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Life truncated multiple dependent 
state plan for imprecise Weibull 
distributed data
Gadde Srinivasa Rao 1, Muhammad Aslam 2*, Peter Kirigiti Josephat 1, 
Zainalabideen Al‑Husseini 3 & Mohammed Albassam 2

This paper aims to provide a multiple dependent state (MDS) sampling technique for light‑emitting 
diode luminous intensities under indeterminacy by employing time truncated sampling schemes 
and the Weibull distribution. This indicates that ASN is significantly impacted by the indeterminacy 
parameter. Furthermore, a comparison is shown between the existing, indeterminate sampling plans 
and the recommended sample designs. The projected sampling technique is illustrated by calculating 
the luminous intensities of LEDs using the Weibull distribution. Based on the findings and practical 
example, we conclude that the suggested strategy needs a smaller sample size than SSP and the 
current MDS sampling plan.
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intensities of diodes

The luminous brightness of light-emitting diodes changes randomly and conforms to a statistical distribution. 
The Weibull distribution is one of the statistical distributions used extensively for dependability, engineering 
application research, and estimates. When the parameters or observations are known, traditional statistics are 
used for estimation and prediction. Light-emitting diode data is often reported in terms of their luminous inten-
sities over time. Using the present distributions is not possible in this situation.

Many authors have created a time-condensed life test based on the conventional acceptance sampling plan 
using various life distributions. A few sources on acceptance sampling strategies  include1–9. Recently, several 
scholars have focused on a range of sampling plans including single sampling plans (SSP) and multiple depend-
ent state (MDS) sampling plans for various distributions. The MDS sampling plan’s process was started  by10 and 
according to his explanation, "the MDS sampling plan is known as an attribute inspection procedure where the 
decision is made for each lot based on one of the three conditions namely accept the lot; reject the lot; or condi-
tionally accept or reject the lot based on the disposition of future related lots." Later, a large number of authors 
investigated MDS sampling designs for a variety of distributions,  including11–26.

The previously described sample approaches do not provide background information on the measure of inde-
terminacy because they blend classical statistics with a fuzzy environment. The measurements of determinacy, 
indeterminacy, and falseness are described in depth in the neutrosophic logic,  see27. The concepts of neutrosophic 
 statistics28–30 were introduced using the idea of neutrosophic logic. For this reason, fuzzy logic and interval-
based analysis are less successful than neutrosophic logic. On the basis of a fuzzy  environment31,32 created a 
single sampling plan. The results of sampling error on evaluation based on a fuzzy environment were reported 
 by32. Please  see33–36 and for more authors who explored the single plan employing a fuzzy logic  environment36. 
Information on the determinacy and indeterminacy measures can be found in the neutrosophic statistics,  see37. 
In case the indeterminacy measure is not documented, classical statistics takes over in neutrosophic statistics. 
By using neutrosophic  statistics38–40, offered acceptance sample strategies. Aslam et al.41 worked on group plan 
for Weibull distribution. Neutrosophic Weibull and the neutrosophic family of Weibull distribution were studied 
 by42. Woodall et al.43 suggested to use determinate sample size in designing sampling plans under neutrosophic 
statistics.

The existing sample plans, which rely on conventional statistics and fuzzy logic, do not offer information on 
the measure of indeterminacy. Upon reviewing the current research literature on sampling plans, we believe it is 
groundbreaking that no one has studied the MDS sample plan for the Weibull distribution under indeterminacy. 
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The present work aims at testing light-emitting diode luminous intensities under indeterminacy by employ-
ing an MDS sampling approach for the Weibull distribution. It is expected that the proposed sampling design 
demonstrates a smaller ASN than the current sampling designs, hence testing the luminous intensities of light-
emitting diodes.

We demonstrated the MDS sampling plan for the Weibull distribution under indeterminacy in Section “Meth-
odologies”. Section “Comparative studies” presented a comparison of existing indeterminacy sampling strategies 
and existing classical sampling plans. A real-world scenario with the luminous intensities of light-emitting diodes 
is used in Section “LED manufacturing process data illustration” to illustrate the proposed sampling plan for the 
indeterminacy. The conclusions and upcoming research projects are covered in Section “Concluding remarks”.

Methodologies
Aslam44 introduced neutrosophic Weibull distribution that will be recalled in this section. We will also provide 
the architecture of the sample plan for determining the mean luminosities of light-emitting diodes in unclear 
conditions.

Consider the neutrosophic probability density function (NPDF) f (xN ) = f (xL)+ f (xU )IN ; INǫ[IL, IU ] which 
has a determinate part f (xL) , an indeterminate part f (xU )IN and indeterminacy interval INǫ[IL, IU ] . It should 
be noted that the neutrosophic random variable xNǫ[xL, xU ] follows the NPDF. The generalization of the PDF 
under classical statistics is the NPDF. When IL =0 the classical statistics of the proposed neutrosophic form 
of f (xN )ǫ

[
f (xL), f (xU )

]
 simplifies to PDF. The Weibull distribution’s NPDF is defined as follows using this 

information.

where α and β are scale and shape parameters, accordingly. Here, it should be noted that the Weibull distribution’s 
proposed NPDF is a generalization of its PDF in terms of classical statistics. When IL =0 the neutrosophic Weibull 
distribution’s NPDF simplifies to the Weibull distribution. The Weibull distribution’s neutrosophic cumulative 
distribution function (NCDF) is given by

The Weibull distribution’s neutrosophic mean is given by

The neutrosophic Weibull distribution’s median life is given by

Balamurali et al.22provide the following well-designed methodology for MDS sampling design, and under 
neutrosophic statistics proposed  by45.

The following are the alternative and null hypotheses for the average luminous intensities of light-emitting 
diodes:

H0 : µ = µ0 Vs. H1 : µ �= µ0

Where µ0  denotes the desired average wind speed and µ represents the actual average wind speed. According 
to these data, the suggested sample approach is presented as follows:

Step 1: Pick a sample from the batch that is size n. These samples were put through a life test for a set amount 
of time tN0 . Mention the average µ0N and the amount of indeterminacy INǫ[IL, IU ].

Step 2: The test H0 : µN = µ0N could be accepted if the average daily number of cases for c1 days are greater 
or equal to µ0 (i.e.,µ0N ≤ c1 ). If average daily number of cases in c2 days are less than to µ0 (i.e., µ0>c2 ) then test 
H0 : µN = µ0N could be rejected and come to an end the test, where c1 ≤ c2.

Step 3: When c1 < µ0N ≤ c2 then accept the current lot if m preceding lots, the mean number of cases must 
be less than or equal to c1 before the test termination time tN0.

The proposed plan has four values, namely, n, c1, c2  and m where n is the sample size, and c1 is the maximum 
number of allowable items that failed for unconditional acceptance c1 , c2 is the maximum number of additional 
items that failed for conditional acceptance c1 ≤ c2 , and m is the number of subsequent lots (prior) required to 
reach a conclusion. The characteristics of the MDS sampling plan converge to m → ∞ and/or c1 = c2 = c (say), 
and MDS oversimplifies SSP. The OC function can be used to determine the concert of any sampling design.

Using the binomial chance law, the OC function for an MDS sample design based on WD is expressed as 
follows:

Suppose that t0 = aµN0 be the time in days, where a is the termination ratio. The probability of accepting 
H0 : µN = µN0 is given by

(1)f (xN ) =

{(
β

α

)(xN
α

)β−1
e−

( xN
α

)β
}
+

{(
β

α

)(xN
α

)β−1
e−

( xN
α

)β
}
IN ; INǫ[IL, IU ]

(2)F(xN ) = 1−

{
e−

( xN
α

)β
(1+ IN )

}
+ IN ; INǫ[IL, IU ]

(3)µN = αŴ(1+ 1/β)(1+ IN ); INǫ[IL, IU ]

(4)µ̃N = α(ln(2))1/β(1+ IN ); INǫ[IL, IU ]

(5)Pa(p) =

c1∑

d=0

(
n

d

)
pd (1− p)(n−d) +

c2∑

d=c1+1

(
n

d

)
pd (1− p)(n−d) ×

[
c1∑

d=0

(
n

d

)
pd (1− p)(n−d)

]m



3

Vol.:(0123456789)

Scientific Reports |         (2024) 14:7149  | https://doi.org/10.1038/s41598-024-55694-2

www.nature.com/scientificreports/

where pN is the probability of rejecting H0 : µN = µN0 and obtained using Eqs. (2) and (3) as  pN = F(tN ≤ tN0) 
and defined by

where µN/µN0 is the difference between the specified average luminous intensities of light-emitting diodes and 
the actual average luminous intensities of light-emitting diodes. Assume that γ and δ be type-I and type-II errors, 
respectively. The proposed plan for testing H0 : µN = µN0 N0 is one that the meteorologists are interested in 
using because it ensures that the probability of accepting H0 : µN = µN0 when it is true should be greater than 
1− γ at  µN/µN0 and the probability of accepting H0 : µN = µN0 when it is incorrect should be lower than δ at 
µN/µN0 = 1 . The following two inequalities will be satisfied by the plan parameters for testing H0 : µN = µN0.

where p1N and p2N are defined by

and

The average sample size (ASN) has often been decreased by the use of on-hand sampling techniques. Any 
sample strategy’s main objective is usually to lower the ASN, which also helps to lower the amount of time and 
money needed for the inspection. Accordingly, the goal of the suggested MDS sample design is to lower the ASN 
for WD in the suggested scenario. The non-linear programming approach yields the optimal quantities, which 
are stated as follows:

Minimize ASN(p1N ) = n
Subject to Pa(p1N ) ≥ 1− γ

wherep1N and p2N are the likelihood of failure at producer’s and consumer’s risks respectively. These acceptance 
probabilities might be calculated by using the following equations:

and

The proposed plan consists of parameters c1, c2,m andASN that are obtained by solving the non-linear 
programming problem in Eq. (12) for δ = {0.25, 0.10, 0.05} , γ = 0.10 , a = 0.5, 1.0  and known IN are placed 
in Tables 1, 2, 3, and 4. Tables 1 and 2 show the WD for β = 2 , while Tables 3 and 4 show the WD with β = 1
(exponential distribution). The following points can be drawn from the results in the tables.

(a) As the value of a increases from 0.5 to 1.0, the value of ASN decreases
(b) When all other parameters are held constant, ASN decreases as the shape parameter increases from β = 1 

to β = 2.
(c) Furthermore, it is discovered that the indeterminacy parameter IN has a significant influence on minimizing 

ASN values.

(6)P
(
pN

)
=

c∑

i=0

(
n
i

)
piN

(
1− pN

)n−i

(7)pN = 1−
{
exp(−aβ(µN/µN0)

−β(Ŵ(1/β)/β)β(1+ IN )
β
)(1+ IN )

}
+ IN

(8)Pa
(
p1N |µN/µN0

)
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(9)Pa
(
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)
≤ δ
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Comparative studies
This section discusses the suggested plan’s effectiveness in terms of ASN. The lower the sample size, the less 
expensive it is to test the luminous intensity hypothesis for average LEDs. The suggested sample plan is the 
expansion of the plan under classical statistics if there is no uncertainty or indeterminacy in the recording of 
the average LED’s luminous intensity. When IN=0, the suggested sampling plan lowers to the current sampling 
plan. The plan parameters under the classical statistics are shown in the first column of Tables 1, 2, 3, and 4.

Tables 1, 2, 3, and 4 show that when the indeterminacy parameter IN rises, lower values of the ASN are needed 
to test H0 : µN = µN0 . For instance, it can be observed that ASN = 54 from the plan under classical statistics and 
ASN = 46 for the suggested sample plan when IL=0.05 from Table 1 when µN/µN0=1.5, δ =0.10, γ = 0.10 , a = 0.5 
and β =2. According to the study, the existing sample plan under classical statistics is less effective in ASN than 
the proposed plan under indeterminacy. Additionally, as the WD transforms into an exponential distribution 

Table 1.  The MDS design values for β = 2 and a = 0.5.

δ
µN

µ0N

IL=0.00 IL=0.02 IL=0.04 IL=0.05

c1 c2 m L
(

p1
)

ASN c1 c2 m L
(

p1
)

ASN c1 c2 m L
(

p1
)

ASN c1 c2 m L
(

p1
)

ASN

0.25

1.5 3 13 3 0.9001 28 3 5 2 0.9015 27 3 13 3 0.9005 25 3 7 2 0.9155 25

1.6 2 4 2 0.9024 22 2 8 2 0.9111 21 2 12 2 0.9086 20 2 4 2 0.9048 19

1.7 2 4 2 0.9369 22 2 3 3 0.9080 20 2 6 3 0.9342 19 2 4 2 0.9387 19

1.8 1 3 2 0.9083 15 1 3 1 0.9198 14 1 11 2 0.9025 14 1 3 2 0.9087 13

1.9 1 3 2 0.9322 15 1 2 2 0.9118 14 1 11 3 0.9203 13 1 3 2 0.9326 13

2.0 1 3 2 0.9497 15 1 2 2 0.9324 14 1 11 3 0.9404 13 1 3 2 0.9500 13

0.1

1.5 5 10 1 0.9095 54 5 8 1 0.9001 50 5 8 1 0.9035 47 5 8 1 0.9003 46

1.6 4 14 2 0.9119 44 4 13 2 0.9177 41 4 14 2 0.9151 39 4 14 2 0.9144 38

1.7 3 6 2 0.9165 36 3 7 2 0.9203 34 3 6 2 0.9182 32 3 5 2 0.9075 31

1.8 2 4 1 0.9119 30 2 6 2 0.9016 27 2 4 1 0.9092 27 2 4 1 0.9125 26

1.9 2 12 2 0.9302 29 2 6 2 0.9334 27 2 3 1 0.9080 26 2 12 2 0.9319 25

2.0 2 12 2 0.9528 29 1 3 1 0.9022 21 1 3 1 0.9000 20 1 4 1 0.9046 20

0.05

1.5 7 10 1 0.9010 73 7 11 1 0.9170 69 7 10 1 0.9033 65 7 10 1 0.9056 63

1.6 5 8 1 0.9155 58 5 8 1 0.9137 55 5 8 1 0.9138 52 5 15 2 0.9017 49

1.7 4 11 2 0.9154 49 4 6 1 0.9152 47 4 14 2 0.9127 44 4 14 2 0.9106 43

1.8 3 13 2 0.9045 42 3 13 2 0.9111 39 3 13 2 0.9096 37 3 13 2 0.9094 36

1.9 2 6 1 0.9100 36 2 6 1 0.9097 34 2 6 1 0.9109 32 2 5 1 0.9065 31

2.0 2 12 2 0.9127 34 2 12 2 0.9135 32 2 12 2 0.9159 30 2 12 2 0.9177 29

Table 2.  The MDS design values for β = 2 and a = 1.0.

δ
µN

µ0N

IL=0.00 IL=0.02 IL=0.04 IL=0.05

c1 c2 m L
(

p1
)

ASN c1 c2 m L
(

p1
)

ASN c1 c2 m L
(

p1
)

ASN c1 c2 m L
(

p1
)

ASN

0.25

1.5 4 5 1 0.9026 11 3 7 1 0.9126 9 4 5 1 0.9036 10 3 5 1 0.9159 8

1.6 2 4 1 0.9132 7 2 12 1 0.9068 7 3 4 1 0.9231 8 3 5 1 0.9521 8

1.7 2 4 1 0.9440 7 2 3 2 0.9200 6 2 3 1 0.9254 6 2 3 1 0.9178 6

1.8 1 4 1 0.9131 5 1 3 2 0.9092 4 1 2 1 0.9059 4 2 3 1 0.9434 6

1.9 1 4 1 0.9355 5 1 3 2 0.9328 4 1 2 1 0.9288 4 1 2 1 0.9230 4

2.0 1 4 1 0.9519 5 1 3 2 0.9501 4 1 2 1 0.9459 4 1 2 1 0.9413 4

0.1

1.5 6 16 2 0.9210 17 5 9 1 0.9004 15 5 8 1 0.9038 14 6 16 2 0.9224 15

1.6 4 6 1 0.9163 13 4 14 2 0.9121 12 4 7 1 0.9264 12 4 14 2 0.9188 11

1.7 3 5 1 0.9151 11 3 13 2 0.9087 10 3 6 1 0.9288 10 3 13 2 0.9219 9

1.8 2 6 1 0.9079 9 3 4 1 0.9248 10 2 6 1 0.9120 8 2 12 2 0.9019 7

1.9 2 4 2 0.9264 8 2 3 1 0.9036 8 2 6 1 0.9403 8 2 12 2 0.9337 7

2.0 2 4 2 0.9499 8 2 3 1 0.9302 8 2 6 1 0.9596 8 2 12 2 0.9553 7

0.05

1.5 7 13 1 0.9041 22 7 17 1 0.9011 21 8 10 1 0.9132 21 7 12 1 0.9168 19

1.6 5 8 1 0.9089 17 5 8 1 0.9144 16 6 8 1 0.9290 17 5 9 1 0.9176 15

1.7 4 14 2 0.9109 14 4 8 1 0.9297 14 4 7 1 0.9338 13 4 9 1 0.9301 13

1.8 3 5 1 0.9181 12 3 13 2 0.9090 11 3 6 1 0.9284 11 3 5 2 0.9059 10

1.9 2 5 1 0.9008 10 2 4 1 0.9058 9 2 6 1 0.9032 9 3 5 2 0.9412 10

2.0 2 5 1 0.9310 10 2 4 1 0.9346 9 2 6 1 0.9326 9 2 12 2 0.9191 8
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when β =1 for comparison purposes, we created Tables 3 and 4. Tables 1, 2, 3, and 4 illustrate that the WD shows 
fewer samples than the exponential distribution. For instance, Table 3 shows that the ASN is 39 when the recom-
mended plan values are ASN = 25 for β =2 and when µN/µN0=1.5, δ =0.25, γ = 0.10 , a = 0.5 and IL =0.04. The 
study’s findings indicate that the existing sampling strategy under traditional statistics is less effective in terms of 
sample size than the expected sampling plan under indeterminacy. Figure 1 shows the operating characteristic 
(OC) curve of the WD plan for the conditions when γ = 0.10; δ = 0.10,β = 2.0 and a = 0.50 . Therefore, in 
order to test the null hypothesis, the proposed plan needs a lower ASN than the existing plan  H0 : µN = µN0 
(Fig. 2). When there is uncertainty, the industrialist can implement the suggested plan faster and with less effort. 
The ASN performance of MDS design values for β = {2, 1.0} and δ =0.05 are displayed in Figs. 3 and 4. In these 
figures the ratio µN/µN0 is displayed on horizontal axis and ASN is given on vertical axis. These figures indicate 

Table 3.  The MDS design values for β = 1 and a = 0.50.

δ
µN

µ0N

IL=0.00 IL=0.02 IL=0.04 IL=0.05

c1 c2 m L
(

p1
)

ASN c1 c2 m L
(

p1
)

ASN c1 c2 m L
(

p1
)

ASN c1 c2 m L
(

p1
)

ASN

0.25

1.5 14 18 1 0.9002 45 14 24 2 0.9065 42 13 17 1 0.9003 39 13 19 2 0.9028 37

1.6 11 17 2 0.9215 35 10 15 2 0.9090 31 10 17 2 0.9098 30 10 14 1 0.9047 31

1.7 8 18 2 0.9050 27 8 18 2 0.9065 26 8 18 2 0.9098 25 8 18 3 0.9001 24

1.8 6 10 2 0.9030 21 6 11 1 0.9036 22 6 10 1 0.9059 21 6 16 1 0.9015 21

1.9 5 10 1 0.9032 20 5 9 1 0.9081 19 5 15 2 0.9051 17 5 9 1 0.9089 18

2.0 5 7 2 0.9155 18 5 7 3 0.9087 17 5 15 2 0.9284 17 4 14 2 0.9013 14

0.1

1.5 24 29 1 0.9018 78 24 31 1 0.9074 76 23 32 1 0.9013 71 23 29 1 0.9031 69

1.6 17 24 1 0.9012 59 17 25 1 0.9023 57 17 25 1 0.9028 55 17 25 1 0.9040 54

1.7 14 20 1 0.9170 50 14 19 1 0.9150 48 13 20 1 0.9039 44 13 19 1 0.9061 43

1.8 11 16 1 0.9144 41 11 20 2 0.9062 38 11 16 1 0.9183 38 11 21 2 0.9077 36

1.9 9 13 1 0.9083 35 9 14 1 0.9116 34 9 13 2 0.9034 31 9 14 1 0.9173 32

2.0 8 18 2 0.9045 31 8 18 2 0.9019 30 8 18 2 0.9007 29 8 18 2 0.9137 28

0.05

1.5 31 40 1 0.9024 103 30 38 1 0.9007 96 31 38 1 0.9077 95 30 38 1 0.9027 91

1.6 23 31 1 0.9053 80 23 28 1 0.9028 76 23 31 1 0.9136 74 22 29 1 0.9017 70

1.7 18 25 1 0.9135 65 18 23 1 0.9116 62 17 22 1 0.9029 57 17 22 1 0.9034 56

1.8 14 20 1 0.9079 53 14 20 1 0.9101 51 14 19 1 0.9076 49 14 19 1 0.9107 48

1.9 12 17 1 0.9114 47 12 17 1 0.9175 45 12 16 1 0.9154 43 12 15 1 0.9023 42

2.0 10 15 1 0.9100 41 10 14 1 0.9110 39 10 16 1 0.9176 38 10 15 1 0.9200 37

Table 4.  The MDS design values for β = 1 and a = 1.0.

δ
µN

µ0N

IL=0.00 IL=0.02 IL=0.04 IL=0.05

c1 c2 m L
(

p1
)

ASN c1 c2 m L
(

p1
)

ASN c1 c2 m L
(

p1
)

ASN c1 c2 m L
(

p1
)

ASN

0.25

1.5 14 24 2 0.9031 26 14 18 1 0.9048 26 15 25 2 0.9143 26 14 24 2 0.9063 24

1.6 11 21 2 0.9117 21 11 13 2 0.9024 20 10 20 2 0.9044 18 11 13 2 0.9103 19

1.7 9 11 1 0.9060 18 8 11 1 0.9065 16 9 19 4 0.9082 16 9 12 2 0.9299 16

1.8 7 9 2 0.9078 14 7 9 1 0.9156 14 7 9 2 0.9188 13 6 9 1 0.9062 12

1.9 6 8 1 0.9092 13 5 8 1 0.9027 11 5 15 2 0.9006 10 6 9 1 0.9315 12

2.0 5 15 2 0.9046 11 5 15 4 0.9023 10 4 8 1 0.9014 9 5 15 2 0.9150 10

0.1

1.5 25 29 1 0.9006 48 24 29 1 0.9015 45 23 29 1 0.9010 42 24 31 1 0.9106 43

1.6 19 25 2 0.9095 37 18 23 2 0.9024 34 17 21 1 0.9012 32 18 22 1 0.9159 33

1.7 15 18 2 0.9006 30 15 20 2 0.9182 29 14 17 1 0.9046 27 13 17 1 0.9073 25

1.8 11 15 1 0.9006 24 11 15 1 0.9107 23 11 14 1 0.9090 22 11 15 2 0.9098 21

1.9 10 13 1 0.9147 22 10 12 1 0.9000 21 9 13 1 0.9086 19 9 19 1 0.9004 19

2.0 8 18 1 0.9031 19 8 12 1 0.9137 18 8 11 1 0.9223 17 8 12 1 0.9207 17

0.05

1.5 34 41 1 0.9152 66 32 37 1 0.9027 60 31 40 1 0.9014 57 30 36 1 0.9014 54

1.6 24 32 1 0.9023 49 23 28 1 0.9023 45 23 32 1 0.9024 44 22 27 1 0.9048 41

1.7 19 26 1 0.9129 40 15 18 1 0.9049 31 18 22 1 0.9118 35 17 22 1 0.9044 33

1.8 15 22 1 0.9060 33 12 16 1 0.9127 26 15 18 1 0.9067 30 14 18 1 0.9066 28

1.9 12 16 1 0.9077 27 10 17 1 0.9018 23 12 15 1 0.9042 25 11 15 1 0.9009 23

2.0 11 14 1 0.9173 25 9 13 1 0.9142 23 10 16 1 0.9115 22 11 15 1 0.9337 23
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that the existing sampling strategy under traditional statistics is less effective in terms of ASN as compared with 
the proposed sampling plan under indeterminacy.

The likelihood of MDS acceptance at different levels of indeterminacy is depicted in Fig. 1.
The Fig. 2 shows that probability of acceptance is higher using MDS than the existing sampling plan.

LED manufacturing process data illustration
Park et al.46 and Jin et al.47 mentioned that quantum dot light-emitting diodes have uncertainty and inaccurate 
measurements of device parameters. Let’s consider a case study on the production of light emitting light-emitting 
diodes (LEDs) that focuses on the luminous intensities of LED sources in order to illustrate the use of the pro-
vided methodologies. The operational process of light-emitting diode with the help of images can be seen in 
(https:// eepow er. com/ indus try- artic les/ an- intro ducti on- to- light- emitt ing- diodes/#). The justification for the 
process distribution is done and evidence that it resembles the Weibull distribution quite closely. The luminous 
intensities of LED data has been taken  from48 and they showed that the process distribution to be fairly close to 
the Weibull distribution. The steady process is sampled using n = 30 sample size. Due to the inevitable degree of 
imprecision in the data provided by a specific LED’s luminous intensity, the luminous intensities of light-emitting 
diodes are supplied as lower and upper bounds as well as a point estimate, which are as follows:

Figure 1.  At various indeterminacy values, the OC curve plan.

Figure 2.  At various indeterminacy values, the OC curve of SSP and MDS.

https://eepower.com/industry-articles/an-introduction-to-light-emitting-diodes/
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[2.163, 3.068], [5.972, 8.150], [1.032, 2.642], [0.628, 1.735], [2.995, 5.066], [3.766, 6.212], [0.974, 2.045], [4.352, 
5.988], [3.920, 6.121], [1.375, 3.086], [0.618, 2.217], [4.575, 6.734], [1.027, 3.116], [6.279, 9.435], [2.821, 5.272], 
[7.125, 9.044], [5.443, 7.395], [1.766, 2.638], [7.155, 8.352], [0.830, 2.541], [3.590, 4.899], [5.965, 8.019], [3.177, 
4.213], [4.634, 7.058], [7.261, 8.871], [2.247, 4.128], [6.032, 8.529], [4.065, 7.480], [5.434, 7.655], [1.336, 3.284].

The maximum distance between the real-time data and the fitted of WD is found from the Kolmogo-
rov–Smirnov test statistic as [0.12964, 0.14889] and the p-value is [0.6473, 0.4742]. It is established that the 
luminous intensities of light-emitting diodes data drawn from the WD with shape parameter β̂N = [1.75456, 
2.47762] and scale parameter α̂ = [4.09506, 6.23939] . As a result, WD is a good fit for data on the luminous 
intensities of light-emitting diodes. Table 5 lists the plan parameters for this shape parameter. The form parameter 
for the suggested strategy is β̂N = [1.75456, 2.47762] when IL=0.2918. Assume that engineering administrators 
want to test H0 : µN = [3.6186, 5.4998] using the suggested sample scheme when IL=0.2918,γ = 0.10 , µN/µ0N

=1.5, a=0.5 and δ=0.10. From Table 5, it can be noted that c1 = 6 , c2=10, m = 1 and ASN = 25.
The created MDS sampling plan could function as follows: if the average luminous intensities of the light-

emitting diodes in 6 measurements are greater than or equal to 23.5255 luminous intensities of the light-emitting 
diodes, accept the null hypothesis H0 : µN = [3.6186, 5.4998] . For the batch of light-emitting diodes, a sample 
of 25 light-emitting diodes with varying luminous intensities will be chosen at random, using null hypothesis 
H0 : µN = [3.6186, 5.4998] . The lot of light-emitting diodes will be allowed if the average luminous intensities of 
the light-emitting diodes prior to [3.6186, 5.4998] are less than or equal to 6 measures, and the lot of light-emitting 
diodes will be denied if it is larger than 10 measurements. A property of the current batch of light-emitting diodes 
will be delayed until the testing of the previous lot of light-emitting diodes if the luminous intensities of the 
light-emitting diodes are between 6 and 10 measurements. The average luminous intensities of light-emitting 
diodes are more than equal to [3.6186, 5.4998] in more than 17 measurements, which means the assertion that 
they are H0 : µN = [3.6186, 5.4998] might be disproven based on the evidence. Whereas, when compared with 
the existing MDS plan to test H0 : µN = [3.6186, 5.4998] when IL= 0,γ = 0.10 , µN/µ0N=1.5, a= 0.5 and δ= 0.10 
the plan parameters are obtained as c1 = 7 , c2= 16, m = 2 and ASN = 53. Which means that the lot of light-emitting 
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diodes will be allowed if the average luminous intensities of the light-emitting diodes prior to [3.6186, 5.4998] are 
less than or equal to 7 measures, and the lot of light-emitting diodes will be denied if it is larger than 16 measure-
ments. A property of the current batch of light-emitting diodes will be delayed until the testing of the previous 
two lot of light-emitting diodes if the luminous intensities of the light-emitting diodes are between 7 and 16 
measurements. The average luminous intensities of light-emitting diodes are more than equal to [3.6186, 5.4998] 
in more than 17 measurements, which means the assertion that they are H0 : µN = [3.6186, 5.4998] might be 
rejected. Thus the proposed MDS sampling is performing well as compared with existing MDS sampling plan 
with respect to ASN. Therefore, engineer administrators could notify the government that light-emitting diode 
average luminous intensities have reached an unacceptable level. The proposed sample plan is useful in engi-
neering applications, specifically luminous intensities of light-emitting diodes, to determine average luminous 
intensities of diodes, which is important for any government to do when making policy judgments.

Concluding remarks
A detailed analysis of the luminous intensities of light-emitting diodes for the Weibull distribution is provided 
based on an indeterminacy scenario for a time-truncated MDS sampling design. The sampling plans’ amounts 
are set at the previously specified values of the indeterminacy parameter. Comprehensive tables containing the 
values of the known indeterminacy constants are supplied for the convenience of the researchers. The recently 
created MDS sampling design based on indeterminacy is compared with the current sampling techniques based 
on classical statistics. The results show that the created MDS sampling plan under indeterminacy is more rational 
than the existing SSP under indeterminacy as well as the conventional MDS sampling plans. Furthermore, it is 
less expensive to run the generated MDS under indeterminacy than the SSP. It’s important to keep in mind that 
the indeterminacy parameter is a major factor in lowering ASN values; hence an increase in the indeterminacy 
value will unavoidably result in a rise in ASN values. The MDS sample plan created under indeterminacy is there-
fore more advantageous to scientists, particularly industry practitioners, who are studying or testing sensitive 
topics that require additional funds and expert researchers. As a result, it is authorized to test light-emitting diode 
average luminosities using the MDS sampling strategy, which was created in the event of uncertainty. Confirma-
tion is shown by the example employing light-emitting diode data for light intensities for the MDS sampling 
approach under indeterminacy. Under indeterminacy, other researchers working across distinct domains would 
follow the standard MDS sampling procedure. The control chart approaches according to multiple dependent 
state sample plans will be considered the ones in the following study project to monitor the mean. The control 
chart addresses based on multiple dependent state sample plans would be considered in the subsequent research 
project to monitor the mean.

Data availability
The data is available from the Muhammad Aslam upon the request.
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Table 5.  The MDS design values for β = 1.7546 and IL=0.2918.

δ
µN

µ0N

a = 0.5 a = 1.0

c1 c2 m L
(

p1
)

ASN c1 c2 m L
(

p1
)

ASN

0.25

1.5 4 14 2 0.9158 15 2 12 2 0.9150 3

1.6 3 13 2 0.9284 13 1 11 1 0.9056 2

1.7 2 4 2 0.9144 9 1 11 1 0.9316 2

1.8 2 4 2 0.9413 9 1 11 1 0.9500 2

1.9 1 3 1 0.9121 7 1 11 1 0.9631 2

2.0 1 3 1 0.9319 7 1 11 1 0.9724 2

0.10

1.5 6 10 1 0.9023 25 4 5 1 0.9075 6

1.6 5 15 2 0.9121 21 3 13 1 0.9310 5

1.7 4 14 2 0.9218 18 3 13 1 0.9592 5

1.8 3 13 2 0.9139 15 2 12 1 0.9255 5

1.9 2 8 1 0.9066 13 2 12 1 0.9488 4

2.0 2 12 2 0.9130 12 2 12 1 0.9647 4

0.05

1.5 8 12 1 0.9045 33 6 16 1 0.9443 9

1.6 6 10 1 0.9165 27 5 15 1 0.9482 8

1.7 5 15 2 0.9146 23 3 13 2 0.9266 5

1.8 4 14 2 0.9152 20 2 12 1 0.9255 4

1.9 3 5 1 0.9178 17 2 12 1 0.9488 4

2.0 3 5 1 0.9443 17 2 12 1 0.9647 4
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