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Identification of the shared hub 
gene signatures and molecular 
mechanisms between HIV‑1 
and pulmonary arterial 
hypertension
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Jing Yang 1,2, Ping Cui 2,4, Li Ye 1,2, Hao Liang 1,2,4 & Jiegang Huang 1,2,5*

The close link between HIV‑1 infection and the occurrence of pulmonary arterial hypertension 
(PAH). However, the underlying molecular mechanisms of their interrelation remain unclear. The 
microarray data of HIV‑1 and PAH were downloaded from GEO database. We utilized WGCNA to 
identify shared genes between HIV‑1 and PAH, followed by conducting GO and pathway enrichment 
analyses. Subsequently, differentially genes analysis was performed using external validation 
datasets to further filter hub genes. Immunoinfiltration analysis was performed using CIBERSORT. 
Finally, hub gene expression was validated using scRNA‑seq data. We identified 109 shared genes 
through WGCNA, primarily enriched in type I interferon (IFN) pathways. By taking the intersection 
of WGCNA important module genes and DEGs, ISG15 and IFI27 were identified as pivotal hub genes. 
Immunoinfiltration analysis and scRNA‑seq results indicated the significant role of monocytes in 
the shared molecular mechanisms of HIV‑1 and PAH. In summary, our study illustrated the possible 
mechanism of PAH secondary to HIV‑1 and showed that the heightened IFN response in HIV‑1 might 
be a crucial susceptibility factor for PAH, with monocytes being pivotal cells involved in the type I 
IFN response pathway. This provides potential new insights for further investigating the molecular 
mechanisms connecting HIV‑1 and PAH.
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Acquired immunodeficiency syndrome (AIDS) is a fatal infectious disease that significantly damages the human 
immune system andmainly caused by infection with the human immunodeficiency virus type 1 (HIV-1)1. 
Although anti-retroviral therapy (ART) can significantly reduce the mortality of HIV-1/AIDS  patients2, 6.5 
million people still died from HIV-1/AIDS related causes worldwide over the past  period3. With the widespread 
application of ART, the survival period of HIV-1 infected individuals has significantly extended. However, there 
is still a significant disparity between those infected with HIV-1 and the general population in terms of life 
expectancy and quality of life, which can largely be attributed to complications caused by HIV-1  infection4. As 
survival time of HIV-1 infections, the incidence of chronic complications associated with HIV-1 has significantly 
 increased5,6, particularly chronic lung  disease7 and cardiovascular  disease8.

Pulmonary arterial hypertension (PAH) as a cardiovascular disease with high morbidity and  mortality9. The 
main characteristic of PAH is an elevated pulmonary arterial pressure (PAP). PAH is caused by hyperproliferation 
of pulmonary arterial smooth muscle cells, apoptosis, and  metabolism10, resulting in an abnormally elevated PAP 
and pulmonary vascular resistance (PVR), which may lead to progressive right heart failure and ultimately con-
tribute to patient mortality, making PVR a major cause of death in individuals with  PAH11,12. HIV-1 infection is 
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considered to be one of the major causes of pulmonary arterial hypertension, triggering dysregulation of inflam-
matory and immune responses as well as endothelial  dysfunction13, which serves as one of the crucial patho-
genic mechanisms of  PAH14. However, the etiology and pathogenesis of PAH remain incompletely elucidated, 
particularly in cases associated with HIV-1. Furthermore, the survival rate of patients with HIV-1-related PAH 
is half of that of HIV-1 infected individuals without  PAH15. Despite epidemiological studies showing a strong 
positive relationship between HIV-1 infection and the occurrence of PAH, several studies have demonstrated 
that HIV-1 does not directly alter the pathogenic mechanisms of lung disorders, including  PAH16. Consequently, 
the mechanism underlying the relationship between HIV-1 infection and PAH still requires further exploration.

As gene microarray and scRNA-seq technology continue to advance and mature to facilitate, unraveling of 
the genetic and cellular intricacies of various diseases, we are prompted to explore novel frontiers in the realm 
of gene vaccines. Simultaneously, a comprehensive investigation into the relationship between HIV-1 and PAH 
not only enhances our understanding of shared pathophysiological features but also opens new prospects for the 
development of gene vaccines. The potential of gene vaccines lies in their ability to leverage the genetic informa-
tion of pathogens to stimulate a targeted and robust immune response. In the context of HIV-1 and PAH, delving 
into shared molecular mechanisms may provide crucial insights which allow gene vaccines to be designed that 
are tailored to address both challenges.

In this study, we conducted bioinformatics analyses using gene expression profiles from public databases to 
identify shared hub genes and pathways in HIV-1 and PAH patients. We also investigated the correlation between 
hub genes and immune cells. We further explored the expression patterns of hub genes in various subpopula-
tions of cells using single-cell RNA sequencing (scRNA-seq) data. This may be the first study to explore the hub 
gene features shared between HIV-1 and PAH. We aim to better understand their intricate interplay and shared 
molecular mechanisms; outline prospects for guiding and optimizing vaccine development; and provide valuable 
insights for designing targeted and effective immune strategies.

Materials and methods
datasets acquisition and processing
We performed a comprehensive search of the Gene Expression Omnibus (GEO) database (https:// www. ncbi. 
nlm. nih. gov/ geo/) and ArrayExpress (https:// www. ebi. ac. uk/ array expre ss/) using the key terms “human immu-
nodeficiency virus” or “pulmonary arterial hypertension” to find the gene expression profiles of HIV-1 and PAH 
patients. Datasets were selected based on the following criteria: (1) the gene expression profiling contain cases 
and controls. (2) Gene expression data were obtained using array gene expression chips. (3) The sample type 
used for sequencing is peripheral blood mononuclear cell (PBMC). (4) At least 3 independent samples per group 
were used for gene expression analysis. (5) The raw data is required for gene expression profiling to facilitate 
re-analysis. Based on the above selection criteria, a total of six datasets were ultimately included in this study, 
consisting of three datasets related to HIV-1 (GSE140713, GSE77939 and GSE2171) and three datasets related 
to PAH (GSE33463, GSE703 and GSE19617). Comprehensive details of the information of included studies are 
provided in Table 1, including GSE numbers, detection platforms, types of RNA sources, and sample informa-
tion. The raw expression arrays from the Affymetrix platform were background corrected using robust multi-
array average (RMA) algorithm through the affy  package17, and the raw expression arrays from the Agilent and 
Illumina platforms were quantile-normalized and log2 transformed through the limma  package18. The probes 
were matched to gene symbols according to the annotation information of the corresponding platform, and 
those without the corresponding gene symbol were removed. The gene expressions were averaged when multiple 
probes were matched to the same gene symbols. Principal component analysis (PCA) was performed to visualize 
the spatial distribution of samples.

Table 1.  Study characteristics of the included studies. ART-IF antiretroviral therapy immunolgical failure 
(individuals undergoing ART for at least 1 year, exhibiting an undetectable viral load (< 40 copies/mL), and 
maintaining CD4 T cell counts below 250 cells/μL), ART-N antiretroviral therapy naive (ART-naive individuals 
with a CD4 T cell count exceeding 200 cells/μL), ART-R antiretroviral therapy responder (Individuals 
undergoing ART for at least 1 year, showing a positive response to the treatment by exhibiting an increase 
in CD4 T cell counts of over 150 cells/μL, with current CD4 counts above 250 cells/μL), IPAH idiopathic 
pulmonary arterial hypertension, SPHA secondary pulmonary arterial hypertension.

GEO accession number Disease Organization type PMID Platform Sample information

GSE140713 HIV-infected PBMC 34871208 GPL6480 HIV = 50 (All HIV patients were received antiretroviral therapy); control = 7

GSE77939 HIV-infected PBMC 32579550 GPL15207 HIV = 17 (included 7 patients with ART-IF, 5 patients with ART-N and 5 patients with 
ART-R); control = 4

GSE2171 HIV-infected PBMC 15897992 GPL201 HIV = 22 (HIV patients did not receive ART); control = 12

GSE33463 PAH PBMC 22545094 GPL6947 PAH = 72 (included 30 patients with IPAH and 42 patients with SPAH); control = 41

GSE703 PAH PBMC 15215156 GPL80 PAH = 14 (included 4 patients with IPAH and 10 patients with SPAH); control = 6

GSE19617 PAH PBMC 20808962 GPL6480 PAH = 15 (15 patients with SPAH); control = 10

https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://www.ebi.ac.uk/arrayexpress/
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Weighted gene coexpression network analysis and identification of shared genes in HIV‑1 and 
PAH
Weighted correlation network analysis (WGCNA) can be used to find the co-expressed gene modules with 
high biological significance, construct the gene coexpression network, and identify the modules correlated to 
 diseases19. According to the WGCNA tutorial, which recommends a sample size of more than 20 for robust 
results, we selected datasets with relatively large sample sizes (GSE140713 and GSE33463) for WGCNA analysis. 
Firstly, we selected the top 25% of the genes with the largest variance in the expression matrix, including about 
5000 genes for the WGCNA analysis. Then we utilized the goodSamplesGenes function in the WGCNA package 
to filter for samples and genes with excessive missing values and zero variation, and remove outliers by sample 
hierarchical clustering with hclust function in the WGCNA package. Based on the criteria of approximate a scale-
free topology  (R2 > 0.85) and mean connectivity (approach to 0), we select the best soft threshold value (β) from a 
range of 1 to 20, using the PickSoftThreshold function in the WGCNA package. In this study’s WGCNA analysis, 
the soft threshold for GSE140713 was 14 and the soft threshold for GSE33463 was 6. Subsequently, the adjacency 
matrix was transformed into a topological overlap matrix (TOM) and a hierarchical clustering dendrogram was 
constructed. Utilizing the blockwiseModules function from the WGCNA package, we categorized similar gene 
expressions into different modules with the major parameters: corType = “pearson”, networkType = “unsigned”, 
minModuleSize = 20, mergeCutHeight = 0.25. Following the construction of the co-expression network, the mod-
ule eigengenes were calculated using the moduleEigengenes function in the WGCNA package and performed 
correlation analysis with phenotypic traits.

Identification of shared gene features in HIV‑1 and PAH
We selected modules with high correlation coefficients (r ≥ 0.5 and P < 0.05) associated with HIV-1 and PAH, 
and identified overlapping shared genes in moudulethrough an online Venn diagram tool (http:// www. inter activ 
enn. net/). To explore the potential roles of shared genes in HIV-1 and PAH, biological analysis was performed 
through ClueGO (version 2.5.9), a Cytoscape software (version 3.9.1) plugin that categorizes non-redundant 
Gene Ontology (GO) terms and visualizes them as a network of functional  groups20. Significant biological 
processes (BP) were identified through Gene Ontology (GO) analysis, with a significance threshold of P < 0.05.

Identification of hub genes through differentially expressed genes analysis and WGCNA
Differential expression analysis of the GSE77939 and GSE703 datasets was conducted using the voom  method21 
via the limma package. Differentially expressed genes (DEGs) between HIV-1 and PAH were determined to 
compare control group and HIV-1/PAH group gene expression profiling for subsequent analysis. The screening 
criteria for DEGs in both the GSE77939 and GSE703 datasets were |log2 fold change (FC)|> 0.585 and P < 0.05. 
By overlapping DEGs positively correlated with HIV-1/PAH and genes shared from WGCNA-related modules, 
we ultimately identified hub genes through a Venn diagram.

Hub genes expression levels and diagnostic potential in HIV‑1 and PAH
The Student’s t-test was used to compare the expression levels of hub gene between the control group and the 
HIV-1/PAH group. Considering the impact of ART effectiveness in HIV patients and the potential influence 
of different subgroups within PAH classifications on the results, we conducted subgroup comparative analyses 
separately. The area under the curve (AUC) of the receiver operating characteristic (ROC) curve was used to 
evaluate the prediction effectiveness of potential biomarkers on the datasets (GSE140713, GSE77939, GSE2171, 
GSE33463, GSE703 and GSE19617) via the pROC  package22.

Construction of protein–protein interaction network for hub genes and conducting gene 
ontology and pathway enrichment analyses
In order to explore the mechanisms underlying the functions of hub genes, we utilized the GeneMania database 
(http:// www. genem ania. org) to identify proteins that are functionally associated with the hub genes and con-
structed the corresponding protein–protein interaction (PPI) network. Subsequently, gene ontology (GO) and 
pathway enrichment analysis for these associated genes was performed using the Metascape online platform 
(https:// metas cape. org).

Gene set enrichment analysis
Gene set enrichment analysis (GESA) is an enrichment analytical method for interpreting gene expression data 
that calculates an enrichment score to determine whether a pre-defined gene set displays statistically significant 
differences between two biological  states23. Based on the median cutoff values of ISG15 and IFI27 expression 
in the GSE140713 and GSE33463 datasets, we categorized HIV-1/PAH patients into groups with high and low 
expression levels of ISG15, as well as high and low expression levels of IFI27.DEGs analysis was performed using 
the limma package, GSEA was performed using the clusterProfiler  package24 to identify the hallmark gene sets 
from the Human Molecular Signatures Database (MSigDB v7.4, https:// www. gsea- msigdb. org/ gsea/ msigdb/). 
All GSEA enrichment plots were generated with the GseaVis package (https:// github. com/ junju nlab/ GseaV is). 
Adjusted P < 0.05 (Benjamini–Hochberg correction) was considered significant. Significantly enriched pathways 
were screened based on normalized enrichment score (NES) ranking.

Immune cell infiltration analysis
CIBERSORT is an anti-volume algorithm based on a gene expression matrix used to calculate the relative abun-
dance of 22 immune cell types, including naive B cells, memory B cells, plasma cells, CD8 T cells, naive CD4 T 

http://www.interactivenn.net/
http://www.interactivenn.net/
http://www.genemania.org
https://metascape.org
https://www.gsea-msigdb.org/gsea/msigdb/
https://github.com/junjunlab/GseaVis
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cells, resting menmory CD4 T cells, activated memory CD4 T cells, T follicular helper cells, regulatory T cells, 
gamma delta T cells, resting natural killer (NK) cells, activated NK cells, monocytes, macrophages (M0), type 
1 macrophages (M1), type 2 macrophages (M2), activated dendritic cells (DCs), resting DCs, activated mast 
cells, resting mast cells, eosinophils, neutrophils. We performed the immune cell infiltration analysis of the 
GSE140713 (HIV) and GSE33463 (PAH) datasets via the cibersort package and filtered immune-cell types with 
an abundance of 0. The Wilcoxon rank sum test was used to compare the immune cell infiltration between the 
control group and the HIV-1/PAH group, and the correlation between hub genes and different immune cell 
types was determined via Spearman correlation analysis. The correlation coefficient |cor|> 0.3 and P < 0.05 was 
considered with statistical significance.

Single‑cell dataset processing and clustering analysis
Single-cell transcriptome matrix datasets were obtained using the 10X Genomics platform, including one sourced 
directly from 10X Genomics (8381 PBMCs) and two others acquired from the GEO database (GSE157829 and 
GSM6647828). Seurat objects were created for each dataset using the Seurat package (version 4.3.0), and doublets 
were predicted and removed using the DoubletFinder package (version 2.0.3) according to the 10× Genomics 
Chromium Single Cell 3′ Reagent Kits User Guide (v2 Chemistry). Subsequently, we filtered out cells with under 
200 expressing genes, over 5000 expressing genes and over 15% mitochondrial gene expression. Following this 
filtering step, the filtered datasets were individually normalized and scaled using SCTransform. The cell cycle 
scores based on S and G2M phase markers were calculated by CellCycleScoring function in the Seurat package. 
The integrated analysis of these datasets was conducted using the canonical correlation analysis (CCA) method. 
Afterward, integrated data were then clustered and visualized using the top 20 principal components by the gen-
erated Elbow plot (Fig. S1). Clustering was performed via the FindNeighbors and FindClusters functions in Seu-
rat with a resolution of 0.8. Marker genes for each cluster were identified with the FindAllMarkers function from 
Seurat with parameters min.pct = 0.25 and logfc.threshold = 0.25. We identified major cell clusters present in the 
healthy and HIV-1 infected donors based on expression of marker genes signature: T cells (CD3D, CD8B, IL7R, 
CCR7, CD27), NK cells (GNLY, NKG7, GZMB), B cells (MS4A1), monocytes (LYZ, S100A9, CD14, FCGR3A), 
Megakaryocytes (PPBP) and plasmacytoid dendritic cell (pDCs; LYZ, IGJ). Furthermore, we employed the 
AUCell package (v1.12.0) to calculate the gene expression signature score for the crucial hallmark pathway.

Statistical analysis
All statistical analyses and visualization were performed with R Studio (Version 4.2.1; R studio Inc., Boston, MA, 
USA). The P < 0.05 was considered significant.

Results
The flow chart of the overall design in this study is shown in Fig. 1. We performed quality controls on the six 
datasets (GSE140713, GSE77939, GSE2171, GSE33463, GSE703 and GSE19617) included in this study, and the 
box diagram of microarray signal intensity confirmed that the data was of good quality (Fig. S2).

Construction of the WGCNA network and identification of crucial modules
We selected the GSE140713 and GSE33463 datasets for WGCNA and examined the abnormal values of the 
two data sets by sample clustering, as depicted in Fig. S3 showing the sample dendrograms and trait heatmaps, 
along with the cluster dendrograms. GSE33463 removed one outlier sample (Fig. S4). In order to ensure that 
the network conforms to the scale-free network, the β-value was established at 14 for GSE140713 and at 6 
for GSE33463 (Fig. 2A,B). We identified associations between module genes and clinical phenotypes using 
the spearman-related coefficient (Fig. 2C,D). A total of 11 modules were identified in the network created by 
GSE140713, of which the green module (r = 0.65, P < 0.001, Fig. 2C) and the blue module (r = 0.56, P < 0.001) 

Figure 1.  The comprehensive workflow diagram of this study.
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had strong positive correlations with HIV-1. Similarly, in the network created by GSE33463, 21 modules were 
identified, of which the turquoise module (r = 0.74, P < 0.001, Fig. 2D), the blue module (r = 0.59, P < 0.001), and 
the greenyellow module (r = 0.50, P < 0.001) had strong positive correlations with PAH.

The shared gene features in HIV‑1 and PAH
A total of 109 shared genes were identified that overlapped between modules positively associated with HIV-1 
and PAH (Fig. 3A). Based on the interaction relationships among these 109 shared genes, we constructed a PPI 
network (Fig. 3B), and GO-BP enrichment analysis was performed on these genes via the ClueGO plugin. GO-BP 
enrichment analysis showed that those genes were mainly enriched in response to type 1 infection (IFN), the 
defense response to virus, regulation of response to biotic stimulus, and positive regulation of the toll-like recep-
tor signaling pathway (Fig. 3C). According to KEGG enrichment analysis, those genes were primarily enriched 
for disorders caused by viral infections, the NOD-like receptor signaling pathway, and the RIG-I-like receptor 
signaling pathway (Fig. 3D).

Identifying crucial hub genes through validating set of DEGs and WGCNA gene set
After the normalization of the datasets, we performed a principal component analysis (PCA). There were sig-
nificant differences between the two groups (Fig. S5). We subsequently performed differential gene expression 
analysis for the GSE77939 and GSE703 datasets (Fig. 4A). A total of 61 DEGs, including 40 upregulated and 21 
downregulated genes, were identified in the GSE77939 dataset. Similarly, in the GSE703 dataset, a total of 519 
DEGs were identified, including 389 upregulated and 130 downregulated genes. We performed an intersection 
analysis between these upregulated genes and the WGCNA gene set using a Venn diagram, which identified the 
crucial hub genes as ISG15 and IFI27 (Fig. 4B).

Figure 2.  Weighted gene co-expression network analysis (WGCNA) of GSE140713 (HIV) and GSE33463 
(PAH). (A) Scale-free network analysis under different soft-thresholding powers for GSE19187 (HIV). The left 
side shows the scale-free topology fit index (R2) across a range of soft threshold powers (β) from 1 to 20. On 
the right side, the mean connectivity is displayed for each β value from 1 to 20. (B) Scale-free network analysis 
under different soft-thresholding powers for GSE33463 (PAH). The left side shows the  R2 across a range of β 
from 1 to 20. On the right side, the mean connectivity is displayed for each β value from 1 to 20. (C) Module–
trait relationships in GSE19187 (HIV). Each cell contains the corresponding correlation and P value. (D) 
Module–trait relationships in GSE33463 (PAH). Each cell contains the corresponding correlation and p value. 
PAH pulmonary arterial hypertension.
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Expression levels and diagnostic potential of crucial hub genes
To ensure the accuracy of the screened hub genes, we utilized the GSE140713, GSE77939, GSE2171, GSE33463, 
GSE703, and GSE19617 datasets for validation. ISG15 was significantly upregulated in three datasets, but not 
in GSE33463, GSE2171, and GSE19617. IFI27 was upregulated significantly in both HIV-1 or PAH (all P < 0.05, 
Fig. 4C). In addition, we performed ROC analysis to assess the diagnostic potential of ISG15 and IFI27. ISG15 
demonstrated good diagnostic potential in the remaining three datasets, with the exception of the GSE33463, 
GSE2171, and GSE19617 datasets (Fig. 4D). IFI27 demonstrated robust diagnostic potential in all six datasets, 
particularly in the GSE703 dataset, where it exhibited nearly perfect diagnostic capability with an AUC value of 
0.940. Additionally, we observed an increasing trend in the expression of ISG15 and IFI27 among HIV patients on 
subgroup analysis, regardless of whether they received ART or not (Fig. 4C, Fig. S6A,B). In HIV patients during 
the early stages of ART treatment, there was a significant decrease in the expression of ISG15 and IFI27 compared 
to the control group (P < 0.05, Fig. S6A,B). Similarly, within distinct PAH subgroups, both IPAH and SPAH 
patients exhibited increasing trends in the expression of ISG15 and IFI27. However, consistent significant dif-
ferences in the expression of ISG15 and IFI27 between IPAH and SPAH patients were not observed (Fig. S6C-F).

Construction of hub genes PPI network and GSEA
We performed protein–protein interaction analysis centered on the crucial hub genes through the GeneMania 
database, and the outcomes demonstrated that the majority of proteins associated with ISG15 and IFI27 were 
IFN-induced proteins and karyopherin-α (KPNA) proteins (Fig. 5A). Hub genes and their co-expressed genes 
predominantly participated in the type 1 IFN signaling pathway and the antiviral immune response pathway. 
Furthermore, we performed GO functional and pathway enrichment analysis on these genes using the metascape 
database. Hub genes were found to be related to interferon signaling, the antiviral mechanism by IFN-stimulated 
genes, and the biological process involved in interspecies interactions between organisms and the viral process 
(Fig. 5B).

GSEA was utilized on hallmark gene sets to identify functional enrichments in high and low hub genes 
expressions across the GSE140713 and GSE33463 datasets. The results of GSEA showed that among the top 
five differentially expressed upregulated enriched pathways associated with high hub genes expression, all were 

Figure 3.  Identify shared genes between HIV and PAH, construct a protein–protein interaction (PPI) network, 
and perform Gene Ontology (GO) and pathway enrichment analysis. (A) The shared genes between the blue 
and green modules of HIV and greenyellow, blue and turquoise modules of PAH by overlapping them. (B) 
The interactive network of shared genes and their associated GO terms generated by the ClueGO plugin. The 
significant term of each group is highlighted. (C) The percentage of GO terms in the shared genes. (D) Top 20 
KEGG pathway enrichment analysis results for the shared genes. PAH pulmonary arterial hypertension, GO 
Gene Ontology; *P < 0.05; **P < 0.01.
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linked to responses involving type I IFN, the IFN gamma response, and the inflammatory response (all adjusted 
P < 0.05, Fig. 5C–F).

Immune infiltration analysis
To assess the immune cell immersion between HIV-1/PAH patients and the control group, we analyzed the 
immune infiltration for the GSE140713 and GSE33463 gene expression data separately. The cumulative histo-
gram shows the proportions of 20 different types of immune cells (Figs. 6A, 7A). We then further analyzed the 
correlations between 20 different types of immune cells (Figs. 6B, 7B). In the HIV-1 dataset, we found significant 
positive correlations between activated NK cells and activated memory CD4 T cells (r = 0.62); activated mast cells 
and activated memory CD4 T cells (r = 0.61); and activated mast cells and activated NK cells (r = 0.67). There was 
a significant negative correlation between neutrophils and CD8 T cells (r =  − 0.75). In the PAH dataset, we found 
significant positive correlations between M2 and regulatory T cells (r = 0.49), activated DCs and regulatory T 
cells (r = 0.48); and activated DCs and M2 (r = 0.58).

There was a significant reduction in the infiltration of M0, resting mast cells, and eosinophils in both the 
HIV-1 and PAH conditions (Figs. 6C, 7C). Individuals in the control group and the HIV-1/PAH group could be 
separated into two distinct groups by PCA based on 20 immune cell subpopulations (Figs. 6D, 7D). Addition-
ally, in the HIV-1 group, a correlation analysis of different types of immune cells with hub genes demonstrated a 
positive correlation between hub genes and specific cell populations, including T follicular helper cells, resting 
NK cells, activated DCs, monocytes, and neutrophils (P < 0.05, Fig. 6E). Within the PAH group, the hub genes 
showed a positive correlation exclusively with monocytes (P < 0.05, Fig. 7E).

Figure 4.  Identifying hub genes through differentially expressed genes (DEGs) and WGCNA, and assessing 
their diagnostic potential. (A) The left-side volcano plot showed 61 DEGs between the HIV patients and 
controls in GSE77939 (HIV). The right-side volcano plot showed 519 DEGs between the PAH patients and 
controls in GSE703 (PAH). Color represents the log2FC (red represents down-regulation, green represents 
up-regulation, and grey represents no change). (B) The Venn diagram showed the identification of hub genes 
by overlapping between upregulated DEGs identified in both HIV-1 (GSE77939) and PAH (GSE703) and 
co-expressed gene modules identified through WGCNA. (C) Expression of hub genes in different datasets. 
(D) ROC curve of the hub genes in different datasets. PAH pulmonary arterial hypertension, FC fold change, 
WGCNA weighted gene co-expression network analysis, ROC receiver operating characteristic; *P < 0.05; 
**P < 0.01; ***P < 0.001; ****P < 0.0001.
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Single‑cell analysis for hub genes
In order to further investigate the immune microenvironment of peripheral blood, we utilized single-cell RNA 
sequencing data to explore the expression of hub genes across different cell types. After quality control (Fig. S7), 
integration (Fig. S8A), dimensionality reduction, and clustering (Fig. S8B,C), a total of 50,524 cells (healthy 
donors: 25,596, HIV-1 infected donors: 24,928) were obtained and clustered into 15 clusters. We annotated the 

Figure 5.  PPI network and Gene set enrichment analysis (GSEA) of hub genes. (A) PPI network of hub genes 
and their interacting proteins. (B) GO enrichment analysis of hub genes and their interacting proteins. (C) 
GSEA of the top 5 enriched pathways in HIV-1 patients with high ISG15 expression from the GSE140713 
dataset. (D) GSEA of the top 5 enriched pathways in HIV-1 patients with high IFI27 expression from the 
GSE140713 dataset. (E) GSEA of the top 5 enriched pathways in PAH patients with high ISG15 expression from 
the GSE33463 dataset. (F) GSEA of the top 5 enriched pathways in PAH patients with high IFI27 expression 
from the GSE33463 dataset. GO gene ontology, NES Normalized Enrichment Score, PAH pulmonary arterial 
hypertension.

Figure 6.  Immune infiltration analysis by CIBERSORT for the GSE140713 (HIV) dataset. (A) The proportion 
of 22 immune cells in various samples. (B) Co-expression analysis of 22 infiltrating immune cells in HIV-1 
samples. (C) The PCA cluster plot of immune cell infiltration in HIV-1 and control samples. (D) The violin plot 
showed the infiltration of immune cells in HIV-1 and control samples. (E) Correlation analysis between hub 
genes expression and the proportion of immune cells in HIV-1 samples. PCA principal component analysis; 
*P < 0.05; **P < 0.01; ***P < 0.001.
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cells based on marker genes and classified the 15 clusters into six distinct cell populations: encompassing T cells 
(25,302), NK cells (11,982), B cells (6851), monocytes (5569), megakaryocytes (484), and pDCs (336) (Fig. 8A). 
We conducted a comparative analysis of the quantities of various cell subpopulations between the two groups and 
observed significant reductions in monocytes and megakaryocytes, while B cells and pDCs showed significant 
increases in individuals infected with HIV-1 compared to the healthy controls (Fig. 8B). Cluster marker genes 
were identified via the FindAllMarker function in Seurat (Fig. 8C). Meanwhile, we observed elevated expression 
levels of hub genes in the HIV-1 group (Fig. 8D), which is consistent with the previous transcriptomic findings. 
To further assess the expression patterns of hub genes across various cell subsets, we performed an analysis of 
their expression within each cell subpopulation, and the results showed that ISG15 was highly expressed by 
monocytes, NK cells, and pDCs, while IFI27 was highly expressed exclusively in pDCs. The results were similar 
to those obtained from CIBERSORT.

We also calculated the area under the curve (AUC) scores for the crucial hallmark pathway (type I IFN 
response) associated with each cell’s hub genes. As expected, the pathway score for the type I IFNresponse was 
elevated in monocytes, NK cells, and pDCs, particularly monocytes (Fig. 8E). In other words, monocytes are 
pivotal cells involved in the type I IFN response pathway.

Discussions
PAH is a complex and incurable disease whose mechanisms involve a variety of inflammatory  responses25. As 
one of the most serious complications of HIV/AIDS, PAH has a high mortality rate and is progressively increas-
ing among HIV-1  patients26, which has seriously affected the prognosis of HIV-1 patients. However, there is 
currently insufficient concrete evidence regarding the specific association between HIV-1 and PAH. There also 
appears to be limited research exploring the susceptibility relationship to PAH in HIV-1 patients at the genetic 
level. Consequently, identifying potential genes and mechanisms related to both HIV-1 and PAH may offer 
new perspectives to uncover the underlying connection. In this study, through bioinformatics analysis, we have 
identified hub genes and identified crucial pathways between HIV-1 and PAH.

In this study, our objective was to explore the shared molecular mechanisms between HIV-1 and PAH. 
After conducting a cross-analysis across different datasets, ISG15 and IFI27 were identified as pivotal hub genes 
between HIV-1 and PAH that are highly associated with the type I IFN signaling pathway. ISG15 is a ubiquitin-
like protein that becomes attached to target proteins via ISGylation, a process mediated by E1, E2, and E3 
 enzymes27. This modification is prompted by type I IFNs, leading to increased expression when the IFN signaling 
pathway is  activated28. ISG15 is mainly secreted by neutrophils, monocytes, and lymphocytes, and can act on T 
and NK cells to induce IFNγ production and play a critical role in the IFN-induced innate immune  response29–32. 
IFI27, also known as ISG12a (IFN-stimulated gene 12a), belongs to the IFI6/IFI27  family33 and, similar to ISG15, 
is a type I IFN-inducible protein involved in various biological processes, including cell apoptosis and antiviral 
activity induced by type I  IFNs34. Notably, previous studies have reported that ISG15 and IFI27 are highly corre-
lated with HIV-1  infection35–37. Additionally, in the subgroup analysis of HIV-1, we observed reduced expression 

Figure 7.  Immune infiltration analysis by CIBERSORT for the GSE33463 (PAH) dataset. (A) The proportion of 
22 immune cells in various samples. (B) Co-expression analysis of 22 infiltrating immune cells in PAH samples. 
(C) The PCA cluster plot of immune cell infiltration in PAH and control samples. (D) The violin plot showed the 
infiltration of immune cells in PAH and control samples. (E) Correlation analysis between hub genes expression 
and the proportion of immune cells in PAH samples. PCA principal component analysis, PAH pulmonary 
arterial hypertension; *P < 0.05; **P < 0.01; ***P < 0.001.
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of ISG15 and IFI27 in immune responders compared to ART-naive individuals and immune non-responders. 
Although no significant differences were observed, this is consistent with previous  studies38,39. The prolonged 
inflammatory response and altered immune processes over time contribute to the development of  PAH40. The 
inflammation induced by the elevated expression of ISG15 and IFI27 may serve as the foundation for the occur-
rence of PAH, suggesting that immunofailers may have a higher likelihood of developing PAH. Despite increas-
ing evidence confirming a link between type I IFN and  PAH41, there are currently no reported studies on the 
associations between ISG15, IFI27, and PAH. In this study, ISG15 and IFI27 demonstrated promising diagnostic 
potential in the PAH dataset, and they may serve as potential biomarkers for PAH.

IFNα is a cytokine of the innate immune system, which is an important mediator of  inflammation42. HIV-1 
infection typically results in the production of proinflammatory cytokines (IL-6) and IFNα. As one of the earliest 
stages of host immune defense, the innate immune response is mediated by IFNα and operates by upregulating 
the expression of IFN-stimulated genes with diverse anti-HIV  properties43, thereby inhibiting the replication 
of HIV, especially in acute HIV-1  infection44. However, during chronic infections, the direct link between per-
sistent IFNα signal transmission and HIV-1-induced immunopathogenesis remains  uncertain45, but sustained 
activation of IFN signaling  still46. Although type I IFN levels are reduced under combination ART (cART), 
IFN-stimulated genes (ISGs) are still upregulated in PBMC or lymphoid  organs46,47, which is consistent with 
the findings in this study.

PAH consists of several subtypes, including idiopathic (IPAH), familial (FPAH), and secondary PAH (SPAH). 
However, research derived from a meta-analysis of the genome-wide blood expression profiles in both IPAH 
and SPAH revealed the existence of common immunologic  mechanisms48. Furthermore, compared to a healthy 
control, these DEGs are enriched in biological processes such as the type I IFN response, antiviral immune 
response, and Toll-like receptor signaling, which is consistent with the shared DEGs enrichment results in this 
study. Several studies have demonstrated that IFN response is highly active in  PAH49,50. Human pulmonary 
vascular cells are sensitive to type I IFN, and high levels of IFNα stimulation release IFNγ inducible protein 10 
(IP10) and endothelin-1 (ET-1) through inducing TNFα-primed human pulmonary artery smooth muscle cells 
(HPASMCs)41. IP10 and ET-1 serve as pivotal mediators in the pathogenesis of PAH. Moreover, HIV-1 infection 
leads to a reduction in tight junction proteins that preserve the integrity of the pulmonary endothelial barrier, 
thereby directly damaging endocrin  cells51. This may be a trigger point for endocranial dysfunction and the 
pathogenic mechanism of  PAH52. PAH has a high incidence among HIV-1 patients, implying a potential role 
of HIV-1 in promoting PAH pathogenesis. Consequently, we speculated that type I IFN plays a pivotal role in 
the pathogenic occurrence of HIV-related PAH. Despite recent advances in pharmacotherapy for individuals 
with PAH, treatments are mostly of limited  effectiveness53. Considering the modulation of the IFN pathway as 
a potential therapeutic target for treating PAH, this holds promising implications for guiding future treatments, 
prevention strategies, and the development of vaccines for individuals with concurrent HIV-1 and PAH.

Figure 8.  Single-cell Dataset Clustering Analysis. (A) The UMAP plots showed the results of applying the 
marker genes to annotate cells. (B) The left-side bar showed the percentage of each cell type in healthy and HIV-
infected donors. The right-side bar showed the number of each type of cell. (C) Heatmap of the expression of 
the hallmark genes by different cell clusters. (D) The combined violin plot showed the expression levels of ISG15 
and IFI27 across various cell clusters at the top and compares their expression in healthy and HIV-infected 
donors at the bottom. (E) The UMAP plot showed the AUC scores of interferon alpha response pathways for 
each cell. UMAP uniform manifold approximation and projection, AUC  area under the curve.
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Meanwhile, we have observed that the reduction in monocyte numbers in HIV patients may be associated 
with compromised immune function. Monocytes, as primary participants in the innate immune system, play 
a crucial role in antiviral infections through the IFN signaling  pathway54. Monocytes serve as target cells for 
HIV-1 infection, and monocytes release inflammatory factors and differentiate upon HIV-1 infection, stimulated 
by the IFN signaling  pathway55. Furthermore, based on the results of immune infiltration analysis, a significant 
positive correlation between ISG15 and IFI27 expression and monocytes has been observed in both HIV-1 and 
PAH, and it could therefore be inferred that the upregulation of ISG15 and IFI27 promotes monocyte activation 
and differentiation into pDCs during migration by IFN  stimulation56. This explains the notable enrichment of 
type I IFN within the pDCs, as shown in the scRNA-seq results.

We used integrated bioinformatics methods such as the WGCNA algorithm to identify common hub genes 
and pathways in HIV-1 and PAH, which further elucidate the pathogenesis of both. However, there are certain 
limitations of our study.Firstly, the limited sample size employed for the bioinformatics analyses could poten-
tially impact the robustness of our findings. Our data is derived from multiple datasets, and there may be some 
heterogeneity among the different datasets. Secondly, we lack in vitro experiments to further validate our results. 
Furthermore, our study is confined to the transcriptomic level, and the integration of multi-omics data will be 
essential to validate our conclusions in the future.

In summary, our study utilized a bioinformatics analysis to illustrate the possible mechanism of PAH second-
ary to HIV-1 and showed that the heightened IFN response in HIV-1 might be a crucial susceptibility factor for 
PAH, with monocytes being pivotal cells involved in the type I IFN response pathway. This provides potential 
new insights for further investigating the molecular mechanisms connecting HIV-1 and PAH.

Data availability
The datasets presented in this study can be found in online repositories. The names of the repositories and acces-
sion numbers can be found in the article or supplementary material.
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