thus avoiding bias caused by weak instruments. To ensure 
that all SNPs contributed ample variance to the corresponding metabolites, we excluded weak instruments with 
F < 10. We also excluded missing SNPs or those SNPs for which suitable proxies were not identified. Next, we 
performed harmonization to align the alleles of exposure-SNPs and outcome-SNPs. To maintain dataset con-
sistency, SNPs with palindromic properties or with intermediate effect allele frequencies as well as those with 
incompatible alleles (e.g., A/G vs. A/C) were eliminated. Finally, we preserved the metabolites that had at least 
three SNPs for the MR analysis.

MR analysis
The random-effect inverse-variance weighted (IVW) method, a popular technique used in MR studies, was 
employed to detect meaningful cause-and-effect relationships between metabolites and DR, with a significance 
level of P < 0.05. IVW merges Wald ratios for every SNP to yield an overall estimation. Specifically, IVW assumes 
that all genetic variants are genuine, thus rendering it the most robust approach for MR estimation, albeit vul-
nerable to pleiotropic bias. In the present study, we utilized IVW as the primary approach to initially explore 
associations between metabolites and DR. We also used seven other MR analysis methods to examine the find-
ings. These methods included the simple mode, simple median, weighted mode, weighted median, penalized 
weighted median, MR Egger, and MR Egger (bootstrap). These MR analysis methods were used for the sensitivity 
analysis of our findings.

Statistical analysis
Statistical analyses were conducted using the “Twosample MR” package in R software version 0.5.7 (R Foundation 
for Statistical Computing, Vienna, Austria). Based on the 9 MR methods mentioned above, we took the IVW 
results as the primary MR estimates and considered the consistency of the results across other MR methods. Here, 
to address multiple hypothesis testing, we estimated the false discovery rate (FDR) adjusted p values (q values), 
in the main IVW MR analyses, using the sequential p value approach proposed by Benjamini and Hochberg. 

Figure 1.  Mendelian randomization model of circulating metabolites on DR. The overall design and abstract of 
the results of this study.

https://gwas.mrcieu.ac.uk/datasets/finn-b-DM_RETINOPATHY/
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A q value not greater than 10% was considered significant. Finally, a leave-one-out analysis (LOO) was performed 
to detect if there is any single SNP disproportionately responsible for the result of each MR study. The effect 
estimates reflect the increase in DR risk per SD higher in the natural scale of each metabolite. All tests were two-
sided, and the analysis was conducted using the “TwoSampleMR” package (packages in R software (version 4.0.2).

Visualization of results and metabolic pathway analysis
The final results were visualized using the volcanic plot. Forest plots were used for circulating metabolites showing 
a significant causal association. KEGG pathway enrichment analyses were performed for circulating metabo-
lites with significant differences. MetaboAnalyst 5.0 (http:// www. metab oanal yst. ca/) was used to examine the 
metabolic pathway of the significant circulating metabolites. This database integrates biological data and ana-
lytical methods, thereby enabling the systematic annotation of biological functions for extensive lists of genes 
or proteins. Results were considered statistically significant for P < 0.05 and potentially statistically significant 
for 0.05 < P < 0.10.

Ethics approval and consent to participate
Only publicly available GWAS data were used in this study, and the ethical approval and consent to participate 
data are available for the original GWAS study.

Results
Table 1 shows the source of the MR data for the present study. After choosing the appropriate instruments, 278 
of 486 metabolites were selected for MR estimation; the remaining 208 metabolites were unidentified (Addi-
tional file 1: Table S1: Summary of calculation results of causal effect value estimates by various MR Methods; 
Table S2: Summary of the results of heterogeneity analysis by various MR Methods; Table S3: Summary of the 
results of pleiotropy calculations for various MR Methods; Table S4: Raw data summary; Table S5. Summary of 
calculation results of detailed causal effect value estimates by various MR Methods for significant metabolites). 
The number of SNPs for each metabolite ranged from 2 to 202. A noteworthy finding was that all F statistics for 
the SNPs were above 10, thus indicating no usage of weak instruments.

Estimation of the causal effect of circulating metabolites on DR
Based on MR analysis of the selected 278 metabolites, IVW detected 24 metabolites that showed a significant 
association with DR (Fig. 2, Table S5). However, after multiple correction tests for FDR, only 12 indicators were 
significantly correlated with DR, as 1-oleoylglycerophosphoethanolamine (odds ratio [OR] (OR per one standard 
deviation [SD] increase) = 0.414; 95% confidence interval [CI]: 0.292–0.587; P = 7.613E−07,  PFDR = 6.849E−06), 
pyroglutamine (OR per one SD increase = 0.414; 95% confidence interval [CI]: 0.292–0.587; P = 8.31E−04, 
 PFDR = 0.007), phenyllactate (PLA) (OR per one SD increase = 0.591; 95% confidence interval [CI]: 
0.418–0.836; P = 0.003,  PFDR = 0.026), metoprolol acid metabolite (OR per one SD increase = 0.978; 95% confi-
dence interval [CI]: 0.962–0.993; P = 0.005,  PFDR = 0.042), 10-undecenoate (OR per one SD increase = 0.788; 95% 
confidence interval [CI]: 0.667–0.932; P = 0.005,  PFDR = 0.049), erythritol (OR per one SD increase = 0.691; 95% 
confidence interval [CI]: 0.513–0.932; P = 0.015,  PFDR = 0.034), 1-stearoylglycerophosphoethanolamine (OR per 
one SD increase = 0.636; 95% confidence interval [CI]: 0.431–0.937; P = 0.022,  PFDR = 0.099), 1-arachidonoylglyc-
erophosphoethanolamine (OR per one SD increase = 0.636; 95% confidence interval [CI]: 0.431–0.937; P = 0.030, 
 PFDR = 0.099) showed a significant causal relationship with DR and could have protective effects. stachydrine (OR 
per one SD increase = 1.146; 95% confidence interval [CI]: 1.066–1.233; P = 2.270E−04,  PFDR = 0.002), butyryl-
carnitine (OR per one SD increase = 1.117; 95% confidence interval [CI]: 1.023–1.219; P = 0.014,  PFDR = 0.062), 
5-oxoproline (OR per one SD increase = 1.569; 95% confidence interval [CI]: 1.056–2.335; P = 0.026,  PFDR = 0.082), 
and kynurenine (OR = 1.623; 95% CI: 1.042–2.526; P = 0.041,  PFDR = 0.097) were significantly associated with an 
increased risk of DR. The detailed results are shown in Table 2. More information as showed in Supplementary 
Table 1.

Heterogeneity analysis and horizontal pleiotropy test for the effects of circulating metabo‑
lites on DR
Heterogeneity analysis was conducted for the above mentioned 12 circulating metabolites showing a significant 
association with DR. The results revealed the presence of heterogeneity for 1-stearoylglycerophosphocholine 
and kynurenine (Pivw for Cochran Q test: 5.76E−06 and 0.017,  PMR Egger for Cochran Q test: 0.092 and 0.016, 
respectively). No heterogeneity was found for the other circulating metabolites. The detailed results are shown in 
Supplementary Table 2. Pleiotropy analysis revealed a low risk of horizontal pleiotropy for 1-stearoylglycerophos-
phocholine, benzoate, catechol sulfate, gamma-glutamylleucine, salicyluric acid, pyruvate, decanoylcarnitine, 
1-linoleoylglycerophosphocholine, and asparagine  (PMR Egger for intercept test: 0.001, 0.011, 0.011, 0.025, 0.026, 

Table 1.  Summary of genome-wide association studies included in this study.

Phenotype GWAS data source Cohort(s) Sample size Race Website

Human blood metabolites Shin et al., 2014 2 European population studies 7824 European https:// gwas. mrcieu. ac. uk/ datas ets/

Diabetic retinopathy finn-b-DM_RETINOPATHY FinnGen 14,584 cases
202,082 ncontrols European https:// gwas. mrcieu. ac. uk/ datas ets/ finn-b- DM_ 

RETIN OPATHY/

http://www.metaboanalyst.ca/
https://gwas.mrcieu.ac.uk/datasets/
https://gwas.mrcieu.ac.uk/datasets/finn-b-DM_RETINOPATHY/
https://gwas.mrcieu.ac.uk/datasets/finn-b-DM_RETINOPATHY/


5

Vol.:(0123456789)

Scientific Reports |         (2024) 14:4964  | https://doi.org/10.1038/s41598-024-55704-3

www.nature.com/scientificreports/

0.033, 0.040, 0.040, and 0.043, respectively). Moreover, the causal effects of the other circulating metabolites on 
DR were not confounded by horizontal pleiotropy of SNPs. The detailed results are shown in Supplementary 
Table 3. Furthermore, the results of the LOO analysis confirmed the absence of biased MR estimation for indi-
vidual SNP (Supplementary Figs. 1–12).

Metabolic pathway analysis
In the KEGG pathway enrichment analysis, 24 circulating metabolites were assessed for significant variations, and 
8 potential metabolic pathways associated with DR were identified. Among these pathways, the three most sig-
nificant ones were “Caffeine metabolism,” “Ether lipid metabolism,” and “Glycerolipid metabolism” (P = 2.33E−5, 
0.007, and 0.099, respectively; all P < 0.10). The fourth significant pathway was “Pantothenate and CoA biosyn-
thesis,” which also played a crucial role as shown in Fig. 3.

Figure 2.  Volcano plot for demonstrating the causal effect estimation and statistical effect estimation of 278 
circulating metabolites on DR. IVW method MR results of screening of 278 metabolites as exposures on DR 
(Sample one). Each point represents a circulating metabolite. The horizontal X-axis is taken as the axis of OR 
value, OR value greater than 1 and statistically significant is the risk factor, represented by the red dot; OR value 
less than 1 and statistically significant is the protection factor, represented by the blue dot; serum metabolites 
with no statistical difference are represented by the gray dot.

Table 2.  Summary of 278 metabolites have significant causal effect on diabetic retinopathy.

Phenotype N SNP OR 95% CI P PFDR

1-oleoylglycerophosphoethanolamine 10 0.414 0.292–0.587 7.61E−07 6.849E−06

Phenyllactate (PLA) 20 0.591 0.418–0.836 0.003 0.026

1-stearoylglycerophosphoethanolamine 14 0.636 0.431–0.937 0.022 0.099

1-arachidonoylglycerophosphoethanolamine 28 0.656 0.450–0.958 0.029 0.099

Erythritol 27 0.691 0.513–0.932 0.015 0.042

Pyroglutamine 20 0.725 0.600–0.875 0.001 0.007

10-undecenoate 30 0.788 0.667–0.932 0.005 0.042

Metoprolol acid metabolite 34 0.978 0.962–0.993 0.005 0.042

Butyrylcarnitine 51 1.117 1.023–1.219 0.014 0.062

Stachydrine 7 1.146 1.066–1.233 2.269E−04 0.002

5-oxoproline 25 1.570 1.056–2.335 0.026 0.082

Kynurenine 44 1.623 1.042–2.526 0.032 0.097
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Discussion
In the present study, we used GWAS data and identified 12 of 486 blood metabolites associated with DR. Of 
these 12 blood metabolites, 5 showed adverse effects and were associated with an increased risk of DR, includ-
ing kynurenine, 5-oxoproline, stachydrine, and butyrylcarnitine, while 7 metabolites exhibited protective effects 
against DR, including 1-oleoylglycerophosphoethanolamine, 1-stearoylglycerophosphocholine, pyroglutamine, 
phenyllactate (PLA), metoprolol acid metabolite, 10-undecenoate, erythritol, 1-stearoylglycerophosphoethan-
olamine, 1-arachidonoylglycerophosphoethanolamine. Furthermore, we conducted KEGG pathway enrichment 
analysis and identified eight metabolic pathways that were significantly associated with DR. The present study is 
the first to combine metabolomics and genomics analyses to investigate the causal relationship between serum 
metabolites and DR. The findings provided novel insights into the role of gene-environment interactions in the 
development of DR and could guide future precision therapy approaches.

Various biofluids such as blood (serum and plasma) and ocular fluids have been used in human studies for 
multi-omics  analysis20. A major advantage of using blood is that it provides a global metabolomic profile, thus 
offering a comprehensive overview of the metabolites present in the  body21. These studies investigated samples 
from patients who were diagnosed with either type I diabetes (T1D) or type 2 diabetes (T2D) and showed varying 
disease duration and stages of  DR9,22–24. An in vitro study conducted using a fusion of human retinal pigment 
epithelial cells (ARPE-19) revealed that inducing endoplasmic reticulum stress or depriving the cells of essential 
nutrients such as specific amino acids (e.g., tryptophan [Trp] or glutamine) notably increased VEGF expression. 
This finding implies that amino acid metabolism plays a crucial role in the response of the cells to a hypoxic 
 environment25. Trp is an essential amino acid that plays a critical role in protein biosynthesis and affects various 
pathophysiological processes, including neuronal function, metabolism, inflammatory response, oxidative stress, 
immune response, and intestinal  homeostasis26. Trp is metabolized to kynurenine by indoleamine 2,2-dioxyge-
nase (IDO). A previous study reported that patients with nonproliferative diabetic retinopathy showed elevated 

Figure 3.  The enrichment analysis for the SNPs of DR. We selected SNPS with higher enrichment rankings.
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expression levels of IDO and kynurenine, while patients with PDR showed higher levels of kynurenine and no 
significant change in Trp levels, thus suggesting a possible correlation among IDO, Trp, and  DR27. A targeted 
metabolomics study demonstrated that total Dimethyarginine, Trp, and kynurenine were potential indicators 
of DR progression in patients with  T2D28, which was consistent with the findings of our present study. Previous 
studies have demonstrated the role of kynurenine in the development of diabetes mellitus (DM)29, and in vitro 
and in vivo experiments confirmed that kynurenine directly affects glucose metabolism. Kynurenine acts as a 
systemic integrator of energy metabolism through its effects on adipocytes, immune cells, and muscle  cells30; it 
may also inhibit pancreatic insulin secretion and induce apoptosis of pancreatic β-cells through a cysteoaspartate 
lyase-3-dependent  mechanism31. In contrast, another study showed that kynurenine increased glucose-induced 
insulin secretion in pancreatic islets of healthy  rats32. Untargeted metabolomics revealed a decrease in serum 
kynurenine levels in diabetic  dogs33, while other studies have shown no differences in kynurenine levels between 
T1D patients and  controls34. Based on the current evidence and the results of our present research, kynurenine 
could serve as a significant biomarker in blood circulation and a crucial target for treating DR.

The present MR analysis also discovered specific metabolites, some of which have been reported in earlier 
investigations. Pantothenic acid (Pan), also known as vitamin B5, synthesizes coenzyme A in conjunction with 
cysteine and ATP; CoA is involved in 4% of all known enzymatic reactions in the  body35. Pan and CoA biogen-
esis pathways have critical roles in various cellular physiological and pathological  processes36, and alterations 
in the levels of Pan and CoA balance mitochondrial energy  metabolism37, which is closely associated with DR 
progression. The present study revealed an increased level of pantothenate as a potential risk factor for DR. In a 
previous prospective study, 45 patients with T2DM showed blood metabolites different from those observed in 15 
control subjects. Furthermore, pathway enrichment analysis indicated that alterations in amino acid metabolism, 
fatty acid metabolism, and Pan and CoA biosynthesis were associated with the development of  DR38; moreover, 
aspartate, glutamine, and Pan were the key factors related to the differential enrichment of these pathways, 
and Pan level in the vitreous cavity showed an increasing trend. A subgroup analysis of an untargeted study 
on lipidomics and metabolomics revealed a specific plasma metabolomic profile of DR. This profile exclusively 
included P-octopamine, Pan, deoxyguanosine monophosphate, and methylglutarylcarnitine as specific markers 
for  DR39. Most previous studies suggest that the elevated level of Pan has a protective effect against diabetes and 
its  complications40, and that PA regulates CoA synthesis in cell membranes and prevents endothelial dysfunction 
caused by enhanced oxidative  stress36. The elevated Pan level might impair CoA biosynthesis, thereby promoting 
DR progression.

Our present study also has some limitations. First, given the categorization of the raw data, we could not 
grade the severity of DR and could only analyze DR as a whole entity. Second, because data of only individuals of 
Finnish descent were analyzed, this limitation hinders the transferability of our results across other ethnic groups; 
hence, future studies should confirm the generalizability of our findings by validating the data on metabolites 
detected in populations other than European subjects. Third, this MR study was based on the analysis of the blood 
metabolome. Although blood is considered a good sample source for metabolite data, some blood metabolites 
cannot penetrate the blood-retinal barrier, and conducting additional investigations to determine alterations in 
the metabolites present in the vitreous cavity and atrial fluid can enable to discover more favorable biomarkers 
and targets for DR therapy. Fourth, although this study recognized various metabolites that contribute to the 
risk of DR development, additional research is required to reveal their role in the pathogenic mechanisms of DR.

In conclusion, our study identified 12 metabolites that possibly had a causal association with the pathogen-
esis of DR. Among these metabolites, kynurenine exhibited a potent effect on DR and could serve as a potential 
therapeutic target for DR. This study also identified several important metabolic pathways that might be relevant 
to DR pathology. These metabolites and their associated pathways may have utility in clinical settings for the early 
detection and prevention of DR. They can also be considered as potential molecules for future investigations on 
the underlying mechanisms and selection of drug targets for DR.

Data availability
All data generated during this study are included in this published article and the supplementary materials. 
GWAS summary statistics for human blood metabolites are publicly available at http:// metab olomi cs. helmh 
oltz- muenc hen. de/ gwas/. GWAS summary statistics for DR from the ILAE consortium and FinnGen consortium 
are publicly available at https:// gwas. mrcieu. ac. uk/ datas ets/ finn-b- DM_ NEPHR OPATHY/.
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