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Physics‑informed W‑Net GAN 
for the direct stochastic inversion 
of fullstack seismic data into facies 
models
Roberto Miele * & Leonardo Azevedo 

Predicting the subsurface spatial distribution of geological facies from fullstack geophysical data is a 
main step in the geo‑modeling workflow for energy exploration and environmental tasks and requires 
solving an inverse problem. Generative adversarial networks (GANs) have shown great potential 
for geologically accurate probabilistic inverse modeling, but existing methods require multiple 
sequential steps and do not account for the spatial uncertainty of facies‑dependent continuous 
properties, linking the facies to the observed geophysical data. This can lead to biased predictions of 
facies distributions and inaccurate quantification of the associated uncertainty. To overcome these 
limitations, we propose a GAN able to learn the physics‑based mapping between facies and seismic 
domains, while accounting for the spatial uncertainty of such facies‑dependent properties. During 
its adversarial training, the network reads the observed geophysical data, providing solutions to the 
inverse problems directly in a single step. The method is demonstrated on 2‑D examples, using both 
synthetic and real data from the Norne field (Norwegian North Sea). The results show that the trained 
GAN can model facies patterns matching the spatial continuity patterns observed in the training 
images, fitting the observed geophysical data, and with a variability proportional to the spatial 
uncertainty of the facies‑dependent properties.

Geological facies models are two- or three-dimensional numerical representations of the spatial distribution of 
litho-fluid classes (i.e., geological formations sharing the same characteristics in terms of mineral and saturating 
fluids content) in the  subsurface1. The accurate prediction of the spatial distribution of facies at targeted depths 
is required in many studies related to geo-energy and environmental applications. These types of models are key 
pieces of information, for example, to characterize groundwater systems, geothermal or hydrocarbon reservoirs, 
or to assess the capacity of carbon dioxide geo-storage2–5.

As direct observations of deep geological formations (i.e., well-logs) are generally scarce and provide spa-
tially limited information, geophysical measurements can be used as indirect measurements of the subsurface 
geological properties for the prediction of the spatial distribution of facies and rock properties. This goal is 
normally achieved by finding the solutions to an ill-posed and highly nonlinear geophysical inverse problem 
accounting for nonunique solutions, due to noise in the recorded geophysical data, errors in the models assumed 
to describe the subsurface properties’ distributions, and approximations to the geophysical model (i.e., elastic 
wave propagation) under  investigation1,6–8. When fullstack seismic reflection data is inverted, the subsurface 
acoustic impedance ( Ip ) can be used as the facies-dependent elastic property to model the relationship between 
facies and observed seismic data ( dobs )  domains7,9. The prediction of facies from fullstack seismic data can be 
summarized as follows: synthetic seismic data is calculated from a facies pattern using the collocated IP distri-
bution; the solutions to the inverse problem are the facies patterns that minimize the misfit between synthetic 
seismic data and dobs6,10–12. Although a number of deterministic seismic inversion methodologies  exist6,10, these 
approaches always predict smooth representations of the subsurface (i.e., the predictions are not able to account 
for small-scale geological variability) and have limited capabilities to represent the uncertainty of the retrieved 
solutions. On the other hand, stochastic seismic inversion algorithms can predict a distribution of possible solu-
tions to the inverse problem, allowing uncertainty assessment 7,12,13. These algorithms generally rely on Bayesian 
 inversion14–16, stochastic  optimization11,12,17–19, or Markov chain Monte Carlo (McMC)  sampling20–22 of the facies 
model parameters that better fit the observed data.
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In seismic inversion algorithms, representing uncertainties of facies distributions is key to unbiased and 
accurate  predictions3. Common facies modeling techniques used in seismic inversion are geostatistical simu-
lation methods based on the reproduction of two-points (variogram)7 or multiple-point statistics (MPS)23,24, 
which parameters can be optimized to find the desired inversion problem solutions. Variogram-based simula-
tion methods are widely adopted for the reproduction of petrophysical or elastic properties (e.g., IP ) continuity 
patterns, which are generally modelled from direct observations (e.g., well-log data). Nonetheless, they fail in 
reproducing high-order spatial statistics of depositional patterns, such as channels and  lobes7. Contrarily, MPS-
based algorithms generate realizations by directly sampling the spatial patterns stored in a training image, which 
represents the prior knowledge on the subsurface geology (e.g., a geological conceptual model)3,25. Nonethe-
less, geophysical inversion using such methods require to optimize a large number of parameters (i.e., finding 
a distribution of subsurface values that solves the inverse problem, for each location of the inversion grid). This 
can lead to demanding or prohibitive computational  costs26. Recently, various deep learning (DL)27 methods 
have been proposed as generators of spatial geological patterns, including facies in geophysical  inversion12,28–35. 
In particular, generative adversarial networks (GANs)36 have been proven to be particularly suitable in complex 
and geologically accurate facies modeling. GANs are composed of two networks, a generator and a discrimina-
tor. The generator is trained to map high-dimensional images (e.g., the facies patterns) from a low-dimensional 
distribution, reproducing spatial features in the training data set. The discriminator is trained to distinguish 
between real (i.e., observed) and generated data. This dual, adversarial, training process refines the generator’s 
output to fool the discriminator; a trained generator is hence able to model facies patterns into fewer latent vari-
ables, maintaining modeling performances that are comparable to those of MPS-based  simulations26,29,31,37–39. 
The low-dimensional encoded latent space can be explored by means of an inference method (e.g.,  McMC26,40 
or variational  inference33,41,42) to retrieve the facies spatial patterns that minimize the geophysical data misfit 
(i.e., the residuals between observed and predicted synthetic seismic data). Despite the successful demonstration 
of this technique in synthetic cases 26,33,40–42, the model parameters are optimized without accounting for the 
uncertainty affecting the facies-dependent elastic properties (e.g., IP ). The solutions retrieved are hence depend-
ent on the facies’ uncertainty alone, which can lead to inaccurate predictions (i.e., unrealistic from a geological 
perspective). Moreover, despite the GANs ability to reduce the dimensionality of a geophysical inversion, each 
new application is likely to require another training of the network (i.e., to represent a new geological prior), 
followed by the actual geophysical inversion in a second step. This approach can still represent a time-consuming 
and computationally expensive process for complex geological scenarios.

The work proposed herein introduces a GAN architecture to directly model realistic facies patterns condi-
tioned on dobs , given the facies-dependent IP uncertainty, in a single training phase. The network leverages on 
a specific discriminator architecture to learn the prior facies patterns and their physics-based correlation to the 
seismic data domain. For this purpose, we use a multivariate distribution defined by a set of subsurface facies 
images, paired with a nested distribution of corresponding fullstack seismic data responses. The latter are calcu-
lated from IP geostatistical realizations locally conditioned on the facies sample, honoring the facies-dependent 
experimental data distributions and spatial  uncertainty43. The discriminator encodes both facies and seismic data 
features into three individual scores, representing marginal and joint probabilities between the two domains. The 
discriminator evaluates the facies generated by an unconditional generative network coupled with dobs , in terms 
of facies geological accuracy and fitting to the seismic data. The inversion is carried out by training the generator 
to simultaneously maximize these two scores. Such adversarial training allows to finally obtain a generator able 
to reproduce several facies patterns fitting dobs , while approximating a posterior distribution. Given the specific 
three-branched, W-shaped architecture of the discriminator, which reads two separate inputs and generates three 
output scores, we refer to this method as W-Net GAN.

The proposed methodology is first evaluated on 2-D synthetic application example, using a test data set inte-
grating scenarios not reproduced by the prior training data. The method is further adopted for the inversion of 
a real 2-D seismic section acquired in the Norwegian Sea, in the Norne oil field. In all the application examples 
our results show that the trained generator can reproduce a probabilistic map corresponding to the facies targets 
within the assumed IP uncertainty range, while generating facies distributions indistinguishable from those of 
the training data set. The performances of the network suggest that the proposed approach can be used within 
the geo-modeling workflow to create subsurface numerical models integrating the a priori geological knowledge, 
data statistics and geophysical forward model.

Method
Training data set
The proposed seismic inversion technique is based on training the W-Net GAN with a training data set represent-
ing the prior knowledge on the facies distributions (i.e., the expected geological setting) and the corresponding 
fullstack seismic reflection data. The latter is obtained by modeling the facies-dependent IP distributions and its 
spatial uncertainty (e.g., from existing direct observations such as well-log data). The representation of the prior 
knowledge in the training data set is defined within the inversion grid lateral extension (i.e., for the fullstack 
seismic volume), that of the dobs considered in the case  study7.

To represent the subsurface geology, we use a set of N 2-D facies generated with geostatistical simulations 
conditioned to MPS, sampling the patterns from a conceptual geological model. Alternative simulation meth-
ods could be used (i.e., physics-based models). Based on the existing well-log data, we then model a variogram 
representing the spatial continuity patterns of IP in each facies. Conditioned to each MPS facies realization, we 
generate a set of M geostatistical simulations of IP using the direct sequential simulation (DSS)  method43,44, 
honoring locally the expected facies-dependent  IP values distribution and modelled continuity patterns. In cases 
where no direct observations are available a priori information from analogue geological settings might be used. 
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Therefore, the resulting ensemble of realizations represents a nested set of equiprobable spatial distributions of 
IP , conditioned on the potentially available direct measurements, spatial continuity pattern and facies distribu-
tion. We finally model the correlation between IP and fullstack seismic reflection data. First, we calculate the 
normal-incidence reflectivity coefficients ( r ) from:

where i represents the sample above the interface where the reflection coefficient is being calculated and i + 1 
represents the sample below. Then, we convolve the reflection coefficients with a known source wavelet, assumed 
to be the one that best describes the observed seismic  data10. The discussion about wavelet estimation methods 
is out of the scope of this work. This operation is repeated for each IP realization, for each facies pattern in the 
training dataset. Therefore, we obtain a nested set of M seismic reflection data corresponding to the N facies pat-
tern, representing the IP spatial uncertainty indirectly, through different seismic realizations. During the training 
process, a single sample of the training data set will be defined by a facies pattern image and its corresponding 
seismic data, randomly sampled from the nested set.

W‑Net GAN architecture
The W-Net GAN (Fig. 1a) uses a generative network ( G ) to map a random latent vector ( z ) into a 2-D facies 
model. Its architecture is composed of a sequence of four transposed convolutional hidden layers, using batch 
normalization (BatchNorm) and leaky rectified linear units (LeakyReLU) activation functions to decode z . The 
output layer is another transposed convolutional layer with hyperbolic tangent (Tanh) as activation function, to 
finally define binary facies images, classified as − 1 and 1 (respectively shale and sand classes).

The discriminator ( DW in Fig. 1a and b) is composed of three distinguished convolutional neural networks, 
or branches, each with four layers. This architecture is designed to read simultaneously the facies and seismic 
data as input using two branches (‘external’) and encode the information from the two domains into three likeli-
hood scores: one for the facies features ( DF ), one for the seismic data features ( DS ) and another for their joint 
distribution ( DJ ). The first two scores are independently generated by the two external branches. The output 
resulting from each hidden layer of the external branches is also concatenated and transferred to a central branch 
by means of skip connections (Fig. 1b). The central branch evaluates the DJ score by encoding the joint features. 
The set of skip connections reinforce the spatial characteristics of facies and seismic domains at different spatial 
scales. Analogous to G , the hidden layers’ use BatchNorm and LeakyReLU activation functions. The output 
layer of each branch accounts for a convolutional operation and a sigmoid activation function. The outputs are 
score matrices which are then averaged (i.e., instancewise average in Fig. 1b). The proposed architecture can be 
adapted to different image sizes and complexities. We used different kernel sizes, padding and stride parameters 
for both G and DW , to adapt the network to the synthetic and real case application examples shown below. A 
detailed representation of the architectures used in this work is presented in the Supplementary Information. 

(1)r =
IPi+1 − IPi

IPi+1 + IPi
,

Figure 1.  Schematic representation of the proposed seismic inversion through the W-Net GAN; (a) inversion 
algorithm, (b) details about the architecture of the W-Net GAN discriminator ( DW).
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Although the W-Net GAN proposed here predicts a binary facies distributions, the architecture can be further 
adjusted to produce a larger number of facies (e.g., using one hot  encoding30).

Seismic inversion with W‑Net GAN
The proposed seismic inversion workflow is illustrated in Fig. 1a. After representing the prior information into 
a training data set, the seismic data inversion is carried out directly through the training of the W-Net GAN, 
conditioning the network optimization on both training data and dobs . As the correlation between facies and 
seismic data is modelled by the physics forward model assumed in the training data set, the network modeling 
itself will be physics-guided. The method aims at obtaining a trained generative network G able to reproduce 
multiple realistic and equiprobable facies realizations fitting dobs.

The training of the W-Net GAN accounts for the adversarial learning between DW and G . At each epoch, 
we first sample a random seismic data realization ( x2 ) for each of the facies images ( x1 ) in the training data set. 
These pairs are labeled as the real examples for the training of DW . We further define fake training samples by 
coupling the seismic realizations x2 with facies images generated at that epoch by G ( G(z) ). Therefore, DW is 
trained to maximize the scores DF , DJ when the real sample is used ( x1, x2 ) and to minimize DF and DJ when 
the input data is the fake sample ( G(z), x2 ). As we are using only real samples for the seismic data domain, we 
exclude it from the adversarial training, imposing the maximization of DS in both cases. We formalize the dis-
criminator loss as follows:

The first three terms of Eq. (2) represent the sample loss components for the real samples for each score, while 
the last two refer to the fake samples. Minimizing LD allows DW to learn the marginal and joint distributions of 
the facies and seismic patterns. The training of G aims to maximize DF and DJ using the generated pair of facies 
and dobs . In this case, we use the score DJ(G(z), dobs ) to evaluate the probability of having that facies pattern, 
given the observed seismic data, while DF(G(z)) reinforces the geological accuracy of the generated patterns. 
The latter is equivalent to a discriminator’s score for conventional GANs: the score evaluates the geological accu-
racy but decreases when the G(z) variance is small with respect to that of the prior distribution. This condition 
occurs when the generated distributions start converging toward the inversion solutions. To avoid this conflict 
we progressively reduce the weight of the DF(G(z)) over the total loss of G , proportionally to half of the facies 
convergence to dobs . We hence formalize the loss of G as

The minimization of LG in Eq. (3) aims at the condition for which if DJ (G(z), dobs) = 1 (i.e., perfect match), 
DF(G(z))+

1
2DJ (G(z), dobs) ≥ 0.5 . To condition the modeling to well-log data, we include another term in LG . 

The content loss ( LC ) is defined as the L2-norm between the observed data and the collocated predicted values. 
Equation (3) can hence be rewritten as

where β is a weight regulating the contribution of LC on LG . The W-Net GAN’s parameters are trained using the 
ADAM  optimizer45 with a learning rate step decay per epoch to refine the training at each epoch. In the proposed 
W-GAN, the number of epochs, the initial learning rate and learning rate decay rate, and the factor β , are the 
only hyperparameters to calibrate.

Code implementation
The proposed seismic inversion algorithm was implemented in Python (version 3.9). We used PyTorch with 
CUDA (versions 1.13 and 11.7) for the W-Net GAN model and training code. The training was conducted on 
a computer running Windows 11 operating system, with Intel® Core™ i7-8750H CPU and NVIDIA® GeForce™ 
GTX 1060. The average training time of the W-Net GAN was approximately 45 s per epoch for all the synthetic 
application examples, and 55 s per epoch for the real application example.

Application examples
We apply the proposed seismic inversion methodology to 2-D synthetic and real case applications. The first case 
is used as proof of concept and validation of the W-GAN seismic inversion, while the real case example assesses 
the performance of the proposed method in real noise conditions.

Synthetic case application
We assumed a synthetic depositional sequence of channel sand bodies in a shale background. Following the 
proposed workflow, we first represented this scenario using a conceptual 3-D geological model (Fig. 2a). Two 
synthetic facies-dependent IP distributions were defined, simulating direct observations from well-log data 
(Fig. 2b). The IP values were sampled from normal distributions with µ = 6500 Pa s/m3 and µ = 8000 Pa s/m3 
for sand and shales, respectively, and both with standard deviation of 500 Pa s/m3. The spatial continuity pat-
tern of IP was defined by a variogram model with a spherical structure, no nugget effect, and horizontal range 
of 80 m for both facies. The vertical range value is set to 50 ms and 80 ms for sand and shale, respectively. We 

(2)
LD = −log[DF(x1)]− log

[

DJ (x1, x2)
]

− log[DS(x2)]− log[1− (DF(G(z)))]− log
[

1−
(

DJ (G(z), x2)
)]

(3)LG = −log

[

DF(G(z))+
1

2
DJ (G(z), dobs)

]

− log
[

DJ (G(z), dobs)
]

(4)LG = −log

[

DF(G(z))+
1

2
DJ (G(z), dobs)

]

− log
[

DJ (G(z), dobs)
]

+ β ∗ LC ,
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generated a training data set of facies and corresponding seismic data honoring these parameters. The resulting 
dataset accounts for 3000 MPS simulations of facies, populated on average by 79% ± 3% of shales and 21% ± 3% 
of sands. Each facies realization is coupled with 16 conditioned DSS realizations of IP , then used to compute 
the corresponding fullstack seismic data, using a given known wavelet (Fig. 2c). We assumed no uncertainty in 
the wavelet estimation.

Four additional facies realizations, together with the corresponding IP and fullstack seismic data, were also 
generated through the process described above and used as test scenarios. Using the fullstack seismic data as 
dobs , the facies patterns represent the target of our inversion (i.e., the facies we want to predict). A fifth test 
scenario, with an arbitrary spatial pattern, different from the other MPS simulations, was also considered. The 
corresponding dobs were calculated following the description above. This scenario is designed to test the W-Net 
GAN in the case of training with a biased or poorly informed prior. The five test scenarios are shown in Fig. 3. 
For each seismic inversion, the W-Net GAN was trained for 500 epochs, using an initial learning rate of 1e-3 
and a step decay rate of 50% every 50 epochs.

The result of the inversion shows that the W-Net GAN is able to invert dobs and produce facies models accord-
ing to the given parameters and physics model. A summary of the inversion results is given in Fig. 4a. From the 
analysis of the evolution of the DJ scores of the generated images, the adversarial training tends to stabilize before 
epoch 100, where the inversion results start matching dobs (Fig. 4b). Nonetheless, the network keeps refining the 
features learned, and the facies realizations are consequently improved, after this point.

The facies generated by the trained G were used as realizations to approximate the posterior distribution (i.e., 
the target) of the seismic inverse problem. From an ensemble of 500 facies realizations, a probability map of sands 
and the map of most likely facies per inversion grid node were calculated (Fig. 4a). Each facies realization match 
the target with an average accuracy spanning from 77% (for test Scenario 4) to 85% (Scenario 1). The sand prob-
ability maps resulting from the five scenarios generally capture most of the sand bodies of the target, although 
they show larger uncertainties in regions where the IP contrasts are smaller (Fig. 3). This is also reflected in the 
approximation by the most-likely facies models of the corresponding target. Using these distributions to condi-
tion 30 IP geostatistical realizations, we computed the corresponding average seismic ( dP50 ). The seismic data 
misfit between dP50 and dobs is given in Fig. 4a. These images enhance the areas of larger misclassification. The 
results obtained for Scenario 5 show a clear overestimation of sand with respect to the target facies image. Each 
realization generated by the trained G is populated, on average, by 78% ± 4% of shales and 22% ± 3% of sands, 

Figure 2.  Prior training data used for the synthetic case application. (a) 2-D section of the conceptual 
geological model; (b) facies-dependent IP distributions; (c) wavelet used to generate the seismic data.
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similar to the other cases’ realizations and to the training data. Nonetheless, the ensemble of the generated images 
approximates the target, representing the highest sand probabilities in correspondence with the target (Fig. 4a).

The single facies realizations obtained from the trained G tend to reproduce well the patterns of the training 
data. Figure 5a shows a visual comparison of the facies realizations obtained for Scenario 1 and Scenario 5 with 
those of the training data set. Nonetheless, some realizations show noise or small irregularities in the facies pat-
terns, especially in Scenario 5. We further assess the variance of these realizations with respect to the training 
data and their convergence to the target facies, by representing the pairwise Hausdorff distances between all the 
training, the target and generated samples in two dimensions, through multi-dimensional scaling (MDS)46. The 
MDS plots project the facies patterns distances, highlighting the convergence of the patterns with the inversion 

Figure 3.  Test set used for the synthetic case application. The target facies distribution of Scenario 5 was 
arbitrarily generated to reproduce a sample outside the prior distribution.

Figure 4.  Results of the inversions for the five test scenarios of the synthetic application examples: (a) 
probability of sands, most likely facies, and data misfit between the observed data ( dobs ) and the average seismic 
from the realizations’ ensemble ( dP50 ); (b) DJ score evolution with epochs (horizontal axis is in logarithmic 
scale).
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target (red crosses). In Fig. 5b we analyze both the results for Scenario 1 and Scenario 5, comparing 1000 gener-
ated facies realizations with the same number of training images and the target facies pattern. In both MDS plots, 
the data points of the generated images cluster in regions close to those of the training images, confirming that 
the facies patterns are similar to the prior data. These data points tend to cluster in specific regions of the MDS 
space or relatively smaller variance, identifying the solutions’ regions predicted by the W-Net GAN. For Scenario 
1, the solutions converge correctly toward the target. The MDS plot for Scenario 5 highlights the distance of the 
target facies image from the training data and confirms the observations described previously on the W-Net 
GAN predicted facies distribution.

Finally, we evaluated whether the DJ scores obtained from the trained DW (i.e., the goodness of fit of the 
facies to dobs, given the learned physics and data) provide a measure that is comparable to the mean squared 
error (MSE) between predicted and observed seismic data. For this purpose, we considered 50 facies realiza-
tions generated by the trained G , together with their corresponding DJ scores. For each facies, we computed a 
corresponding seismic reflection data using from a single IP conditioned realization and computed their MSE 
values relative to dobs . The test was repeated for each scenario, plotting MSE values and DJ scores as scatter plot 
(red empty circles in Fig. 5c). The cluster of points identifies an inverse correlation between DJ and the MSE 
distance, with an average Pearson’s correlation coefficient of −0.6± 0.18 . This correlation is absent for Scenario 
5, where the points have larger variance. Although the coefficients of the correlation varied significantly with each 
training, case study and data uncertainty, the linear correlation was found to be statistically significant (p-value 
of 0.017). We repeated the same test using the target facies distributions (Fig. 3). For each facies distribution we 
simulated 50 seismic reflection data realizations and evaluated the corresponding DJ scores, using the trained 
DW of the relative test scenario. Moreover, we calculated the MSE distances of each seismic data realization from 
the actual dobs (Fig. 3). The ensemble of 50 DJ scores are plotted against the corresponding MSE distances as blue 
diamonds in Fig. 5c. We refer to this cluster of points as Real data points. For each scenario, except for Scenario 
5, the DJ scores are close to one (~ 0.999). Their distribution does not show any variability due to the different 
seismic data realizations used as input to DW . Contrarily, as the variance of the seismic reflection responses in 
the realizations is dependent on the spatial uncertainty of IP , the MSE distances obtained show a distribution, 
accordingly. A comparison between the seismic inversion predictions and the Real data points highlights how 

Figure 5.  Evaluation of the W-Net GAN realizations: (a) comparison with the training facies samples; (b) 2-D 
MDS representation of the Hausdorff distances between training (blue circles), predicted (red circles), and target 
facies (red crosses); (c) comparison of the DJ scores with the MSE between seismic realizations conditioned of 
the predicted facies and dobs.
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the G realizations with larger DJ scores plot close to the Real samples, while their MSE variances are comparable 
to the reference. Nonetheless, the MSE values of the G predictions present a shift toward relatively higher values 
in all the five Scenarios. The lower DJ scores for the Real distribution are particularly lower than those predicted; 
this is an expected behavior as the real facies image does not belong to the training data distribution.

Real case application
We selected a 2-D fullstack seismic section extracted from a 3-D seismic survey acquired in the Norne field, 
surveying a shallow marine to fluvio-deltaic sedimentary sequence (Fig. 6a). The survey extends for 1400 m 
laterally, covering a vertical interval of 267 ms two-way time (TWT); the inversion grid defined has 109 × 75 
cells. A well crosses the survey path, from which we extracted the facies profile and the corresponding IP distribu-
tions (Fig. 6b). The facies identified in the area were defined as sands and shales. Given the available geological 
 knowledge47,48, we set up a prior 3-D geological model describing the spatial features of the expected intercalation 
of shale layers and sand bodies. The latter were described as a combination of more tabular bodies mixed with 
channel-like shapes. The IP spatial uncertainty is described by a variogram model fitting the experimental well-
log data (i.e., spherical variogram model; no nugget effect; range of 13 ms and 26 m for vertical and horizontal 
directions, respectively). The source wavelet was initially extracted from the original survey and finely tuned so 
that the synthetic seismic data calculated from the IP-logs would fit dobs . We then generated a data set of 3000 
facies patterns and 16 seismic reflection responses each. The facies images in the training data are populated by 
26% by shales and 74% by sands ( σ = 4%). We ran two seismic inversions using the well data for blind-well test-
ing (unconditioned case) and conditioning the realizations on the well profiles (conditioned case), using Eqs. (3) 
and (4) for the training of G . We set the same hyperparameters used for the synthetic case in both inversions: 500 
training epochs and an initial learning rate of 1e-3 with a step decay of 50% per 50 epochs. For the conditioned 
case, we set β = 1 [Eq. (4)].

An ensemble of 500 facies generated by G after the two inversions was used to compute the probability of sands 
over shales, the corresponding most likely facies, and the difference between the average expected seismic from 
the predicted facies and dobs (Fig. 7a). Except for the well-log location, the solutions retrieved by the conditioned 
and the unconditioned cases match in terms of shale layers identified and their morphology. For example, laterally 
continuous shale layers match two main horizontal seismic reflection events in dobs , at approximately 2425 ms 
and 2525 ms TWT, for both cases. This is visible in both probability distribution models and most likely model 
in Fig. 7a. The locations of these reflections are highlighted by yellow arrows in both Figs. 6a and 7a. A third 
major layer of shales was also identified at 2550 ms, but in this case the most likely facies model shows a lateral 
truncation between 550 and 750 m (i.e., a relatively higher probability of sands was predicted). Analogously, the 

Figure 6.  Observed data and prior used for the inversion; (a) observed seismic reflection data from the Norne 
Field and location of the well data. The yellow arrows indicate the location of two major seismic reflection 
events; (b) well log data; (c) 2-D vertical section of the conceptual geological model used for the training data 
set’s facies realizations.
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difference between the average expected seismic and dobs is similar between the two cases: the average absolute 
difference of amplitudes is 327 ± 252 for the unconditioned case and 343 ± 253 for the conditioned one. At the 
well location, the conditioned facies probabilities perfectly match with the conditioning well-log data, while 
the unconditioned case retrieves a set of solutions with relatively large uncertainty. The comparison of the real 
facies profile with the collocated most likely facies predicted in the unconditioned case (Fig. 7b) indeed shows an 
underestimation of shales. Nonetheless, the well-log IP data (“True Ip” in Fig. 7b) is entirely within the range of 
collocated IP values conditioned on the predicted facies, except from one point of the simulation grid, at 2550 ms, 
where the predictions reproduce slightly lower IP values. This suggests that the facies uncertainty modeled by G 
can be explained by the actual IP data uncertainty from the well-log. The morphology of the facies in the single 
realizations visually match quite well those of the training images (e.g., Fig. 8a) and they perfectly match the 

Figure 7.  Results of the seismic inversions; (a) sand probability, most likely facies, and average seismic data 
misfit, for both conditioned and unconditioned cases. The yellow arrows indicate the location of the two major 
reflections event in dobs (Fig. 6a); (b) comparison of the well-log data with the collocated predicted facies and 
corresponding conditioned IP distribution.

Figure 8.  Evaluation of the W-Net GAN realizations after training, for both unconditioned and conditioned 
cases. (a) Visual comparison with the training data; (b) 2-D MDS representation of the Hausdorff distances 
between training, predicted, and target facies.
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average and variance of the shale-to-sand ratio. Despite these similarities, the conditioned case results show a 
relatively smaller variance of the predicted model when compared to the unconditioned case in the locations 
away from that of the well. This effect can be interpreted by inspecting the differences between the predicted sand 
probability maps (Fig. 7a), as well as a two-dimensional MDS representation of the predicted facies (Fig. 8b).

Discussion
The results obtained from both the synthetic and real application examples demonstrate that the W-Net GAN 
is able to invert fullstack seismic reflection data, by learning the physics-based correlation between facies and 
seismic data domains. Overall, the predicted facies distributions reproduce the patterns and the facies statistics of 
the training data set in both synthetic and real applications. Besides, the proposed method is able to account for 
existing direct measurements (i.e., well-log data) or predict facies in scenarios where these data are not available.

The solutions for the synthetic case applications show high accuracy of the facies realizations when compared 
to the inversion target. When the prior is biased or poorly informed, as demonstrated by the results in Scenario 
5, the network adapts the learned features to the observed data, approximating the target scenario, although 
with significant errors (Figs. 4 and 5). The presence of noise in the generated images, visible in the result of 
Scenario 5 (Fig. 5a) can be an indication of model overfitting, or due to the inability of the network to reproduce 
specific target features given the training data set parameters. A possible solution to avoid noisy images can be 
to increase the weight of DF and reducing that of DJ in the loss function of G [Eqs. (3) and (4)]. Nonetheless this 
is likely to increase the variance of the solutions, above that induced by the IP uncertainty, reducing the global 
convergence of the method. The comparison of the DJ scores with the actual seismic data misfit (MSE) in Fig. 5c 
shows that the predicted facies patterns reproduce a variability that is close to the range of IP data uncertainty. 
Moreover, the inverse correlation between the DJ scores and the MSE and the consistency of the results obtained, 
are indicators that the trained DW is indeed able to provide a physics-dependent evaluation of the goodness of 
fit of the generated facies to dobs . The relatively larger MSE values showed by the predicted facies (Fig. 5c) may 
be explained by the presence of additional modeling uncertainty, which can be reduced by improving specific 
architecture’s parameters (e.g., number of layers, kernel sizes, or padding) or the training hyperparameters. 
On the other hand, the blind-well test for the unconditioned real case application (Fig. 7b) indicates that such 
uncertainty is negligible for this case.

The results obtained for the real case applications confirm analogous performances of the network. The prob-
ability maps of sands retrieved from the conditioned and the unconditioned case are comparable and reproduce 
major facies changes in correspondence to the main seismic reflection events. The use of local constraints (i.e., 
localized well-log facies profiles) conditions the generation of facies patterns also away from the well location. 
This did not affect the solutions in terms of seismic data misfit but significantly reduced the global uncertainty 
ranges. It is not possible to evaluate whether these solutions are more or less accurate than the unconditioned 
case as the true Ip and facies fields are unknown. Other methods such as the use of a U-Net generative  network37 
or the integration of context  expansion29 can be adopted to priorly control the influence of the wells on the 
generated images.

In the proposed method, the spatial resolution of facies and corresponding IP distributions represented in 
the training data set depends on the geological information and the available well-log data. Nonetheless, the 
lateral accuracy of the predicted facies is limited to the seismic data spatial resolution, while the vertical resolu-
tion depends on the grid cell size in this direction. In the examples shown here we consider litho-fluid facies 
as geological formations with similar elastic responses at the seismic scale. For example, the low resolution of 
dobs for the real case does not allow to predict the distribution of thin shale layers represented in the training 
data with large accuracy but approximate a probability distribution. This represents a well-known limitation of 
seismic data  inversion7. Another important aspect of the proposed applications is that we assume no uncertainty 
in the physics forward model used. This should be considered in more complex real scenarios, e.g., by simulat-
ing seismic data realizations reflecting this uncertainty in the training data set. Another possibility is to further 
explore the parameters space of the generative network by means of an inference  method26,40,42,49 and refine the 
range of solutions predicted. These suggested applications would require further related studies to assess the 
specific uncertainty representation abilities of the W-Net GAN.

We have demonstrated that our neural network is capable of learning data distributions and modeling com-
plex, nonlinear relationships in seismic data inversion. Beyond our current applications, we believe this frame-
work can be adapted for other geophysical data inversions and the prediction of various Earth properties. This 
may require relatively small adjustment to the network architecture and the representation of relevant prior 
knowledge in the training data set, which may be topics for future research projects.

Conclusions
We propose the W-Net GAN as a physics-based GAN for the direct inference of accurate facies distributions 
from fullstack seismic data. The proposed training algorithm aims at obtaining a discriminator ( DW ) that is able 
to recognize the features of seismic data and represents its correlation to the facies domain. This is done using 
a multivariate prior representing facies and seismic data features, as well as their corresponding physics-based 
correlation. The DW network is designed to have a three-branched architecture, each encoding the information 
from the two domains into three different scores, representing the marginal probabilities of facies and seismic 
and their joint bivariate probability. Using the observed seismic data dobs as input to DW , we can hence evalu-
ate the facies generated by an unconditional generative network in terms of geological accuracy and fit to the 
seismic data. The trained generator reproduces equiprobable realizations of accurate facies patterns fitting dobs , 
hence approximating a non-parametrical posterior distribution of the solutions. Compared to conventional 
methods using GANs to parametrize a prior distribution of  facies26,40,42,48, the W-Net GAN presents two main 
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advantages: the ability to invert seismic data in a single training step while accounting for the spatial uncertainty 
of facies-dependent continuous properties in the retrieved distribution. The method was tested successfully on 
a synthetic scenario using 5 test scenarios, one of which simulated a case of inversion with biased prior. The 
retrieved solutions show an average accuracy of 80% and demonstrate that approximate solutions are possible 
for cases not represented in the prior, although presenting biases due to the learned subsurface parameters. We 
also demonstrated the application of the W-Net GAN by inverting a real 2-D fullstack seismic section, using 
the available well-log profiles both as local conditioning data and for blind-well testing. The high quality of the 
retrieved solutions in terms of accuracy and uncertainty reproduction validate the applicability of the method 
for different complex scenarios.

Data availability
The python codes for the W-Net GAN inversion algorithm and data for the applications presented in this paper 
are available at https:// github. com/ romie le/W- NetGAN.
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