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Uplift modeling to predict 
individual treatment effects 
of renal replacement therapy 
in sepsis‑associated acute kidney 
injury patients
Guanggang Li 1,2,6, Bo Li 3,6, Bin Song 2, Dandan Liu 2, Yue Sun 2, Hongyan Ju 2, Xiuping Xu 2, 
Jingkun Mao 3* & Feihu Zhou 4,5*

Renal replacement therapy (RRT) is a crucial treatment for sepsis‑associated acute kidney injury 
(S‑AKI), but it is uncertain which S‑AKI patients should receive immediate RRT. Identifying the 
characteristics of patients who may benefit the most from RRT is an important task. This retrospective 
study utilized a public database and enrolled S‑AKI patients, who were divided into RRT and non‑RRT 
groups. Uplift modeling was used to estimate the individual treatment effect (ITE) of RRT. The validity 
of different models was compared using a qini curve. After labeling the patients in the validation 
cohort, we characterized the patients who would benefit the most from RRT and created a nomogram. 
A total of 8289 patients were assessed, among whom 591 received RRT, and 7698 did not receive 
RRT. The RRT group had a higher severity of illness than the non‑RRT group, with a Sequential Organ 
Failure Assessment (SOFA) score of 9 (IQR 6,11) vs. 5 (IQR 3,7). The 28‑day mortality rate was higher 
in the RRT group than the non‑RRT group (34.83% vs. 14.61%, p < 0.0001). Propensity score matching 
(PSM) was used to balance baseline characteristics, 458 RRT patients and an equal number of non‑RRT 
patients were enrolled for further research. After PSM, 28‑day mortality of RRT and non‑RRT groups 
were 32.3% vs. 39.3%, P = 0.033. Using uplift modeling, we found that urine output, fluid input, mean 
blood pressure, body temperature, and lactate were the top 5 factors that had the most influence 
on RRT effect. The area under the uplift curve (AUUC) of the class transformation model was 0.068, 
the AUUC of SOFA was 0.018, and the AUUC of Kdigo‑stage was 0.050. The class transformation 
model was more efficient in predicting individual treatment effect. A logistic regression model 
was developed, and a nomogram was drawn to predict whether an S‑AKI patient can benefit from 
RRT. Six factors were taken into account (urine output, creatinine, lactate, white blood cell count, 
glucose, respiratory rate). Uplift modeling can better predict the ITE of RRT on S‑AKI patients than 
conventional score systems such as Kdigo and SOFA. We also found that white blood cell count is 
related to the benefits of RRT, suggesting that changes in inflammation levels may be associated with 
the effects of RRT on S‑AKI patients.
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AKI  Acute kidney injury
AUUC   Area under the uplift curve
CRRT   Continuous renal replacement therapy
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CVVHDF  Continuous veno-venous hemodiafiltration
ESRD  End-stage renal disease
ICD-9  International classification of diseases ninth revision
ICU  Intensive care unit
IHD  Intermittent hemodialysis
IQR  Interquartile range
ITE  Individual treatment effect
KDIGO  Kidney disease: improving global outcomes
MIMIC-III  Medical information mart for intensive care III
PSM  Propensity score matching
RCT   Randomized controlled studies
RRT   Renal replacement therapy
SD  Standard deviation
S-AKI  Sepsis-associated acute kidney injury
SMD  Standardized mean difference
SOFA  Sequential organ failure assessment

Sepsis is a life-threatening disease, accounting for approximately 11 million deaths per  year1. Multiple organ 
dysfunction can caused by sepsis, and kidney is a target organ that most vulnerable to inflammatory damage. 
Observational studies have demonstrated an acute kidney injury (AKI) incidence of about 40% in patients with 
 sepsis2. Conversely, sepsis contribute nearly half of the AKI occurring, and was reported as the most frequent 
aetiology of  AKI3,4.

Renal replacement treatment (RRT) plays an important role in managing AKI. RRT includes methods such 
as intermittent hemodialysis (IHD) and continuous RRT (CRRT), with the latter typically involving continuous 
veno-venous hemodialysis (CVVHD) or hemodiafiltration (CVVHDF). CRRT is more popular used in intensive 
care settings, as it can better maintain hemodynamic  stability5. Although RRT is widely used in AKI, there are 
still some questions yet to be  answered6. Identifying the patient most likely to benefit from CRRT stands as a 
primary concern. Someone believes RRT may positively influence sepsis patients because RRT can modulate 
 inflammation7. However, despite the removal of sepsis-related cytokines during RRT 8, no reduction in mortality 
has been observed in sepsis patients, neither with high cut-off membrane  filters9 nor with absorbing  filters10. This 
highlights the importance of precise patient selection for CRRT to improve treatment outcome.

The initiation timing of CRRT is another question to be debated. A single center trial demonstrated that 
early RRT, compared with delayed initiation of RRT, reduced mortality over the first 90  days11, but other multi-
center studies couldn’t find mortality decrease by early start of RRT in  AKI12 or sepsis related AKI  patients13. 
Thus, accurate evaluation of RRT benefits in S-AKI patients and initiating RRT treatment timely is essential for 
improving treatment outcomes.

Uplift modeling is an artificial intelligence technique that can identify the individual treatment effect (ITE) of 
an intervention in a population of individuals. Typically used in the field of marketing, it has been employed to 
identify the most vulnerable individuals who may be affected by online advertising or  coupons14. In this study, 
we applied this method to estimate the ITE of S-AKI who may benefit from RRT and to identify the features of 
these patients.

Material and methods
Setting
This retrospective study utilized the Medical Information Mart for Intensive Care (MIMIC-III), a publicly avail-
able, large-scale critical care database. The database comprised 61,532 intensive care unit (ICU) admissions 
from 46,520 patients at the Beth Israel Deaconess Medical Center in Boston, MA, between 2001 and 2012. The 
data were collected from all patient admissions to various types of Intensive Care Units (ICUs) at the center 
during the specified period. The average length of stay in ICU was 2.1 (1.2–4.6) days, and the hospital mortality 
rate was 11.5%15. The MIMIC-III database integrates non-identifiable, comprehensive clinical data, including 
demographics, hourly vital signs, clinical measurements, laboratory results, treatments, and the International 
Classification of Diseases Ninth Revision (ICD-9) codes of diagnoses and procedures.

The data in MIMIC-III has been non-identifiable, and the institutional review boards of the Massachusetts 
Institute of Technology (No. 0403000206) and Beth Israel Deaconess Medical Center (2001-P-001699/14) both 
approved the use of the database for research. All data analysis and reporting has been performed in accordance 
with institutional guidelines and regulations.

Inclusion and exclusion criteria
The inclusion criteria: (1) diagnosed as sepsis; (2) suffering from AKI. Exclusion criteria: (1) not admitted to ICU 
for the first time. (2) Patients age < 18. (3) End-stage renal disease (ESRD). 4. Blood potassium > 6.5 mmol/L.

To diagnose sepsis, we utilized the third sepsis definition (sepsis-3), which defines sepsis as a life-threatening 
condition characterized by organ dysfunction caused by a dysregulated host response to  infection16. We screened 
patients with documented or suspected infection and an acute change in total Sequential Organ Failure Assess-
ment (SOFA) score of ≥ 2. This method closely aligns with the sepsis-3 definition and has been demonstrated to 
be effective in the Medical Information Mart for Intensive Care III (MIMIC-III)  database17.

AKI was defined in accordance with the Kidney Disease: Improving Global Outcomes (KDIGO)  criteria18, 
which classify AKI into three stages based on urine output and serum creatinine levels. Diagnosis of AKI was 
confirmed if the highest KDIGO stage during the ICU stay was greater than or equal to 1. In addition to recording 
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the baseline KDIGO stage of each patient, we also continuously documented the KDIGO stage until the initia-
tion of RRT.

We excluded all patients with blood potassium > 6.5, which is thought to be one of the most important rea-
sons for urgently initiating CRRT 6. We ruled out patients not on their first admission to avoid multiple records 
of the same patient.

The study population was divided into two groups: the RRT group and non-RRT group, based on whether 
they received RRT treatment during their ICU stay.

Primary endpoint
The primary endpoint of the study was 28-day mortality, which encompassed both in-hospital and out-of-
hospital deaths.

Statistical analysis
Continuous variables were expressed as the mean ± SD and interquartile ranges (IQR) when the data as appropri-
ate. Student’s t-test was used for normally distributed variables, while the Mann–Whitney U test was used for 
skewed variables. Categorical variables were presented as counts and percentages, and compared using either the 
chi-square test. The estimation of sample size was carried out using a power analysis based on a two-sample t-test.

To estimate the association between RRT and outcomes, as well as to select the best-matched patients for 
further artificial intelligence analysis, propensity score matching (PSM) was employed in our study using a greedy 
nearest neighbor matching algorithm. Patients were matched at a 1:1 ratio, with each RRT patient matched to a 
non-RRT patients, based on estimated propensity scores. The efficacy of PSM in reducing between-group dif-
ferences was assessed by calculating the standardized mean difference (SMD).

Uplift modeling
The uplift model aims to forecast the difference in outcomes between individuals who receive treatment and 
those who do not, while also identifying patients who are more likely to benefit from treatment. Upon review-
ing previous research that employed s-learner and t-learner  methods19,20, we found that the intrinsic logic of 
these studies was to indirectly model uplift. We utilized a class transformation method to create a new variable 
Z, where Z = 1 if a patient was in the RRT group and survived for 28 days, Z = 1 if a patient was in the non-RRT 
group and died within 28 days, Z = 0 if a patient was in the RRT group and died within 28 days, and Z = 0 if a 
patient was in the non-RRT group and survived for 28 days. We can prove that if the number of cases in the RRT 
group and non-RRT group was equal, then P (Z = 1│Xi) had a linear correlation with the uplift score, which can 
be calculated as Uplift Score = 2P (Z = 1│Xi) − 1. This method is applicable to cases where both treatment and 
outcome are binary variables, and single model prediction is used to achieve the conversion of prediction goals.

The validity of different models was evaluated using the adjusted qini curve, which was obtained by con-
necting proportion points of the adjusted qini index in different groups. The adjusted qini index was defined as 
following formula.

ϕ is defined as the proportion of patients ranked from highest to lowest based on their Uplift Score in either the 
treatment or non-treatment group. For instance, ϕ = 0.3 represents for the top 30% uplift score patients in treat-
ment group or none treatment group. nt,y=1(ϕ) represents the number of patients in the treatment group who are 
predicted to survive among the given percentage of patients.nc,y=1(ϕ) represents the number of patients in the 
non-treatment group who are predicted to survive among the same percentage of patients. NtandNc represents 
the total sample size of the treatment and non-treatment groups. The Area under the Uplift Curve (AUUC) is 
the area between the uplift curve and the random line, which serves as an indicator of model validity. A high 
AUUC corresponds to a high validity of the model.

The candidate predictors of our model included demographics, vital signs, SOFA and qSOFA scores, Kdigo 
stage, comorbidities and laboratory tests in the first 24 h after ICU admission. Predictor contributions were 
evaluated using the Shapley additive explanations (SHAP) strategy.

After modeling, we divided the patients in the validation cohort into a high benefit group and a low benefit 
group, and confirmed the characteristics of the high benefit group. We labeled the validation cohort according 
to the model, which allowed us to create a nomogram for patients who may benefit from RRT.

Ethical approval
The clinical data used for this research was obtained from publicly available non-identifiable database, Medical 
Information Mart for Intensive Care (MIMIC-III), and does not require a separate ethics approval or consent 
obtaining process. The Institutional Review Board at the Chinese PLA General Hospital waived the review of 
the research plan as the data was obtained from a publicly available database with no potential violation or 
infringement of the ethical regulations.

Results
Cohort selection process
Inclusion: 1. Total Admissions: Reviewed all 61,532 ICU admissions from the MIMIC III database. 2. Sepsis 
Identification: Identified 25,834 admissions with sepsis using Sepsis-3 Criteria. 3. AKI Definition: Defined AKI 
as KDIGO ≥ 1 and 12,760 (49.39%) admissions were identified as S-AKI. Exclusion: 1. Repeat ICU Admissions: 

Q(ϕ) =
nt,1(ϕ)

Nt
−

nc,1(ϕ)nt(ϕ)

Ntnc(ϕ)
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Excluded 3250 patients. 2. Underage Patients: Excluded 229 patients below 18 years. 3. ESRD Diagnosis: Excluded 
403 patients based on ICD-9 codes. 4. High Blood Potassium: Excluded 589 patients with blood potassium > 6.5 
mmol/L, indicative of an emergency need for RRT.

Total Eligible Admissions: 8289 ICU stays. 591 patients received RRT (RRT group) and 7698 did not received 
RRT (non-RRT group) (Fig. 1).

Cohort characterization
The baseline characteristics of the two groups are shown in Table 1. Overall, the RRT group had a higher severity 
of illness than the non-RRT group. The SOFA score in the RRT group was 9 (IQR 6, 11) compared to 5 (IQR 3, 
7) in the non-RRT group (p < 0.0001). On the first day after ICU entry, the RRT group was more likely to use 
mechanical ventilator (80.4% vs. 72.1%, p < 0.0001) and vasopressors (70.7% vs. 54.1%, p < 0.0001). The RRT 
group had higher levels of serum creatinine (364.21 ± 242.22 vs. 122.88 ± 87.52 mmol/l, p < 0.0001) and potassium 
(5.01 ± 0.81 vs. 4.79 ± 0.74 mmol/l, p < 0.0001) than the non-RRT group.

To correct for imbalances between the groups, we applied 1:1 PSM. Following PSM, the sample sizes were 
equalized to 458 patients in each of the RRT and non-RRT groups. This adjustment resulted in a significant 
reduction in discrepancies post-PSM, as shown in Table 1.

Based on a sample size of 458 in each group, with mortality rates of 0.393 and 0.323 respectively, and using 
an alpha level of 0.05, our sample size yields a test power exceeding 99.9%.

Primary endpoint
Prior to propensity score matching (PSM), the 28-day mortality rate was significantly higher in the RRT group 
compared to the non-RRT group (32.83% vs. 14.61%, p < 0.0001). After PSM, the 28-day mortality rate in the 
RRT group was 32.3% compared to 39.3% in the non-RRT group (p = 0.033).

Uplift modeling
The enrolled patients were divided into a development cohort consisting of 640 patients and a validation cohort 
consisting of 276 patients. Each cohort had an equal proportion of RRT and non-RRT patients. This division, 
maintaining a ratio of approximately 7:3 between the training and validation cohorts, is a common practice in 
such studies. After performing uplift modeling in the development cohort, several parameters were included in 
the model. Figure 2 shows that urine output, fluid input, mean blood pressure, body temperature, and lactate 
were the top five factors that most influenced the RRT effect. In addition, other predictors such as age,,  SpO2, 
white blood cell count, ph, platelet count and potassium also had an impact on the RRT effect.

Modeling validity
The modified qini curve was used to compare the predicting ability of our model with conventional scoring 
systems including SOFA and Kdigo-stage. As shown in Fig. 3, the area under the uplift curve (AUUC) of the 

Figure1.  Flow chart of the study. AKI acute kidney injury, RRT  renal replacement therapy, ESRD end-stage 
renal disease.
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class transformation model was 0.068, the AUUC of SOFA was 0.018, and the AUUC of Kdigo-stage was 0.050. 
The class transformation model was more efficient in predicting the individual treatment effect of RRT than 
conventional scores.

Table 1.  Patients characters of RRT group, non-RRT group and non-RRT patients after PSM. SOFA sequential 
organ failure assessment, qSOFA quick SOFA, AKI-stage acute kidney injury stage, MAP mean arterial 
pressure, CCU  coronary care unit, CSRU cardiac surgery recovery unit, MICU medical intensive care unit, 
SICU surgical intensive care unit, TSICU trauma and surgical intensive care unit, BUN blood urea nitrogen, 
WBC white blood cell count, PT prothrombin time.

Non-RRT 
(n = 7698) RRT (n = 591) P

RRT after PSM 
(n = 458)

non-RRT after PSM 
(n = 458) P SMD

Gender male (%) 4625 (60.1) 367 (62.1) 0.356 280 (61.1) 285 (62.2) 0.786 0.022

Age (mean (SD)) 67.49 ± 15.62 62.61 ± 15.90  < 0.001 63.89 ± 16.20 64.51 ± 15.87 0.564 0.038

SOFA (IQR) 5 (3,7) 9 (6,11)  < 0.001 9 (6,11) 9 (6,12) 0.005 0.187

qSOFA (IQR) 2 (2,2) 2 (2,2) 0.143 2 (1,2) 2 (2,2) 0.374 0.059

Sepsis shock (%) 618 (8.0) 146 (24.7)  < 0.001 103 (22.5) 122 (26.6) 0.167 0.096

AKI-stage (%)

 0 2464 (32.0) 77 (13.0)

 < 0.001

69 (15.1) 62 (13.5)

0.796 0.067
 1 1509 (19.6) 88 (14.9) 71 (15.5) 66 (14.4)

 2 2893 (37.6) 139 (23.5) 125 (27.3) 136 (29.7)

 3 832 (10.8) 287 (48.6) 193 (42.1) 194 (42.4)

SPO2 (mean ± SD) 96.90 ± 1.97 96.63 ± 2.76 0.002 96.57 ± 2.88 96.38 ± 2.99 0.350 0.062

MAP (mean ± SD) 77.58 ± 9.39 76.75 ± 10.95 0.043 76.58 ± 10.50 75.83 ± 11.16 0.301 0.068

Breath rate 19.56 ± 3.55 20.84 ± 3.94  < 0.001 20.79 ± 3.81 21.43 ± 4.21 0.016 0.159

Heart rate 86.02 ± 12.99 88.61 ± 13.12  < 0.001 88.53 ± 12.70 89.32 ± 15.10 0.393 0.057

Fluid input (IQR) 3358 (1894.5,5303.5) 2864 
(1205.5,5850.25) 0.061 3344 (1385,5734.5) 3344 (2489.5,5790) 0.540 0.041

Urine output (IQR) 1554 (950,2390) 533 (181.5,1178.5)  < 0.001 763 (304.75,1500) 849.5 (351,1546.5) 0.718 0.024

Ventilator use (%) 5547 (72.1) 475 (80.4)  < 0.001 367 (80.1) 374 (81.7) 0.614 0.039

Vaspressor use (%) 4164 (54.1) 418 (70.7)  < 0.001 326 (71.2) 343 (74.9) 0.234 0.084

ICU type

 CCU (%) 946 (12.3) 100 (16.9)

 < 0.001

76 (16.6) 75 (16.4)

0.181 0.166

 CSRU (%) 2385 (31.0) 94 (15.9) 88 (19.2) 68 (14.8)

 MICU (%) 2484 (32.3) 285 (48.2) 205 (44.8) 237 (51.7)

 SICU (%) 1032 (13.4) 73 (12.4) 54 (11.8) 52 (11.4)

 TSICU (%) 851 (11.1) 39 (6.6) 35 (7.6) 26 (5.7)

Co-morbidities (%)

 Chronic heart 
failure 2419 (31.4) 239 (40.4)  < 0.001 195 (42.6) 204 (44.5) 0.594 0.04

 Chronic lung 
disease 1519 (19.7) 106 (17.9) 0.314 81 (17.7) 84 (18.3) 0.863 0.017

 Solid tumor 247 (3.2) 9 (1.5) 0.031 9 (2.0) 10 (2.2) 1.000 0.015

 Diabetes mellitus 2305 (29.9) 196 (33.2) 0.11 152 (33.2) 149 (32.5) 0.888 0.014

 Hypertension 4606 (59.8) 322 (54.5) 0.012 252 (55.0) 242 (52.8) 0.551 0.044

 Creatinine 
(mean ± SD) 122.88 ± 87.52 364.21 ± 242.22  < 0.001 3.28 ± 2.20 3.12 ± 2.16 0.273 0.072

 WBC (mean ± SD) 14.57 ± 6.73 15.72 ± 8.10  < 0.001 15.66 ± 7.88 16.52 ± 8.30 0.106 0.107

 Bun (mean ± SD) 28.02 ± 19.60 53.56 ± 31.25  < 0.001 48.40 ± 29.88 50.69 ± 29.88 0.247 0.077

 Pt (mean ± SD) 36.91 ± 0.55 36.83 ± 0.57  < 0.001 36.83 ± 0.53 36.80 ± 0.75 0.589 0.036

 Platelet (mean ± SD) 225.12 ± 102.21 205.67 ± 105.58  < 0.001 205.62 ± 102.63 205.19 ± 112.76 0.951 0.004

 glucose (mean ± SD) 7.63 ± 1.76 7.79 ± 2.22 0.039 140.30 ± 37.87 140.12 ± 38.82 0.945 0.005

 Sodium 
(mean ± SD) 140.50 ± 4.76 139.97 ± 5.40 0.009 140.06 ± 5.32 140.07 ± 6.52 0.973 0.002

 Chloride 
(mean ± SD) 108.59 ± 6.32 105.92 ± 7.40  < 0.001 106.62 ± 7.49 106.78 ± 7.63 0.747 0.021

 Lactate (mean ± SD) 3.31 ± 2.61 4.99 ± 4.43  < 0.001 4.41 ± 3.72 4.72 ± 4.16 0.239 0.078

 Potassium 
(mean ± SD) 4.79 ± 0.74 5.01 ± 0.81  < 0.001 4.99 ± 0.80 4.93 ± 0.77 0.313 0.067

 PH (mean ± SD) 7.43 ± 0.07 7.40 ± 0.09  < 0.001 7.41 ± 0.08 7.40 ± 0.09 0.368 0.06
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Characters difference between high benefit and low benefit patients
We classified the patients in the validation group into high benefit group (n = 138) and low benefit group (n = 138), 
using class transformation. The high benefit individuals possessed different characteristics from low benefit 
individuals. As shown in Fig. 4, the high benefit group and low benefit group differed in renal-related indicators, 
including urine output, creatinine, BUN, pH, and chloride. Additionally, white blood cell count was found to 
be related to the effect of RRT.

We constructed a logistic regression model with the benefit status of patients (benefit vs. non-benefit) as the 
dependent variable. Six factors with statistical significance between groups were selected as the independent 
variables, including urine output, creatinine, lactate, white blood cell count, glucose, respiratory rate (Table 2). We 
then built a nomogram of the risk predictive value of the model. As showed in Fig. 5. The nomogram illustrates 
the contribution rate of each risk index by the length of the corresponding line segment, providing a visual and 
practical representation of our model.

Figure 2.  SHAP value-based predictor contribution to the ITE prediction model. Feature importance is ranked 
based on SHAP values. In this figure, each point represented a single observation. The horizontal location 
showed whether the effect of that value was associated with a positive (a SHAP value greater than 0) or negative 
(a SHAP value less than 0) impact on prediction. Color showed whether the original value of that variable 
was high (in red) or low (in blue) for that observation. For example, a low white blood cell (WBC) value had a 
negative impact on the outcome of patient who was receiving RRT; the “low” came from the blue color, and the 
“negative” impact was shown on the horizontal axis.
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Discussion
The optimal approach for administering RRT to AKI patients remains a critical issue in critical care  medicine6. 
RRT has been suggested to down regulate immune responses in sepsis, introducing a promising dimension in 
the therapeutic approach for S-AKI patients. In this study, we classified S-AKI patients into RRT and non-RRT 
groups and compared their baseline characteristics and 28-day mortality rates, which were initially unbalanced. 
As expected, the RRT group had greater severity and had higher 28-day mortality rates. This reflecting the clinical 
reality that clinicians often tend to administer RRT to more severe patients. After PSM, the imbalance between 
the two groups was significantly reduced. These findings suggest the need for a more precise characterization of 
patients who can benefit from RRT. To address this issue, we utilized the uplift technique to model the treatment 
effect of RRT and identify S-AKI patients who may derive the most benefit from RRT. Our model outperformed 

Figure 3.  Qini curve. The area under the uplift curve (AUUC) represents the area between a specific model 
curve and the random line, and serves as an indicator of model validity. A higher AUUC indicates higher 
validity, and an AUUC > 0 indicates model validity greater than random selection. In this study, the AUUC for 
the class transformation model was 0.074, for SOFA it was 0.022, and for Kdigo-stage it was 0.031.

Figure 4.  Different characteristics between RRT benefit and non-benefit patients. The seven parameter had 
statistic difference (p < 0.05) between two groups were lactate, body temperature, creatinine, urine output of first 
24h admission in ICU, BUN, white blood count (WBC) and ph.
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traditional clinical indicators, such as the Kdigo grade, which are typically used to determine the need for RRT 
in S-AKI patients. Our model identified several parameters that were associated with the benefit from RRT. 
Notably, our findings suggest that certain inflammation-related factors, such as White Blood Cell (WBC) count 
is associated with improved outcomes in patients receiving RRT. Moreover, we developed a nomogram to assist 
in determining whether to initiate RRT in S-AKI patients.

In recent years, several randomized controlled studies (RCT) have been conducted to investigate the optimal 
timing of RRT in patients with  AKI12,13,22, with one study specifically focusing on patients with septic  AKI13. The 
findings from most of these studies indicate no significant difference in mortality between patients who received 
early RRT and those who received late RRT. For instance, the IDEAL-ICU trial recruited septic shock patients 
with AKI and showed no significant difference in overall mortality at 90 days between patients assigned to early 
or delayed RRT  strategies13. Although RCTs are the gold standard for assessing treatment effects, they have 
limitations, such as stringent inclusion criteria and high  cost23. For instance, the IDEAL-ICU trial, which was 
conducted in 29 ICUs over four years, screened 3753 patients, of whom 1728 met the inclusion criteria, but only 
488 were randomized, with 246 patients in the early RRT group and 242 patients in the delayed RRT  group13. 
The difficulties RCTs face in enrolling critically ill patients make the use of Real-World Evidence (RWE) data for 
analysis even more meaningful. RWE data, as a vital complement to RCTs, has been acknowledged in medical 
 research24. In our study, we focused on S-AKI, which is a life-threatening subtype of AKI associated with sepsis. 
Our study employed real-world big data and enrolled 458 patients in the RRT group, and an equal number of 458 

Table 2.  Logistic regression analysis of S-AKI patients benefit from RRT. SOFA sequential organ failure 
assessment, WBC white blood cell count.

Variable OR 95% CI p value

Urine output 0.99 0.99–0.99 < 0.001

Creatinine 1.49 1.16–1.92 0.002

Lactate 1.16 1.01–1.33 0.034

White blood cell 1.07 1.01–1.13 0.019

Glucose 1.02 1.01–1.04 0.014

Respiratory rate 1.22 1.07–1.40 < 0.004

Figure 5.  Nomogram for RRT benefit probability. Each parameter has a range of values that can be used to find 
different corresponding numerical values on the line segment. The sum of all the parameter values yields a score 
which can be used to calculate the probability of benefit from RRT therapy. wbc white blood cell.
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patients in the non-RRT group. Our study aims to supplement the gaps in RCTs and suggest possible approaches 
for administering RRT to S-AKI patients.

Prospective research has also investigated the indications for RRT in  AKI25–28. However, we identified major 
selection bias in these studies. All these studies analyzed only patients who received RRT, patients who recovered 
from severe acute kidney injury without ever receiving RRT were excluded. As these patients might be more 
likely to have a good prognosis compared with those who undergo RRT, omission of these patients constitutes a 
major selection bias. Some clinicians have also raised this  point29. This selection bias is also present in research 
that uses machine learning  algorithms30. The models built by such studies can only predict the patients who have 
received RRT but not all patients who may need RRT. In our study, we included all patients meeting the criteria 
of Sepsis-3 and KDIGO stage > 1, regardless of whether they received RRT or not. The model we built has a wider 
scope of use than other prospective studies and can predict the expected treatment effect of all S-AKI patients.

The majority of studies on the timing of RRT have used renal function as the primary indication for early 
treatment, based on  Kdigo12,22 or RIFLE  staging13. However, relying solely on renal function as an indication may 
not provide a comprehensive understanding of the intrinsic nature of S-AKI. It is widely acknowledged among 
clinicians that modifying the immune response through RRT may have a positive impact on sepsis, as demon-
strated by several  studies31,32. We excluded all patients with blood potassium levels greater than 6.5, aiming to 
extensively eliminate those who urgently require RRT treatment. We believe this exclusion criterion enhances 
the practical significance and ethical alignment of our model. However, we did not exclude patients with volume 
overload, as this is a common state in sepsis treatment due to the essential role of fluid resuscitation.

Our research suggests that in addition to renal function, other indicators such as inflammation markers 
should be considered when making a decision about RRT for S-AKI. Figure 4 demonstrates that, in addition to 
renal-related indicators, several other factors are associated with the response to RRT. These include disease sever-
ity, as indicated by SOFA scores; volume overload, reflected in SpO2 levels; and inflammation level, evidenced 
by white blood cell count. This result indicates that when making a decision about starting RRT, factors such as 
the severity of sepsis and inflammation level should also be taken into account.

Applying the results of an RCT to individual patients should be done with caution, as there may be heteroge-
neity between individual patients that was not captured in the RCT 33,34. Critical ill patients have a high degree of 
heterogeneity in disease states, which can generate heterogeneity in their response to  treatment35. As shown in 
Table 1, patients who received RRT were much more severe, reflecting the real-world situation in which doctors 
are more likely to initiate RRT in severe cases. After balancing the differences between the RRT and non-RRT 
groups using PSM, we utilized the data for ITE analysis to identify characteristics related to treatment effects 
for each individual in high heterogeneity diseases like AKI. Uplift modeling has been used in AKI patients to 
identify those who can benefit from electronic  alerts36. Our uplift modeling approach also produced a nomogram 
of the factors influencing the RRT effects on S-AKI patients. This work may be useful to clinicians when making 
decisions about whether to perform RRT on a S-AKI individual.

Randomized data can be applied to Uplift Modeling, such as data from RCTs, which can accurately distinguish 
the potential effects of treatments on different  individuals37. However, randomized data is not always available. 
Non-randomized data, after being processed, can also be applied to uplift  modeling38. For example, under-
sampling is an approach used in this context. It works by reducing the number of observations in the majority 
class, thus addressing the imbalance between different treatment groups. PSM is a method of under sampling 
and a common approach for applying non-randomized data in uplift modeling. Our study employed PSM to 
balance the baseline characteristics between the RRT and non-RRT groups, allowing this real-world data set to 
be applied to uplift modeling. This approach addresses the issue of insufficient randomized data for RRT treat-
ment. Nonetheless, it is essential to note that applying non-randomized data to uplift modeling requires careful 
consideration of the potential impact that imbalances between groups may have on the results.

Our research has some limitations. Firstly, the training and test sets were all taken from the MIMIC database, 
which may limit the generalizability of our results. We looked into other public databases, such as the eICU Col-
laborative Research  Database39 but found that they did not have sufficient data to enroll the model. Secondly, the 
indicators included in our model were conventional parameters, and some novel biomarkers associated with AKI, 
such as NGAL and KIM-140, were not studied. More research is needed to investigate the relationship between 
biomarkers and RRT treatment effects in the future.

Conclusion
Uplift modeling can better predict the ITE of RRT on S-AKI patients than conventional score systems such as 
Kdigo and SOFA. These findings are highly relevant to clinical practice, as they offer valuable insights into the 
identification of subgroups of S-AKI patients who are most likely to benefit from RRT.

Data availability
The raw data for this study was obtained from the MIMIC-III database, which can be accessed through the fol-
lowing website link: https:// mimic. physi onet. org.
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