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Controlled synchronization 
of three co‑rotating exciters 
based on a circular distribution 
in a vibratory system
Lei Jia 1*, Yang Tian 2, Ziliang Liu 1 & Xin Zhang 1

In this article, an engineering problem of three co‑rotating exciters with the circular distribution 
in a vibrating system is investigated. The dynamical model constructed by the motion differential 
equations is established. By introducing the small parameter averaged method in the dynamic 
equation, the synchronization and stability conditions of the electromechanical coupling dynamical 
model is derived. To illustrate the necessity of the controlling method, the self‑synchronization of the 
vibrating system is firstly analyzed with the theory, numerical simulations and experiments. With the 
self‑synchronization results, it is indicated that the ellipse trajectory which is needed in the industry 
can’t be realizefd by the self‑synchronization motion of the vibrating system. And then, a fuzzy PID 
controlling method based on the master–slave controlling strategy is introduced in the vibrating 
system to realize the controlled synchronization. The Lyapunov stability criterion is given to certify 
the stability of the controlling system. Through some simulations and experiments, the effectiveness 
of controlled synchronization is illustrated in the discussion. Finally, the present work illuminates the 
feasibility and practicality for designing some new types of vibrating screens in the industry.

Keywords Self-synchronization, Controlled synchronization, Coupling dynamical model, Vibratory system, 
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Nowadays, the vibratory machinery has a rapid development with an improvement of the technology in the 
industry, for example the vibrating screen, vibrating feeder and so  on1–3. The vibrating screen is used in various 
of industry fields because of its large potential economic benefits. The actuators of the vibrating screen with 
traditional forms usually adopt the forced synchronization motion by gears, belts, chains or some other trans-
mission mechanisms. However, the more mechanism parts are used, the lower reliability the vibrating system 
is. This result could decrease the useful life of the vibrating system. With the development of the synchronous 
theory, some synchronous methods are presented by the dynamical intrinsic character. The theory of vibration 
synchronization is firstly represented by Blekhman et al.4,5 In their work, two eccentric rotors (ERs) separately 
driven by two motors are installed on a vibrating bench with the same frequency. They divide the motion of the 
vibrating system into two processes with different time scales. One is the faster process and the other is lower 
process. With this method, they obtain the synchronization and stability conditions of two motors rather than 
the coupling characteristics of the vibrating system. Inoue et al.6 realizes the self-synchronization motion of two 
and three times frequency with four motors. Wen et al.7 have research on the self-synchronization motion with 
two motors in a vibrating system. In the research, the synchronization and stability conditions of the whole 
vibrating system is derived with the average method and Hamilton principle. Zhao et al.8,9 proposes the small 
parameter average method based on the perturbation method. And with this method, they substitute the prob-
lem of synchronization for existence and stability of the eigenvalues which are obtained from the dynamical 
equations of the vibrating system. Zhang et al.10–12 not only establishes the dynamical model of three motors in 
a vibrating system, but also provides the experiment results of the self-synchronization. In the meanwhile, the 
double and triple frequency synchronization is studied. In their research work, the synchronous and stability 
conditions of the vibrating system with three ERs are derived and the results show that when the synchronous 
and stability conditions are not satisfied, the circular motion which is needed in the vibratory screen can’t be 
realized. Balthazar et al.13,14 analyze the problem of self-synchronization with four direct current (DC) motors. 
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They use the elastic support to replace the rigid body and introduce the numerical method into the dynamical 
model instead of the analytical solution.

As illustrated above, the self-synchronization motion should satisfy the synchronous and stability conditions 
so that it can realize the needed trajectory in the vibratory screen. Aim at this problem of the self-synchronization, 
the method of controlled synchronization which introduces the controlling method and controlling strategy 
into the self-synchronization is presented. Kong et al.15–17 realizes the controlled synchronization motion of 
three and four ERs in a vibrating system. The master–slave controlling strategy is used in the controlled system 
with the adaptive slide controlling method. Besides that, the synchronization based on an elastic beam is also 
studied. In their work, the approximate circular trajectory is realized with three ERs driven by inductor motors 
which are installed in one line on a rigid frame. And then, the linear trajectory is given with four ERs driven by 
inductor motors which are symmetrically installed along the horizontal and vertical axes. Perez-Pinal et al.18 
represents a controlling strategy titled relative coupling control. Huang et al.19,20 introduces the relative coupling 
controlling method into a non-linear vibrating system and realizes the controlled synchronization motion with 
two ERs. The multifrequency synchronization with controlling method is studied. Priyanka et al.21 uses the 
fuzzy PID controlling method to realize the fluid machinery control, which provides a way for the controlled 
synchronization. Jia et al.22,23 use the controlled synchronization and composite synchronization method on the 
multifrequency synchronization motion. In their research, the non-integer multifrequency controlled synchro-
nization is investigated.

Compared with the finished research work, it can be known that the self-synchronization with three ERs 
can’t realize the approximate circular trajectory which can be realized by controlled synchronization method. 
However, the ERs driven by inductor motors with the linear distribution need a larger frame. This result may 
not be suit for some smaller vibratory screen. Thus, an engineering problem of three co-rotating exciters with 
the circular distribution in a vibrating system is investigated. The structures of present work are as follows: the 
electromechanical coupling dynamic model of the vibrating system is established in Section "Synchronization and 
stability analysis of dynamical differential equation". And then the motion differential equation of the dynamic 
model is derived. The synchronous and stability conditions of the self-synchronization with three ERs is obtained. 
In Section "Design and theoretical analysis of the controlling system", the controlling method is introduced to 
establish the controlling system and the stability of the controlling system is certified by the Lyapunov criterion. 
Section "Results analysis and discussions" shows the discussions with theory, numerical simulations and experi-
ments. Finally, some conclusions are summarized in Section "Conclusions".

Synchronization and stability analysis of dynamical differential equation
The establishment of the theoretical model
The model of the vibratory screen can be simplified as the theoretical model of a vibrating system shown in Fig. 1. 
And the significance of mathematical symbols in this paper are all listed in Table 1. The vibrating system is 
constructed from top to the bottom. Two inductor motors with ERs are symmetrically installed on a rigid frame 
along the vertical axis. One motor is installed under the rigid frame on the vertical axis. oi(i = 1,2,3) are respec-
tively the rotating center of three ERs. The frame is supported by four springs which provide the stiffness in the 
x and y directions. o is the center of the rigid frame. M is the total mass of the vibrating system, 
M = m+mi(i = 1, 2, 3) . m is the mass of the frame and ooi = li(i = 1, 2, 3) . J and Jp are respectively the inertia 

moment of the vibrating system and the rigid frame, J = Ml2e ≈ Jp +
3
∑

i=1
mi(l

2
i + r2) . le is equivalent rotation 

radius. fx, fy and fψ are the damping coefficients, fψ = l20(fx sin
2 β + fy cos

2 β) . kx, ky and kψ are the stiffnesses, 
kψ = l20(kx sin

2 β + ky cos
2 β) . fi (i = 1,2,3) respectively represents damping coefficients of the inductor motor. 

The parameters of the vibrating system are given in Table 2.

Figure 1.  Mathematical model of the vibrating system.
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According to Fig. 1, the mathematical model of the vibrating system can be derived with Lagrange equation.

Equation 1 contains four variables, the first is the kinetic energy T which is composed of three parts. They 
are respectively the item of translational energy of the rigid body Tteb = m(ẋ2 + ẏ2)/2 , rotational energy of the 

rigid body Treb = Jbψ̇
2/2 and the kinetic energy of three ERs Tkee =

(

3
∑

i=1
mi δ̇

T
i δ̇i +

3
∑

i=1
Jiϕ̇

2
i

)

/2 , where, 

δi = δ0 + χδ′′i  . According to the transformation of the coordinate system, it can be derived as δ0 =
(

x

y

)

 , 

χ =
(

cosψ − sinψ

sinψ cosψ

)

 , δ′′i =
(

li cos θi + r cosϕi

li sin θi + r sin ϕi

)

 . Thus, the total kinetic energy of the system can be expressed 

(1)
d

dt

(

∂(T − V)

∂q̇

)

− ∂(T − V)

∂q
+ ∂D

∂q̇
= Q

Table 1.  The nomenclature table of the symbols.

Symbol Significance

mi The mass of each ERs

Jp The moment of inertia of the rigid frame

J The moment of inertia of the vibrating system

kx, ky, kψ The stiffness coefficients of the vibration system in the x, y and ψ directions

r The eccentric radius of the inductor motors

M The total mass of the vibration system

fx, fy, fψ The damping coefficients of the vibration system in the x, y and ψ directions

l1, l2, l3 The distance between the center of the body and the rotating center of motors

Ji The moment of inertia of the inductor motor

d-, q- The d- and q- axes in rotor field-oriented coordinate

Ls Self-inductance of the stator

Lr Self-inductance of the rotor

Subscript s Stator

Subscript r Rotor

Lm Mutual inductance of the stator and rotor

Lks Leakage inductance of the stator

φsd The flux linkages of the stator in the d- axis

φsq The flux linkages of the stator in the q- axis

φrd The flux linkages of the rotor in the d- axis

φrq The flux linkages of the rotor in the q- axis

Rs The stator resistance

Rr The rotor resistance

Rks Equivalent resistance of the stator

isd The current of stator in the d- axis

isq The current of stator in the q- axis

ird The current of rotor in the d- axis

irq The current of rotor in the q- axis

ω The mechanical speed

ωs The synchronous electric angular speed

φ̇sd,φ̇sq,φ̇rd,φ̇rq Derivation ofφsd,φsq,φrd,φrq
σ The leakage factor

Tr A rotor time constant

usd The voltage of stator in the d- axis

usq The voltage of stator in the q- axis

urd The voltage of rotor in the d- axis

urq The voltage of rotor in the q- axis

np The number of pole-pairs of the induction motor

•∗ The given values or obtained from the given values

ω1,ω2,ω3 The speeds of three motors

ϕ1,ϕ2,ϕ3 The phases of three motors

θ Synchronization electric angle
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as T = Tteb + Treb + Tkee . The second is the potential energy V which can be expressed as 
V = (kxx

2 + kyy
2 + kψψ

2)/2  .  T h e  t h i rd  i s  t h e  e n e r g y  d i s s ip at i on  D  d e s c r i b e d  a s 

D =
(

fx ẋ
2 + fy ẏ

2 + fψψ̇
2 +

3
∑

i=1
fiϕ̇

2
i

)

/2  .  T h e  l a s t  i t e m s  a r e  t h e  g e n e r a l i z e d  f o r c e 

Q = (Qx ,Qy ,Qψ ,Q1,Q2,Q3)
T = (0, 0, 0,Te1,Te2,Te3)

T and the generalized coordinate q = (x, y,ψ ,ϕ1,ϕ2,ϕ3)
T . 

Through Eq. (1), the differential equations of the electromechanical coupling dynamical model can be expressed 
as Eq. (2) with the Lagrange function.

where, TLi is the torque loads of three motors and it can be derived as Eq. (3).

The item Te in Eq. (2) is the electromagnetic torque of the inductor motor. Thus, the model of the induc-
tor motor should be established. In this article, the category of the inductor motor is the squirrel-cage motor. 
According to the feature of this kind of motor, its rotor winding is short circuit, which can be expressed as the 
mathematical form, urd = urq . When the motor is at a stable state, φrd = constant and φrq = 0 . With the vari-
ables ω-is-φr , the model of inductor motor in the d-q rotating coordinate system can be represented as Eq. (4) 
by  literature24.

The symbols in Eq. (4) are all given in Table 1. Lks and Rks respectively represent the leakage inductance and 
the equivalent resistance of the stator which can be derived as Lks = Ls − L2m/Lr and Rks = Rs + L2mRr/L

2
r . θ and 

ωs can respectively be represented with the mathematical formulation θ =
∫

(ω + ωs)dt and ωs = Lmisq/φrdTr . 
To sustain the stability of the motor speed, the rotor flux-oriented control (RFOC) is introduced in the system 
which is shown in Fig. 2. In the meanwhile, the parameters of three motors are shown in Table 3.

The analysis of synchronization and stability of the vibrating system
According to the non-linear dynamical theory, the phase difference between motor 1 and 2 can be expressed as 
pϕ1 − qϕ2 = 2α1 , and the phase difference between motor 2 and 3 can be expressed as qϕ2 − sϕ3 = 2α2 . Set the 
average phase of three ERs as ϕ which can be represented as ϕ = (ϕ1 + ϕ2 + ϕ3)/3 . And then the average speed 
ω0 in the period T can be derived as ω0=

∫ T
0 ϕ̇dt/T . With the small parameter method, the speed and accelerated 

(2)

Mẍ + fx ẋ + kxx =
3

∑

i=1

mir
(

ϕ̇2
i cosϕi + ϕ̈i sin ϕi

)

Mÿ + fy ẏ + kyy =
3

∑

i=1

mir
(

ϕ̇2
i sin ϕi − ϕ̈i cosϕi

)

Jψ̈ + fψψ̇ + kψψ =
3

∑

i=1

mirli
[

ϕ̇2
i sin(ϕi − θi)− ϕ̈i cos(ϕi − θi)

]

Jiϕ̈i + fiϕ̇i = Tei − TLi , i = 1, 2, 3

(3)TLi = mir[ÿ cosϕi − ẍ sin ϕi + liψ̇
2 sin(ϕi − θi)+ liψ̈ cos(ϕi − θi)]

(4)

Lksdisd/dt = usd − Rksisd + RrLm/L
2

rφrd + ωsLksisq

Lksdisq/dt = usq − Rksisq − Lm/Lrφrdω − ωsLksisd

dφrd/dt = 1/Tr(Lmisd − φrd)

dθ/dt = Lmisq/Trφrd + ω

Te = 3Lmφrdisq/2Lr

Table 2.  The parameters of the vibrating system.

Parameters Values

M /kg 304

Jp /(kg.m2) 44.5

kx /(N/m) 129,332

ky /(N/m) 105,334

kψ /(Nm/rad) 30,715

fx /(Ns/m) 615.5

fy /(Ns/m) 618

fψ /(Nsm/rad) 180.2

θ1, θ2, θ3 /(°) 30, 150, 270

m0 /kg 6

r /m 0.05

l1, l2, l3 /m 0.45, 0.45, 0.36
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speed of three ERs are respectively ϕ̇i = (1+εi)ω0 and ϕ̈i = ε̇iω0 , i = 1,2,3. εi is the small perturbation parameter. 
ω0 that is the mean value of the average speed of three motors equals to a constant. Then, the responses in three 
directions can be derived as Eq. (5)

where, ω2
x = kx/M  , ω2

y = ky/M  , ω2
ψ = kψ/J  , ξx = fx/

(

2
√
kxM

)

 , ξy = fy/
(

2
√

kyM
)

 , ξψ = fψ/
(

2
√

kψ J
)

 , 
tan γx = 2ξxωx/(µxω0) , tan γy = 2ξyωy/

(

µyω0

)

 , tan γψ = 2ξψωψ/
(

µψω0

)

 , µx = 1− ω2
x/ω

2
0 , µy = 1− ω2

y/ω
2
0 , 

µψ = 1− ω2
ψ/ω

2
0 , rm = m0/M , ηi = mi/m0 , rli = li/le.

From the equations above, the feature of the parameters  rli,  rm, and li are analyzed in the situation l1 = l2 = l3. 
And then, the relationships among the three parameters are illustrated with different parameter ηi in Fig. 3. The 
results represent that the closer the masses of three ERs are, the better their synchronous capability is.

Taking the small parameters into Eq. (2), Eq. (6) can be obtained with the integrate method in the 2π period.

where, the torque loads in Eq. (6) can be expressed with small parameters as

(5)

x = −rmr

µx

[

3
∑

i=1

ηi cos(ϕi + γx)

]

y = −rmr

µy

[

3
∑

i=1

ηi sin(ϕi + γy)

]

ψ = −rmr

µψ le

[

3
∑

i=1

ηirli sin(ϕi − θi + γψ)

]

(6)Ji ε̇iω0 + fiω0(1+ εi) = Tei − TLi(i = 1, 2, 3)

Figure 2.   RFOC: rotor flux-oriented control.

Table 3.  The parameters of three motors.

Parameters Motor 1 Motor 2 Motor 3

P /kW 0.2 0.2 0.2

np 3 3 3

f0 /Hz 50 50 50

U /V 220 220 220

n /(r/min) 950 950 950

Rs /Ω 40.5 40.5 40.5

Rr /Ω 12 12 12

Ls /H 1.21275 1.2175 1.21275

Lr /H 1.222 1.225 1.222

Lm /H 1.116 1.116 1.116

�
∗
dr/Wb 0.98 0.98 0.98

f1,2,3 /(Nms/rad) 0.005 0.005 0.005
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The items aij , bij and κi which are the second stability coefficient in Eq. (7) are all given in Appendix A. 
Because aij and bij are both associated with  rli, Fig. 4 shows their relationship feature with different parameter ηi . 
The results indicates that the parameters aij and bij are changed with the various parameter ηi and the coupling 
dynamical feature of the vibrating system demonstrates the best stable capability in the situation η1 = η2 = η3 . 
By introducing in the small parameter ε4 and ε5 , expand the phase differences with the Taylor formula separately 
and omit the higher order items, α1 = α1 + ε4 and α2 = α2 + ε5 can be obtained. In the meanwhile, the non-
dimensional coupling equations which is numbered as (8) can be derived as

where, A is a matrix of the moment of inertia and B is a stiffness matrix. The symbols in Eq. (8) are listed as below.

ε =
(

ε1 ε2 ε3 ε4 ε5
)T , ε̇ =

(

ε̇1 ε̇2 ε̇3 ε̇4 ε̇5
)T , υ =

(

υ1 υ2 υ3 0 0
)T . The items a′ij , b

′
ij and υi in Eq. (8) 

are presented in Appendix B.
The electromagnetic torque in Eq. (6) can be expressed as

where, Te0i = fiω0 +mir
2ω0 κi (i = 1, 2, 3) and ke0i can be derived from  literature25. Te0i is painted as Fig. 5. 

When the three ERs reach the steady synchronization state, the non-linear parameters p = q = s = 1 and the 
small parameters ε1 = ε2 = ε3 = 0 , ε̇1 = ε̇2 = ε̇3 = 0 . The synchronous condition of three ERs can be repre-
sented as Eq. (10).

where, TeNi (i = 1, 2, 3) are respectively the rated electromagnetic torque of three motors. When the vibrating 
system satisfies the synchronization criterion, υ = 0 . Equation (8) can be simplified as

Because matrix A is a non-singular matrix, if the determinant |A| of matrix A dose not equal to zero, the 
matrix A is an invertible matrix. Thus, Eq. (11) can be expressed as

where, D = A−1B . The characteristic equation in Eq. (12) can be obtained by det(�I−D) = 0.

(7)TLi = m0r
2ω0





3
�

j=1

(aij ε̇j + bijεj)+ κi



(i = 1, 2, 3)

(8)Aε̇ = Bε + υ

A =











a′11 a′12 a′13 0 0
a′21 a′22 a′23 0 0
a′31 a′32 a′33 0 0
0 0 0 1 0
0 0 0 0 1











, B =











b′11 b′12 b′13 b′14 b′15
b′21 b′22 b′23 b′24 b′25
b′31 b′32 b′33 b′34 b′35
ω0/2 −ω0/2 0 0 0
0 ω0/2 −ω0/2 0 0











,

(9)Tei = Te0i − ke0iεi (i = 1, 2, 3)

(10)|Te0i| ≤ TeNi (i = 1, 2, 3)

(11)Aε̇ = Bε

(12)ε̇ = Dε

Figure 3.  The feature analysis of three parameters.
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dj
(

j = 1, 2, 3, 4, 5
)

 are the coefficient items while � represents the eigenvalue in Eq. (13). The parameters 
dj (j = 1, 2, 3, 4, 5) are given in Appendix C. When the characteristic equation satisfies the Hurwitz conditions 
in Eq. (14), all the real roots of eigenvalues exist on the left of coordinate (which means to be the negative real 
roots), the synchronous state of the vibrating system is stable. Otherwise, is unstable.

(13)�
5 + d1�

4 + d2�
3 + d3�

2 + d4�
1 + d5 = 0

Figure 4.  The parameters aij and bij with the relationship of rl in the situation ω0 = 80 rad/s.
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Design and theoretical analysis of the controlling system
Controller design of the controlling system
In this controlling scheme, a master–slave controlling strategy is introduced in the controlling system as shown 
in Fig. 6. ωt as an input target speed is given into the master motor which is named motor 1. The output speed of 
motor 1 is divided into three functions. One is feedback to the initial speed to promote the accuracy of the motor 
speed. Another is as an input variable to realize the controlling strategy by the adaptive fuzzy PID method. In the 
meanwhile, it is converted to the speeds of motor 2 and 3. The other is changed to the phase through an integrate 
method and then transferred to the dynamical model. The processes of motor 2 and 3 are similar with motor 1’s.

The fuzzy logic model is consisted of two input variables and three output variables. The two input vari-
ables are respectively the error e and the change rate of error ec. The three output variables are respectively the 
proportionality coefficient kp , integral coefficient kI and differential coefficient kD . According to the usual fuzzy 
rules table, the output variables can be obtained through Eqs. (15) with forty-nine rules which are established 
in this section.

(14)































d1 > 0,

d5 > 0,

d1d2 − d3 > 0,

d1d2d3 − d23 − d21d4 + d1d5 > 0,

d1d2d3d4 − d21d
2
4 − d1d5d

2
2 + 2d1d4d5 + d2d3d5 − d23d4 − d25 > 0

Figure 5.  The electromagnetic torque of three motors.

Figure 6.  Framework diagram of the controlling system.
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Theoretical analysis of the controlling system
Because the controlling method is applied in this article, the stability of the controlling method should be ana-
lyzed. Choosing the speed as the state variable, it can be expressed as ω = ϕ̇ . And then, Eq. (2) can be derived as

KTiui is introduced in the dynamical equation to replace the electromagnetic torque. Where, KTi is represented 
as the constant of the electromagnetic torque, KTi = Lmiφrdi/Lri , while ui is considered as the controlling variable 
i∗qsi . Wi replaces the load torque which is the uncertain loads in this section, Wi = TLi . Set e as the speed error of 
the motor and then it can be expressed as the difference between the target speed and the actual speed in Eq. (17).

Thus, the tracing error E can be given as a column vector, E = [e, ė]T . Because ui is the controlling variable, 
the controlling law is defined as

K is composed of the parameters kp and kI, K = [kp, kI ]T . The weight coefficient θf  in the function f̂ (x) can 
be expressed as f̂ (x|θf ) = θTf ξ(x) . Where, ξ(x) is a fuzzy vector. Then the adaptive law of the fuzzy system is 
represented as

γ is a positive constant and P is a positive definite matrix.
Taking Eq. (18) into Eq. (16), the dynamical equation with closed loop of the fuzzy controlling system can 

be expressed as

where, � =
(

0 1

−kp −kI

)

 , b =
(

0

1

)

.

To guarantee the boundedness of the weight coefficient θf  , the optimal weight coefficient θ∗f  is introduced in 
the controlling system with a convex set �f  which contains θf  , θf ∈ �f  . Thus, θ∗f  is constructed as

Taking Eq. (19) and (21) into Eq. (20), the closed dynamical equation of the fuzzy system can be derived as

� is defined as the minimum approximation error and is expressed as � = f̂ (x|θ∗f )− f (x) . To accord the 
adaptive law with the condition of the fuzzy system, the difference between the tracing error E and the parameter 
error θf − θ∗f  should be minimum. So, a Lyapunov function is defined as

γ is a positive constant. Through introducing a positive definite matrix Q with second order, the Lyapunov 
equation should be satisfied with matrix P.

To certify the stability of Lyapunov function, the Lyapunov function in Eq. (23) is divided into two parts. One 
is V1 = ETPE/2 , the other is V2 = (θf − θ∗f )

T(θf − θ∗f )/(2γ ) . According to the Lyapunov criterion, the derivation 
of V1 and V2 should be obtained, which are respectively V̇1 = −ETQE/2+ (θf − θ∗f )

TETPbξ(x)+ ETPb� and 
V̇2 = (θf − θ∗f )

Tθ̇f /γ . Thus, the derivate of Eq. (23) can be expressed as V̇ = V̇1+V̇2 = −E
TQE/2+ E

TPb� . 
Because of −ETQE/2 ≤ 0 , only if the appropriate parameter � is chosen, V̇ ≤ 0 can be obtained. According to 
LaSalle invariance principle, the controlling system is asymptotic stable. The stability of other motors’ speed error 
and the stability of phase error can be acquired with the method above.

(15)Kι =

[

49
∑

j=1
µKιj (e, ec)× Kιj

]

49
∑

j=1
µKιj (e, ec)

(ι = P, I ,D)

(16)Jiω̇i + fiωi = KTiui −Wi (i = 1, 2, 3)

(17)e = ωt − ω

(18)u = J/KT

[

−f̂ (x|θf )+ ω̇t + KTE + (fω −W)/J
]

(19)θ̇f = −γETPbξ(x)

(20)Ė = �E+ b
[

f̂ (x|θf )− f (x)
]

(21)θ∗f = arg min
θf ∈�f

[

sup |f̂ (x|θf )− f (x)|
]

(22)Ė = �E + b
[

(θf − θ∗f )
Tξ(x)+�

]

(23)V = ETPE/2+ (θf − θ∗f )
T(θf − θ∗f )/(2γ )

(24)�
TP+ PA = −Q
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Results analysis and discussions
In this section, numerical simulation results corresponding to the dynamical model of Fig. 1 are illustrated. 
And then, some experiment results are given to verify the simulation results. The feature of vibrating system is 
discussed.

Numerical simulation of self‑synchronization and controlled synchronization
In Fig. 7, the simulation result of the self-synchronization with three ERs are presented. Figure 7a shows the 
speed of three motors. With the method of constant voltage frequency ratio, the speeds of three motors fluctu-
ate around 60.02 rad/s which can be realized to reach the synchronous speeds. However, the phase differences 
between motor 1 and 2 with motor 2 and 3 are separately about 108.5° and 119.5° in Fig. 7b. The result illustrates 
that the vibrating system obviously can’t reach the synchronous state with zero phase difference which is needed 
in the engineering. From Fig. 7c, it can be known that the amplitude of the vibrating system is counteracted 
due to the phase differences in Fig. 7b. Thus, the vibrating system appears an angle of oscillation with 0.02° in 
Fig. 7d. From the results in Fig. 7, it can be concluded that the vibrating system can’t realize the synchronous state 
with zero phase difference. And then, the trajectory of the rigid body can’t meet the engineering acquirements.

To solve this problem, the fuzzy PID method is introduced in the self-synchronization motion to realize the 
synchronous state with zero phase difference. From Fig. 8a, the speeds of three motors are all about 60 rad/s 
which equal to the target speed. Figure 8b demonstrates that the phase differences between motor 1 and 2 with 
motor 1 and 3 are both approximate to 0. And this result represents that the three ERs realize the controlled 
synchronization motion. In Fig. 8c, values of the torque load are between 0 and 0.12. These values are less than 
the absolute values of the electromagnetic torque. Thus, the three motor can operate normally and won’t appear 
the phenomenon of motor blocking. From Fig. 8d,f, the results illustrate that the amplitudes of three ERs are 
superimposed and the angle of swing of the vibrating system is very small. The vibrating system realizes the 
controlled synchronization motion and the elliptical trace which is needed in the engineering. To expound the 
feature of distance between motor 1 and 2, the distance is expanded from center to the sides which is shown in 
Fig. 9. According to Fig. 9, the speeds and phase differences are both similar with them in Fig. 8. However, the 
torque loads of three motors enlarge in Fig. 9c due to the increasing of the swing angle in Fig. 9e. The results 
indicate that although the parameters l1 and l2 increase with increasing the distance between motor 1 and 2, this 
change has little influence on the controlled synchronization motion. Because the stable controlling method 

Figure 7.  Self-synchronization with three ERs, α0=0 , η1 = η2 = η3 = 1.
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changes the intrinsic dynamical feature of the vibrating system. Thus, to realize the miniaturization of the vibrat-
ing system, the parameters in Fig. 8 are more suitable for the engineering. This is the reason that the vibrating 
system is in a circular distribution rather than one straight line.

Experimental verification of self‑synchronization and controlled synchronization
To certify the correctness of the proposed theory and the consistency with numerical simulation, some experi-
ments of self-synchronization and controlled synchronization are given. The experimental facilities are firstly 
listed in Fig. 10 which illuminates the experimental procedure in the meanwhile. In this experiment, the frequen-
cies of three inductor motors are respectively set as 35 Hz through three convertors. Through the calculation 
conversion, the speeds of three motors can be calculated as 73.2 rad/s which can be recognized as the theorical 
value. In Fig. 11a, the speeds of three motors all have a large fluctuation around 73 rad/s. Due to the existence of 

Figure 8.  Controlled synchronization with three ERs, α0=0 , η1 = η2 = η3 = 1 , l1 = l2 = 0.32m, l3 = 0.3m , 
(motor 1 and 2 approach the y axis).



12

Vol:.(1234567890)

Scientific Reports |         (2024) 14:5026  | https://doi.org/10.1038/s41598-024-55680-8

www.nature.com/scientificreports/

the error in the experiment, this result can be recognized to realize the synchronous speed. In Fig. 11b, the phase 
difference between motor 1 and 2 is about 127°, and this result is similar with the result in Fig. 7b. The same result 
can be obtained from the phase difference between motor 1 and 3. From Fig. 11c,e, the results indicates that the 
amplitude responses of three directions are all counteracted. Thus, the experimental result is consistence with 
the numerical simulation result of the self-synchronization. Figures 12 and 13 both represent the experimental 
results of the controlled synchronization motion and are respectively responses to the simulation results in 
Figs. 8 and 9. With the controlling method, the speeds of three motors exist less fluctuation. The phase differ-
ences can be considered small enough to realize the controlled synchronization motion. As shown from (d) to 
(g) in Figs. 12 and 13, the responses amplitudes in three directions are all in superposition state and the values 
are approximately the same. This result adequately represents that the vibrating system can realize the elliptic 

Figure 9.  Controlled synchronization with three ERs, α0=0 , η1 = η2 = η3 = 1 , l1 = l2 = 0.45m, l3 = 0.3m , 
(motor 1 and 2 approach both sides of the rigid body).
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motion trace. Therefore, the experimental results are consistent with the numerical results and the effectiveness 
and correctness of the theorical method are verified.

Conclusions
This article investigates controlled synchronization of three co-rotating exciters based on a circular distribution 
in a vibratory system. Through the theorical feature analysis, the results indicate that the self-synchronization 
motion is depended the parameter of ηi and li . When li can’t meet the condition of zero phase difference in the 
self-synchronization motion, the ellipse motion trace in the vibrating system can’t be realized. Therefore, the 
stability of the vibrating system depends on the controlling method and suitable controlling strategy in the con-
trolled synchronization motion which can realize the ellipse motion trace in the vibrating system. Compared 
with the former researches, this article adopts a circle distribution in the dynamical model. It can further reduce 
the structure size of the vibrating system, which is the purpose of using the controlled synchronization instead of 
the self-synchronization. In the meanwhile, an adaptive fuzzy PID method is introduced. Because this method 
can be independent to the dynamical model and the parameter PID don’t need to be founded with lots of time 
compared with the former methods.

Figure 10.  Experimental facilities.
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Figure 11.  Experiment of self-synchronization with three ERs, α0=0 , η1 = η2 = η3 = 1.
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Figure 12.  Experiment of controlled synchronization with three ERs, α0=0 , η1 = η2 = η3 = 1 (motor 1 and 
2 approach the y axis). (a) speeds, (b) phase difference between motor 1 and 2, (c) phase differences between 
motor 1 and 3, (d) response in the x direction, (e) response in the y1 direction, (f) response in the y2 direction, 
(g) The motion trace of the rigid body .
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Figure 13.  Experiment of controlled synchronization with three ERs, α0=0 , η1 = η2 = η3 = 1 (motor 1 and 
2 approach both sides of the rigid body). (a) speeds, (b) phase difference between motor 1 and 2, (c) phase 
differences between motor 1 and 3, (d) response in the x direction, (e) response in the y1 direction, (f) response 
in the y2 direction, (g) The motion trace of the rigid body
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Data availability
The datasets generated during the current study are available from the corresponding/first author on reasonable 
request.
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