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A cluster‑based SMOTE 
both‑sampling (CSBBoost) 
ensemble algorithm for classifying 
imbalanced data
Amir Reza Salehi  & Majid Khedmati *

In this paper, a Cluster‑based Synthetic minority oversampling technique (SMOTE) Both‑sampling 
(CSBBoost) ensemble algorithm is proposed for classifying imbalanced data. In this algorithm, a 
combination of over‑sampling, under‑sampling, and different ensemble algorithms, including Extreme 
Gradient Boosting (XGBoost), random forest, and bagging, is employed in order to achieve a balanced 
dataset and address the issues including redundancy of data after over‑sampling, information loss in 
under‑sampling, and random sample selection for sampling and sample generation. The performance 
of the proposed algorithm is evaluated and compared to different state‑of‑the‑art competing 
algorithms based on 20 benchmark imbalanced datasets in terms of the harmonic mean of precision 
and recall (F1) and area under the receiver operating characteristics curve (AUC) measures. Based 
on the results, the proposed CSBBoost algorithm performs significantly better than the competing 
algorithms. In addition, a real‑world dataset is used to demonstrate the applicability of the proposed 
algorithm.

The necessity to comprehend massive, complex, and information-rich datasets has now grown in various domains 
due to the data’s ever-expanding scope. In today’s competitive environment, the capacity to obtain valuable 
knowledge from these vast amounts of data is becoming increasingly crucial, and data mining provides this 
opportunity. The basis of data mining is provided by various fields, including machine learning, artificial intel-
ligence (AI), probability, and statistics 1. Classification and clustering are two essential techniques used to extract 
knowledge from data. The capacity of these algorithms to identify hidden patterns and build models from data 
gives them their strength and efficiency. Clustering is an algorithm for extracting knowledge by grouping the data 
based on informative patterns to make observations within the same group as similar as possible and observa-
tions between separate groups as dissimilar as possible. Instead, the classification techniques attempt to predict 
categorical classes, such as heart disease conditions, based on a trained  model2. If fact, the purpose of classifica-
tion is an accurate prediction of the class label of observations. However, the class imbalance issue is one of the 
main challenges of data mining techniques that strongly affects the performance of the classifiers and hence, 
has received significant attention from researchers. This issue happens when the class label of observations is 
not equally distributed, and accordingly, there exists a majority class and a minority class. This imbalance may 
be attributed to diverse real-world factors, including infrequent incidents, limitations in resources, or biases 
in data  collection3. In this regard, most of the observations belong to the majority class, while a few belong to 
the minority  class4. The results obtained from the imbalanced data will not be highly  reliable5, and most of the 
algorithms tend to bias toward the majority class and ignore the importance of the minority class. However, it 
should be noted that accurate prediction of the minority class is even much more important than the majority 
class. In other words, the minority class is, in most cases, the most important class that the experts are interested 
in. Numerous machine learning applications grapple with the significantly imbalanced datasets, such as detect-
ing fraud in transactions, identifying faults, and making medical diagnoses. In these scenarios, the tolerance 
for predicting false positives is frequently higher, as the focus is typically on the minority class, making it more 
acceptable to prioritize sensitivity over  specificity6. Accordingly, it is necessary to apply data-balancing algorithms 
in these cases. In this regard, data-level techniques, algorithm-level algorithms, and hybrid algorithms are three 
types of algorithms developed for dealing with class imbalance  issues7.
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The data-level algorithms work based on modifying the distribution of data by sampling algorithms where 
over-sampling and under-sampling are the two main sampling algorithms. The purpose of the under-sampling 
technique is to reduce the observations of the majority class by randomly eliminating observations. However, the 
main drawback of this algorithm is the loss of information caused by removing a portion of the data, where some 
algorithms are proposed in the literature to deal with this  problem8. Instead, in the over-sampling algorithm, 
some observations are duplicated to obtain a balanced data distribution. However, this procedure results in the 
overfitting problem on the training data, where numerous algorithms have been proposed in the literature to 
address this  issue9. The algorithm-level algorithms are mainly based on upgrading the existing learners to reduce 
their distortions toward majority groups. This procedure necessitates a thorough understanding of the revised 
learning algorithm and a detailed identification of the reasons for its failure when mining skewed  distributions10. 
The most well-known algorithm-level technique is cost-sensitive learning that rebalances the classes based on 
their costs, and it may be implemented in different ways, including re-weighting or re-sampling training samples 
in proportion to their costs, pushing the classifier decision boundaries away from high-cost classes in propor-
tion to costs, and so  forth11. Finally, the hybrid/ensemble algorithms are based on implementing both data-level 
and algorithm-level algorithms to maximize their strengths and minimize their limitations. It should be noted 
that various data-level, algorithm-level, and hybrid algorithms have been proposed in the  literature12. However, 
considering the superiority of hybrid/ensemble algorithms, a novel hybrid algorithm, entitled CSBBoost, is pro-
posed in this paper to overcome the imbalanced datasets issues and improve the performance of the algorithm 
in classifying imbalanced data.

The remainder of the paper is organized as follows. In the next section, the algorithms presented in the 
literature for the classification of imbalanced data are presented. A brief explanation of some ensemble algo-
rithms, including XGBoost, bagging, and the random forest, is provided in Sect. “Preliminaries”. The details of 
the proposed algorithm and its performance are presented in Sect. “The proposed algorithm”. The performance 
of the proposed algorithm is evaluated and compared to the competing algorithms in Sect. “Performance evalu-
ation”. The proposed algorithm is applied to a real-world case study in Sect. “A case study”. Finally, the paper is 
concluded in Sect. “Conclusions”.

Literature review
In this section, a thorough literature review of different algorithms proposed for dealing with imbalanced datasets 
is provided. Generally, there exist three categories of algorithms, including data-level techniques, algorithm-level 
algorithms, and hybrid algorithms, in the literature. These algorithms are discussed in detail as follows.

Data‑level methods
The data-level algorithms modify the distribution of data by sampling algorithms, including over-sampling 
and under-sampling. It should be noted that several research efforts have been devoted to under-sampling and 
over-sampling algorithms in the literature. In this regard, Tsai et al13. provided a novel under-sampling strategy 
that combines clustering analysis with observation selection. The clustering analysis is used to cluster identical 
observations in the majority class, and the observation selection algorithm is used to exclude unrepresentative 
observations from each category. Kubat and  Matwin8 introduced the One Side Selection (OSS) algorithm focused 
on the effects of simple selection procedures that were modified to remove negative cases while maintaining all 
positives. The OSS under-sampling algorithm eliminates negative cases that are thought to be borderline, noisy, 
or redundant. The disadvantage of OSS is that a large number of negative cases are removed, which may degrade 
the classifiers’ performance. Guzmán-Ponce et al9. presented a cluster-based algorithm that uses DBSCAN to 
illustrate a filtering phase to detect and eliminate noisy negative observations, followed by a graph-based step that 
generates a representative sub-sample of the majority class with a pre-determined maximum imbalance ratio. 
To address the problem of losing data, it is necessary to specify which and how many observations should be 
sampled. To deal with this problem, Xie et al14. suggested a novel under-sampling algorithm called Progressive 
Under-sampling Algorithm with Density (PUMD) which instantly discovers observations of majority classes 
that are major components of data distributions and effectively determines the appropriate under-sampling 
size, efficiently downsizing datasets and removing observations of majority classes that are unimportant to 
classification tasks. On the other hand, Chawla et al15. proposed the synthetic minority oversampling technique 
(SMOTE) algorithm that employs interpolation between positive examples that are close together to produce 
new observations in the feature space. Several developments have been made in the SMOTE algorithm, including 
Borderline-SMOTE16,  ADASYN17, FF-SMOTE18, and Cure-SMOTE19. Nekooeimehr and Lai-Yuen20 proposed a 
novel algorithm that employs a semi-unsupervised hierarchical clustering algorithm to cluster minority samples 
and adaptively calculates the size to over-sample each sub-cluster according to the classification complexities. In 
addition, Menardi and  Torelli21 developed an over-sampling algorithm called Random Over Sampling Examples 
(ROSE), which is based on a smoothed bootstrap type of data re-sampling and is supported by well-known 
characteristics of kernel algorithms. Fonseca and  Bacao22 proposed G-SMOTENC, combining G-SMOTE and 
SMOTENC to address imbalanced learning for datasets with both nominal and continuous features. The method 
demonstrated significant performance improvement compared to baseline methods across various datasets with 
varying characteristics.

Algorithm‑level methods
Cost‑sensitive algorithms
The algorithm-level algorithms try to improve the performance of algorithms in classifying imbalanced datasets 
through modification of the learners. The cost-sensitive learning is the most well-known algorithm-level tech-
nique. At the same time, the one-class classifier ensemble is another algorithm-level algorithm that, in many 
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circumstances, performs similarly to binary committees and can greatly surpass traditional algorithms in some 
more complicated  scenarios23. Mienye and  Sun24 presented robust cost-sensitive classifiers that alter the objective 
functions of some well-known algorithms, including logistic regression, decision trees, extreme gradient boost-
ing, and random forest, to detect medical diagnoses reliably. Zhang et al25. proposed a new algorithm entitled 
cost-sensitive residual convolutional neural network (CS-ResNet) as an improved version of ResNet, where 
they added a cost-sensitive adjustment layer into the standard ResNet. In particular, CS-ResNet is optimized 
by minimizing the weighted cross-entropy loss function after assigning bigger weights to minority actual faults 
depending on the class-imbalance degree.

Ensemble algorithms
Ensemble algorithms such as bagging, Random Forest, and boosting integrate multiple classifiers to generate 
the result of the ensemble classifier in order to enhance the classification performance. To name a few research 
efforts in this field, Yin et al26. used the ensemble learning stacking algorithm to integrate four conventional 
algorithms, including k-nearest neighbors (KNN), support vector machine (SVM), deep neural network (DNN), 
and recurrent neural network (RNN). Arya and  Hanumat27 suggested deep ensemble techniques for combining 
several base learners. Deep learning is used to improve the performance by obtaining lower-level information 
and passing them forward to the next layer in order to find higher-level attributes.

Hybrid methods
The hybrid methods apply the algorithms of both data-level and algorithm-level methods in order to maxi-
mize their strengths and minimize their limitations. In this regard, Chawla et al28. proposed the SMOTEBoost 
algorithm as a combination of SMOTE and boosting algorithms. Freund and  Schapire29 developed a boosting 
algorithm called AdaBoost using the multiplicative weight-update technique. The basic idea underlying boosting 
techniques is that one initially builds a model based on the training dataset and then builds a second model to 
correct the mistakes in the first one. This technique is repeated to reduce errors and generate the most accurate 
projected dataset. Seiffert et al30. introduced RUSBoost, a hybrid boosting algorithm for learning from biased 
training data. This algorithm is a more sensible and quicker alternative to SMOTEBoost. Díez-Pastor et al31. 
presented RBBoost, a new way to create ensembles of classifiers for two unbalanced class datasets. Each compo-
nent of the RBBoost ensemble is trained using data from the training set and enhanced with SMOTE-generated 
synthetic observations. Rayhan et al32. developed an algorithm entitled Cluster-based Under-sampling with 
Boosting (CUSBoost) to address the issue of class imbalance. CUSBoost primarily clusters the observations of 
the majority class before performing random under-sampling, allowing the boosting algorithm (AdaBoost) to 
select instances from all regions of the dataset. Gong and  Kim33 presented RHSBoost, which employs a hybrid 
sampling technique based on under-sampling and ROSE sampling. The AdaBoost algorithm is used as an ensem-
ble technique in the proposed strategy. Rayhan et al34. introduced MEBoost, a novel boosting technique for 
unbalanced datasets. MEBoost combines two separate weak learners with boosting to enhance performance on 
unbalanced datasets. Zhao et al35. presented a weighted hybrid ensemble algorithm (WHMBoost) for classify-
ing unbalanced data in binary classification cases. The proposed algorithm, within the context of the boosting 
algorithm, integrates two data sampling algorithms and two base classifiers. El Moutaouakil et al36. proposed 
Optimal Entropy Genetic Fuzzy-C-Means SMOTE (OEGFCM-SMOTE), for handling imbalanced datasets in 
classification problems. This method minimizes noise through an optimized combination of fuzzy clustering, 
SMOTE, and genetic algorithms, outperforming other oversampling techniques across various datasets and clas-
sifiers. Jia et al37. proposed a novel approach, TDMO, which leverages XGBoost and dynamic multi-dimensional 
oversampling to address imbalanced data issues. TDMO effectively filters out noise, evaluates class densities, 
and enhances the minority class, outperforming existing oversampling methods in classification results. Kumari 
et al38. proposed SMOTE-Stacked hybrid model (SmS) for early Polycystic Ovary syndrome (PCOS) diagnosis, 
combining SMOTE and stacking ensemble techniques. This model, utilizing classifiers like LR, SVM, DT, RF, 
NB, and AdaB, demonstrated promising results, where Stack-AdaB exhibited the most noteworthy performance 
on an imbalanced PCOS dataset. Guan et al39. proposed a novel solution to address imbalanced data classifica-
tion challenges by introducing Extended Natural Neighbor (ENaN) without parameters, derived from Natural 
Neighbor (NaN). ENaN enhances the quality of synthetic examples in resampling methods like SMOTE, out-
performing traditional approaches in improving sample distribution according to extensive experiments on 
synthetic and real-world datasets.

Despite many algorithms proposed in the literature to deal with imbalanced data, there are some disadvan-
tages to these algorithms. In this regard,

• Over-sampling techniques increase the size of the dataset and make it challenging to execute learning opera-
tions on the dataset,

• Under-sampling techniques result in the loss of a significant amount of information,
• Duplication of samples during over-sampling results in overfitting on the training dataset,
• Considering the randomness of the under-sampling and over-sampling procedures, the chosen data may not 

accurately reflect the features of the dataset,
• Algorithm-level and ensemble algorithms individually do not result in a steady state performance and are 

sensitive to the imbalances in datasets.

A large amount of data in a dataset may be grouped according to how closely they resemble each other, and 
better outcomes may arise from balancing each group. Since generating new data in over-sampling and sampling 
from the majority class in under-sampling inevitably results in some flaws in the final model, ensemble techniques 
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will be used in this paper for training classifiers based on balanced data. It should be noted that the suggested 
technique differs significantly from the current algorithms, where it offers a novel strategy for over-sampling and 
under-sampling to ensure that the best samples are included in the model. This research study aims to achieve 
the following objectives and contributions:

• A novel framework is proposed to address binary imbalanced learning. This framework involves the simul-
taneous utilization of undersampling and oversampling techniques to tackle the challenges associated with 
data multiplicity after oversampling and information loss during undersampling.

• The clustering method is employed in conjunction with oversampling and undersampling to enhance the 
selection of random samples for sampling and generating synthetic samples. Moreover, boosting and bagging 
techniques are incorporated into the learning process to enhance the overall performance of the model.

• A comprehensive set of experiments is conducted to evaluate and compare the performance of the proposed 
algorithm. This evaluation is carried out through comparisons with eight state-of-the-art algorithms sourced 
from the existing research literature. The reliability of the proposed method is assessed using datasets featur-
ing varying imbalance ratios, and its performance is measured using multiple evaluation metrics.

Accordingly, a hybrid algorithm is proposed in this paper for imbalanced data classification where the target 
class of the dataset is unbalanced. Also, this algorithm tries to preserve the main features of the dataset as much 
as possible with modified over-sampling and under-sampling and makes predictions by applying ensemble 
algorithms on the balanced dataset.

Preliminaries
In this section, a brief explanation of assumptions related to the efficacy of imbalanced data methods, and 
Extreme Gradient Boosting (XGBoost), bagging, and random forest algorithms is provided. These ensemble 
machine-learning algorithms are used in the following sections as the components of the proposed algorithm.

Assumptions
It should be noted that the efficacy of imbalanced data methods relies on several crucial assumptions. Firstly, the 
assumption of minority class importance underscores the recognition that these methods prioritize the minority 
class, acknowledging its significance in capturing under-represented or rare events. Furthermore, the assumption 
regarding the representation of relevant features posits that the selected features for classification are sufficiently 
informative, ensuring the discernment of patterns in both minority and majority classes. The presumption of 
representativeness underscores that minority class instances are not mere outliers but representative of the 
underlying data distribution. Lastly, the assumption of independence emphasizes the expectation that instances 
are independent and identically distributed, acknowledging potential challenges in scenarios such as time-series 
or spatial data where this assumption may not always hold true. It is imperative to bear these assumptions in 
mind when applying imbalanced data methods, as their validity significantly influences the robustness and reli-
ability of the results obtained.

Extreme gradient boosting
Among various tree-based sequential models, Extreme Gradient Boosting (XGBoost) is a prominent gradient-
boosting algorithm noted for its excellent accuracy and speed. In order to prevent over-fitting, XGBoost’s loss 
function for the objective function smooths out the final learned weights by adding an extra regularization term. 
The XGBoost framework is described as  follows40,41.

The sum of the predicted score fk(xi) of all trees may be used to describe the estimated output ŷi of the gradi-
ent boosting tree model based on Eq. (1):

where xi stands for the variables belonging to sample i in the regression tree space, Ŵ is the space of regression 
trees, and K is the number of regression trees. Each leaf node j has a prediction score fk(xi) , also known as a leaf 
weight. The regression value for all samples at leaf node j is the leaf weight ωj , where j ∈ {1, 2, . . . ,T} , and T is the 
number of leaf nodes. The boosting procedure is continued until the reduction in the objective functions becomes 
restricted. In this algorithm, the following regularized objective function is minimized for training the model.
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As a structural scoring function, Eq. (3) evaluates the quality of tree structure and suitability of a given vector 
of leaf scores where a lower number is recommended. Interested readers are referred to Chen and  Guestrin42 for 
more details on the XGBoost method.

Bagging algorithm
Bagging is one of the machine-learning techniques that combines predictors to reduce the variance and increase 
the accuracy of the final model. The training dataset is used to create several new datasets in the bagging algo-
rithm, which also utilizes the bootstrapping process. This dataset is predicted by various predictors, and the final 
prediction is determined by voting among the predictors. In classification, the bagging approach employs voting 
among predictors, whereas in regression, it uses averaging among  predictors43.

Random forest algorithm
Random Forest is an ensemble algorithm that combines several decision trees to increase prediction accuracy. 
In this algorithm, sampling with replacement is used to set up separate trees with the same distribution, and 
then random selection is used to choose the features for each tree. Using the created trees, the final prediction 
is determined through voting. The random forest consists of four main steps as follows:

1. Draw random samples from the original dataset.
2. Construct an individual decision tree for each of the samples.
3. Obtain the prediction result of each of the decision trees.
4. Aggregate the results and determine the final output of the algorithm based on the majority voting for clas-

sification.

This algorithm can be used for both classification (categorical variables) and regression (continuous vari-
ables) and contains several parameters where among them, the number of decision trees in the random forest 
(n estimators) and the maximum number of splits that can be performed in decision trees (max-depth) are two 
essential parameters. The accuracy of each tree in the random forest and their interrelationships determine the 
error rate of a random forest. For further information on the random forest algorithm, interested readers are 
referred to Breiman 44.

The proposed algorithm
In this section, a hybrid algorithm based on both unsupervised and supervised learning algorithms is proposed 
for the classification of imbalanced datasets. In this regard, a novel algorithm entitled cluster-based SMOTE 
both-sampling (CSBBoost) is proposed for classifying imbalanced data and resolving the issues with data balanc-
ing techniques. As mentioned previously, under-sampling results in the loss of much information, while over-
sampling leads to a redundant increase in the size of the dataset. To address these issues, the over-sampling and 
under-sampling algorithms are utilized together. After balancing, the number of observations in the balanced 
dataset would be equal to that of the original dataset. Generating duplicated observations using minority class 
data leads to overfitting the training set and reducing the prediction accuracy on the test set. Hence, synthetic 
data is generated using the SMOTE algorithm to overcome this issue. In addition, similar observations can be 
grouped into some clusters based on the diversity of the data and the similarities between the observations. 
Considering the similarities between observations in each cluster, applying balancing techniques on each cluster 
would provide better results than applying them to all observations in the dataset. In addition, this clustering 
results in the selection of samples from the training set for both under-sampling and over-sampling that maintain 
the main characteristics of the dataset. The process of the proposed algorithm is represented in Fig. 1.

Based on this figure, in the first step, the data is split into two subsets, including training and test sets. Then, 
in the training dataset, the majority and minority classes are separated. The K-means technique is used to cluster 
the observations of the majority class where the appropriate K for this technique is determined by the Silhouette 
algorithm. K-means is one of the most extensively used clustering algorithms, which divides n data points into 
K clusters to group together comparable data points, and its effectiveness varies depending on K . It is an itera-
tive algorithm that allocates each data point to the cluster with the closest centroid, and the centroid of these 
clusters is then calculated again by taking their average. One of the most effective K-generating algorithms is the 
Silhouette coefficient which integrates both the cohesion and resolution aspects. The Silhouette for one observa-
tion i is defined based on Eq. (4):

where a(i) is the average distance between observation i and other observations in the same cluster, and b(i) 
is the smallest average distance of observation i to the observations of other clusters. If the Silhouette value is 
close to 1, it suggests that the observation and the cluster have a close  association45–48. In addition, the weight 
parameter wi shown in Eq. (5), is generated for each cluster once the data have been clustered, according to the 
number of observations in each cluster.
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where Oi is the number of observations in cluster i of the majority class, and Nma is the total number of observa-
tions of the majority class. Then, the number of observations si for sampling from each cluster i in the under-
sampling algorithm is determined according to Eq. (6).

where wi is the weight parameter generated for cluster i  in the majority class, and N  is the total number of 
observations of the training set.

Similar to the dataset of the majority class, the K-means algorithm is used to cluster the training dataset of 
the minority class, and the Silhouette algorithm is used to find the best value of parameter K . Then, the weight 
wi′ and quantity of samples si′ for over-sampling are specified according to Eqs. (7) and (8), respectively.

where Oi′ is the number of observations in cluster i of the minority class, Nmi is the total number of observa-
tions of the minority class, and wi′ is the weight parameter generated for cluster i in the minority class.

The SMOTE algorithm is then used to generate new observations. SMOTE is an over-sampling technique in 
which, instead of duplication, the observations of the minority class are over-sampled by generating synthetic 
observations. Each minority class sample is over-sampled by generating synthetic samples along line segments 
connecting any or all of the K  minority class nearest neighbors. After that, observations of the minority and 
majority classes are merged. Finally, the random forest and Extreme Gradient Boosting (XGBoost), as ensem-
ble learning algorithms, are used for classification due to their better performance and lower execution time. 
However, it should be noted that other boosting and bagging algorithms can also be applied as an ensemble 
model in the final step of the proposed CSBBoost algorithm. The pseudo-code of the proposed hybrid ensemble 
algorithm is presented in Algorithm 1.

(5)wi =
Oi

Nma

(6)si = wi ∗
N

2

(7)wi′ =
Oi′

Nmi

(8)si′ =

(
wi′ ∗

N

2

)
− Oi′

Figure 1.  The process of the proposed CSBBoost algorithm.
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Input:  The primary dataset with  observations and  variables 

Ratio of test data 

Number of neighbors utilized in SMOTE 

Boosting classifier 

Output: The cluster hybrid ensemble algorithm 

1: Split training and test data according to the specified ratio 

2: Split the majority class from the minority class 

Majority Class 
3: Obtain the optimal number of clusters for K-means algorithm, , using Silhouette algorithm 

4: Cluster majority class into  groups using K-means algorithm 

5: For  = 1 to :

∗
       Take a sample of size  from the cluster 

6: Merge  clusters samples 

Minority Class 
7: Obtain the optimal number of clusters for K-means algorithm, , using Silhouette algorithm 

8: Cluster minority class into  groups using K-means algorithm 

9: For  = 1 to : 

∗
Generate synthetic observations of size  from observations in cluster 

10: Merge  clusters samples 

11: Merge the majority and minority classes 

12: Create the model using the ensemble algorithm.

Algorithm 1: The proposed CSBBoost algorithm

Performance evaluation
In this section, the performance of the proposed algorithm is evaluated and compared to several competing 
algorithms based on a number of datasets. In this regard, the performance measures and the results are presented 
in the following subsections.

Performance measures
The most frequently used metric to determine how much a dataset is skewed is the imbalance ratio (IR) that is 
represented in Eq. (9):

It should be noted that, in the case of imbalanced datasets, the cost of the misclassification of the minority 
class is much higher than that of the majority class in various applications, such as healthcare systems. Therefore, 
those performance measures would be desirable that are sensitive to both the minority and majority classes. In 
this regard, the F1-score is used to evaluate the performance of the proposed algorithm. F1-score is the harmonic 
mean of precision and recall, as follows:

where the precision and recall measurements are given in the following equations:

Moreover, TP (true positive), FN (false negative), FP (false positive), and TN (true negative) are defined in 
the confusion matrix represented in Table 1.

(9)IR =
Total number of majority class samples

Total number of minority class samples

(10)F1 =
2× Precision× Recall

recision+ Recall

(11)Precision =
TP

TP + FP

(12)Recall =
TP

TP + FN
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On the other hand, the Receiver Operating Characteristic (ROC) curve is a helpful tool for comparing clas-
sifiers. In this regard, the false positive rate vs. the true positive rate is plotted for various candidate threshold 
values between 0.0 and 1.0. The entire two-dimensional region underneath the complete ROC curve is measured 
by the Area Under the ROC Curve (AUC). Considering AUC as a reliable classification performance statistic, 
the performance of different algorithms could be compared using AUC.

Results and discussion
In this section, the performance and effectiveness of the proposed CSBBoost algorithm are evaluated and com-
pared to the performance of 8 hybrid data-balancing algorithms. In this regard, 20  datasets46 are utilized to com-
pare the performance of the proposed algorithm to the competing algorithms, including  AdaBoost29,  RUSBoost30, 
 RBBoost31,  RHSBoost33,  SMOTEBoost28,  CUSBoost32,  MEBoost34, and  WHMBoost35. The details of the datasets 
used in the experiments are summarized in Table 2. By randomly splitting the entire dataset, 25% is used to assess 
the model’s performance, while 75% is used for training.

The results of the proposed algorithm are illustrated and compared to the competing algorithms in Tables 3 
and 4 in terms of F1 and AUC, respectively. Based on the results in Table 3, the proposed CSBBoost algorithm 
provides the best performance compared to other algorithms in almost all datasets. In addition, based on the 
results in Table 3, the proposed algorithm performs better than the competing algorithms in most cases in terms 
of AUC. However, in some cases, WHMBoost performs slightly better than the proposed CSBBoost.

The performance of the algorithms is ranked based on how well they performed on each dataset, and then, the 
median of the ranks is used to compare their performances, considering the resistance of the median to outliers. 
Therefore, the proposed algorithm is compared to other algorithms based on the median of the ranks, where 
the ranks are sorted in ascending order, and the results are illustrated in Fig. 2. The average of F1 and AUC for 
various hybrid algorithms is shown in Fig. 3. This graph indicates that the proposed algorithm performs better 
than other algorithms.

Altogether, considering the results in Tables 3 and 4 and Figs. 2 and 3, the proposed CSBBoost algorithm 
is much better than the competing algorithms in terms of both F1 and AUC performance measures and under 

Table 1.  The confusion matrix.

Predicted class

Positive Negative

Actual class

 Positive True positive (TP) False negative (FN)

 Negative False positive (FP) True negative (TN)

Table 2.  Summary of dataset characteristics and imbalance ratios.

Dataset label Dataset name Number of variables Number of observations Imbalance ratio

D1 Pima 8 768 1.87

D2 Yeast1 8 1484 2.46

D3 Vehicle2 18 846 2.88

D4 Vehicle1 18 846 2.90

D5 Vehicle3 18 846 2.99

D6 Vehicle0 18 846 3.25

D7 Yeast3 8 1484 8.10

D8 Page-blocks0 10 5472 8.79

D9 Abalone9–18 8 731 16.40

D10 Yeast4 8 1484 28.10

D11 Yeast-1–2-8-9_vs_7 8 947 30.57

D12 Yeast5 8 1484 32.73

D13 Yeast6 8 1484 41.40

D14 Abalone19 8 4174 129.44

D15 Yeast-0–2-5-6_vs_3-7–8–9 8 1004 9.14

D16 Car-good 6 1728 24.04

D17 Winequality-red-4 11 1599 29.17

D18 Abalone-17_vs_7-8–9–10 8 2338 39.31

D19 Winequality-white-3_vs_7 11 900 44.00

D20 Abalone-19_vs_10-11–12–13 8 1622 49.69
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most of the datasets. However, in some cases, WHMBoost provides a slightly better AUC than the proposed 
CSBBoost algorithm.

Table 3.  Comparative analysis of F1 scores: proposed algorithm versus competing algorithms. Significant 
values are in [bold].

Dataset label AdaBoost RUSBoost RBBoost RHSBoost SMOTEBoost CUSBoost MEBoost WHMBoost CSBBoost

D1 0.3346 0.5543 0.3976 0.5093 0.5498 0.5543 0.2478 0.5409 0.7712

D2 0.5644 0.6004 0.5227 0 0.5942 0.5635 0.4264 0.5973 0.7083

D3 0.6425 0.7776 0.7049 0.5526 0.6605 0.7144 0.6242 0.8058 0.9734

D4 0.1345 0.5790 0.4917 0.1840 0.5621 0.5593 0.0371 0.5841 0.7000

D5 0.2145 0.5547 0.4551 0.2438 0.5368 0.5491 0.1237 0.5661 0.6041

D6 0.8566 0.7844 0.8139 0.6611 0.7694 0.7555 0.8555 0.8664 0.9473

D7 0.7029 0.6081 0.6131 0.2583 0.6217 0.6933 0.5719 0.7072 0.8636

D8 0.7450 0.5788 0.6274 0.5790 0.5471 0.7430 0.7314 0.7487 0.9142

D9 0.1883 0.2392 0.2315 0.1859 0.2395 0.2950 0.1917 0.3294 0.5833

D10 0.3139 0.2179 0.3074 0.0889 0.3384 0.4149 0.0590 0.3657 0.6153

D11 0.1620 0.1029 0.1140 0 0.1159 0.2513 0.1010 0.1326 0.6153

D12 0.4417 0.5320 0.6050 0.4475 0.5256 0.5879 0.2168 0.6158 0.8695

D13 0.0824 0.1780 0.3438 0.1693 0.3362 0.4645 0.0138 0.3618 0.8571

D14 0.9959 0.8294 0.8397 0.6533 0.8548 0.9946 0.9958 0.9898 0.4000

D15 0.4376 0.4464 0.3980 0.2014 0.4963 0.5215 0.4442 0.5310 0.8275

D16 0 0.2249 0.2175 0.1507 0.1631 0 0 0.3690 0.5952

D17 0.0495 0.1070 0.1035 0.1590 0.1212 0.0939 0.0314 0.1524 0.6060

D18 0.2347 0.1620 0.1686 0.0981 0.2047 0.3231 0.1672 0.2911 0.6600

D19 0.3069 0.0857 0.1390 0.1326 0.0953 0.2617 0.3838 0.2322 0.6600

D20 0.0176 0.0594 0.0821 0.0459 0.0543 0.0247 0.0124 0.1081 0.6896

Table 4.  Comparative analysis of AUC: proposed algorithm versus competing algorithms. Significant values 
are in [bold].

Dataset label AdaBoost RUSBoost RBBoost RHSBoost SMOTEBoost CUSBoost MEBoost WHMBoost CSBBoost

D1 0.6334 0.6605 0.5966 0.6330 0.6640 0.6508 0.6564 0.6717 0.8052

D2 0.7571 0.7754 0.7582 0.4933 0.7698 0.7730 0.7694 0.7976 0.8256

D3 0.8302 0.9283 0.9378 0.7615 0.8760 0.9062 0.9215 0.9399 0.9846

D4 0.7472 0.7863 0.7663 0.4915 0.7633 0.7703 0.7960 0.8215 0.8320

D5 0.7085 0.7762 0.7189 0.5360 0.7534 0.7665 0.7592 0.7728 0.7900

D6 0.9159 0.9586 0.9706 0.8775 0.9397 0.9493 0.9713 0.9763 0.9770

D7 0.8744 0.9298 0.9425 0.6649 0.9200 0.9176 0.9204 0.9557 0.8996

D8 0.8782 0.9512 0.9562 0.9313 0.9356 0.9444 0.9489 0.9654 0.9330

D9 0.6095 0.7848 0.7906 0.6670 0.7692 0.7004 0.6631 0.8485 0.8659

D10 0.7305 0.8700 0.8636 0.6153 0.8401 0.7962 0.8042 0.8801 0.8889

D11 0.6028 0.6980 0.6735 0.4929 0.6460 0.6664 0.6647 0.7427 0.7454

D12 0.8452 0.9836 0.9692 0.9750 0.9323 0.9460 0.9593 0.9847 0.9517

D13 0.8518 0.9718 0.8919 0.8446 0.8794 0.8676 0.8858 0.9210 0.9077

D14 0.6759 0.7544 0.7469 0.6712 0.7075 0.7258 0.7227 0.7737 0.6200

D15 0.7511 0.7999 0.7773 0.6050 0.7794 0.7877 0.8076 0.8281 0.8803

D16 0.7601 0.8704 0.8514 0.7806 0.7770 0.8501 0.8735 0.9336 0.9706

D17 0.5873 0.6680 0.5527 0.6595 0.5981 0.5859 0.6149 0.7252 0.7259

D18 0.7311 0.8661 0.7984 0.7702 0.7613 0.7728 0.8093 0.8782 0.7548

D19 0.6039 0.8021 0.7290 0.6621 0.7281 0.6843 0.6715 0.8035 0.9955

D20 0.5440 0.6103 0.5985 0.5693 0.5712 0.5849 0.5878 0.6746 0.8086
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A case study
Cardiovascular diseases (CVDs) are a set of disorders that affect the heart and blood vessels, including coronary 
heart disease, cerebrovascular disease, congenital heart disease, rheumatic heart disease, and so on. Based on 
the World Health Organization (WHO) reports, 17.7 million people died due to CVDs in 2019, where 85% of 
these deaths were due to stroke and heart  attack49. Some essential factors, including smoking, age, high blood 
pressure, and obesity, effectively identify cardiovascular patients. In addition, the Behavioral Risk Factor Surveil-
lance System (BRFSS) is a health-related telephone survey system developed in 1984 for collecting health-related 
risk behaviors, chronic health conditions, and the use of preventative services. The BRFSS data integrated with 
other factors can be used for early diagnosis of  CVDs50. However, the main problem in predicting CVDs is the 
inequality of the number of patients and healthy people where the related dataset is unbalanced, and the clas-
sifications are almost always biased towards the majority class.

In this section, the proposed CSBBoost algorithm is applied to the BRFSS dataset to demonstrate the appli-
cability of the proposed algorithm. The BRFSS is the largest continuously conducted health survey system in 
the world, collecting data on American health status through yearly telephone surveys. It conducts more than 
400,000 adult interviews throughout all 50 states annually. The details of the dataset and results of implementing 
the proposed algorithm on this dataset are provided in the following subsections.

Dataset description
In this paper, the 2020 BRFSS dataset provided by Kaggle is used to demonstrate the applicability of the pro-
posed algorithm. The original dataset contains 401,958 records and 279  variables51, where the majority of the 
variables inquire respondents about their health. However, the number of variables has been reduced to 18 by 
eliminating the less useful  variables52. The variables in the dataset and their details are represented in Table 5. 
Then, a random sample of 1,000 observations is selected, and the proposed CSBBoost algorithm is applied to 
this dataset.

Figure 2.  The ascending median rank of the proposed CSBBoost algorithm compared to other algorithms for 
(a) AUC, and (b) F1.

Figure 3.  The Average of (a) AUC, and (b) F1 for proposed CSBBoost algorithm compared to other algorithms.
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Table 5.  Comprehensive overview of BRFSS dataset variables.

Variable Variable type Values/ranges Description

HeartDisease Categorical
No The respondents who previously acknowledged having coronary heart disease (CHD) or a myocar-

dial infarction (MI)Yes

Body mass index (BMI) Numerical (12,94.8) A measurement of body fat based on height and weight

Smoking Categorical
No

In your lifetime, have you smoked at least 100 cigarettes?
Yes

AlcoholDrinking Categorical
No Are you heavy drinkers (men and women who consume more than 14 and 7 drinks, respectively, 

per week)?Yes

Stroke Categorical
No

Have you ever encountered a stroke?
Yes

PhysicalHealth Numerical (0–30) How many days during the course of the last 30 days were you physically unwell, including any 
physical injuries or illnesses?

MentalHealth Numerical (0–30) How many days out of the last 30 did you feel mentally unwell?

DiffWalking Categorical
No

Do you have significant trouble climbing stairs or walking?
Yes

Sex Categorical
Female

Gender type
Male

AgeCategory Categorical

18–24

14 categories are used to categorize various ages

25–29

30–34

35–39

40–44

45–49

50–54

55–59

60–64

65–69

70–74

75–79

80 or older

Race Categorical

American-Indian/Alaskan-Native

Racial/ethnicity

Asian

Black

Hispanic

White

Other

Diabetic Categorical

No

Have you ever encountered a diabetes?
No, borderline diabetes

Yes

Yes (during pregnancy)

PhysicalActivity Categorical
No Adults who stated they have engaged in physical activity or exercise during the previous 30 days in 

addition to their usual jobsYes

GenHealth Categorical

Poor

General state of health

Fair

Good

Very good

Excellent

SleepTime Numerical (1–24) How long do you typically sleep each day?

Asthma Categorical
No Have you ever encountered an

Yes asthma?

KidneyDisease Categorical
No

Did you ever had kidney disease, excluding kidney stones, bladder infections, or incontinence?
Yes

SkinCancer Categorical
No

Have you ever encountered a skin cancer?
Yes
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The primary issue with this dataset is that the number of healthy people is higher than that of patients, which 
is an imbalance of the patient class. Ignoring this issue may result in inaccurate predictions. The distribution of 
the values of the Heart Disease variable in the training set is shown in Fig. 4. This figure illustrates that the Heart 
Disease variable is highly unbalanced.

Results
The dataset is partitioned into a training set and a test set at random, where the training set is used to build 
the proposed model, and then, the trained model is applied to the test set. The training set comprises 75% of 
the total data, while the test set comprises 25%. In the following stage, the majority class is clustered using the 
K-Means algorithm, and the appropriate value of K is determined using the Silhouettes technique. The Average 
Silhouette width based on the number of clusters for the majority class is shown in Fig. 5a, and the appropriate 
number of clusters is three.

According to Eq. (5), the weight of each cluster is determined, and Eq. (6) shows the number of samples to 
be taken from each cluster. Table 6 displays the weight of the clusters and the number of samples drawn from 
each cluster. Then, all clusters of the majority class are merged.

Figure 4.  The number of patients and healthy people in training set.

Figure 5.  Average Silhouette width based on number of clusters for (a) majority class, (b) minority class.

Table 6.  Weight of clusters and the number of samples drawn from each cluster.

Class

Weight of each cluster 
 (wi)

The number of 
samples taken 
from each 
cluster  (si)

w1 w2 w3 s1 s2 s3

Majority 0.128 0.791 0.080 48 296 30
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The minority class is processed in the next phase. The minority class is clustered using the K-Means algo-
rithm once the proper value of K  has been determined using the Silhouettes technique. Figure 5b illustrates 
the average Silhouette width for the minority class based on the number of clusters where two clusters are the 
appropriate number for clustering. According to Eq. (7), the weight of each cluster is calculated. Equation (8) 
estimates the number of samples that must be generated. Then, the SMOTE technique is used to generate syn-
thetic samples where the number of nearest neighbours is considered 5. However, the value of this parameter 
might vary depending on the size of each dataset. Table 7 displays the weight of each cluster and the number of 
samples generated.

In the next step, all clusters of the minority class are merged. Finally, the minority and majority sets are 
merged to form a balanced dataset. The distribution of the values of the Heart Patient variable before and after 
balancing is shown in Table 8.

The performance measures for the proposed algorithm under various ensemble prediction algorithms are 
shown in Table 9 (the formulas of these performance measures are given in Supplementary Appendix A). This 
table also includes the outcomes of using various ensemble prediction techniques on imbalanced data. The 
results in Table 9 illustrate that the proposed balancing technique performs better than the imbalanced dataset at 
detecting patients based on different performance measures. In addition, considering the F1 metric as the most 
important measure for identifying patients in the healthcare datasets, the proposed algorithm provides much 
better performance compared to the original imbalanced data.

The ROC curve of the proposed CSBBoost algorithm and Gradient Boosting, Random Forest, and Bagging 
tree ensemble algorithms under imbalanced data is shown in Fig. 6. According to the results, it can be concluded 
that the proposed CSBBoost algorithm outperforms the other algorithms and improves the performance of the 
algorithms under imbalanced data.

In addition, Fig. 7 illustrates the improvements in the prediction performance of the proposed algorithm in 
terms of F1 and AUC measures for each ensemble algorithm. The results in this figure demonstrate the higher 
accuracy and efficiency of the proposed algorithm in handling imbalanced data and identifying the patients 
compared to the ensemble algorithms under imbalanced data.

Finally, Fig. 8 illustrates the importance of variables in the ensemble predicting techniques, including gradi-
ent boosting, random forest, and bagging tree. The numbers in front of some variables in Fig. 8 indicate the 
corresponding value/range of these variables. The order of these numbers is according to their order in Table 5.

Table 7.  Weight of clusters and the number of samples generated in each cluster.

Class

Weight 
of each 
cluster 
(w′i)

The 
number 
of 
samples 
generated 
in each 
cluster 
(s′i)

w′1 w′2 s′1 s′2
Minority 0.8 0.2 256 64

Table 8.  The distribution of the values of the Heart Disease variable, before and after data balancing in 
training set.

Training set balance

Number (Percentage) of 
observations in Heart Disease 
variable

No Yes

Imbalance training data 695 (92.66%) 55 (7.33%)

Balanced training data 374 (49.93%) 375 (50.06%)

Table 9.  Performance comparison: CSBBoost algorithm versus original imbalanced data.

Algorithm Accuracy Kappa Precision F1 Specificity Prevalence

CSBBoost (Gradient Boosting) 0.912 0.3073 0.30 0.3529 0.9406 0.056

CSBBoost (Random forest) 0.828 0.1850 0.40 0.2712 0.9431 0.156

CSBBoost (Bagging Tree) 0.792 0.0871 0.30 0.1875 0.9320 0.176

Original Data + Gradient Boosting 0.920 0.0775 0.05 0.0909 0.9233 0.008

Original Data + Random Forest 0.920 0.0775 0.05 0.0909 0.9233 0.008

Original Data + Bagging Tree 0.916 0.0675 0.05 0.0869 0.9230 0.012
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The results in this figure demonstrate that three variables sleep time, BMI index, and mental health, are 
considerably effective in all three ensemble prediction models. Accordingly, these variables are significantly 
important in detecting cardiovascular patients.

Conclusions
In various real-world datasets, the distribution of the class label of observations is unbalanced, and this situation 
leads to inaccurate predictions of the desired class and provides misleading results. Although different approaches 
have been proposed in the literature for data balancing, some issues exist with these approaches. Accordingly, in 
this paper, a cluster-based SMOTE both-sampling ensemble algorithm (CSBBoost) is proposed to eliminate the 
data redundancy after over-sampling, information loss after under-sampling, and improve the random selection 
of observations. In the proposed algorithm, the dataset is divided into the samples of the majority and minority 
classes, and then, the number of observations of each group is adjusted and changed to the required quantity 
in order to prevent redundancy. This ensures that after merging, the number of observations in the balanced 
dataset is equal to the ones in the original dataset. In addition, the SMOTE technique is utilized to avoid gen-
erating duplicate data by over-sampling. On the other hand, considering the randomness of samples obtained 
from the under-sampling and over-sampling, a clustering approach is first applied to observations, and then, the 
samples are obtained from each cluster to retain the characteristics of the dataset as much as possible. Finally, 
various ensemble algorithms, including random forest, XGBoost, and bagging, were applied for the prediction 
of obtained balanced dataset. The performance of the proposed CSBBoost algorithm was evaluated based on 20 
imbalanced datasets and was compared with various competing algorithms, including AdaBoost, RUSBoost, 
RBBoost, RHSBoost, SMOTEBoost, CUSBoost, MEBoost, and WHMBoost in terms of AUC and F1. The results 
indicated the superiority of the proposed algorithm, where it provided much better performance than other 

Figure 6.  ROC curve for algorithms performed on test set.

Figure 7.  Comparing the performance of ensemble techniques on balanced and imbalanced data using (a) F1 
and (b) AUC.
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algorithms in most cases. Finally, the performance and applicability of the proposed algorithm are illustrated 
through a real-world imbalanced dataset of cardiovascular heart diseases.

Some limitations of this research include the potential challenges faced by imbalanced data methods in achiev-
ing generalization across diverse domains, given variations in underlying data distributions. These methods may 
exhibit sensitivity to changes in data distribution over time, resulting in suboptimal adaptation and decreased 
performance. Additionally, the impact of noisy data, characterized by mislabeled or ambiguous instances, can 
significantly affect the effectiveness of imbalanced data methods, with certain techniques being more vulner-
able to noise than others. Furthermore, the assumption of well-separated classes in the feature space by some 
methods may compromise performance in scenarios where class overlap occurs. Lastly, the performance of 
certain methods is highly contingent on the selection of hyperparameters, posing a complex tuning task that 
may demand substantial computational resources.

Imbalanced data methods in binary classification offer versatile applications across diverse domains. Their 
significance is notably pronounced in fraud detection, addressing the challenge of identifying rare instances of 
fraudulent activities amid a majority of legitimate transactions. In medical diagnosis, these techniques prove 
invaluable by improving the detection of rare diseases, contributing to more accurate diagnoses. Furthermore, 
their relevance extends to sentiment analysis, where the infrequent occurrence of specific sentiments is effectively 
addressed. This adaptability positions imbalanced data methods as valuable tools in enhancing precision across 
various critical tasks.

To enhance the proposed algorithm, it would be beneficial to delve into the integration of alternative oversam-
pling, undersampling, and clustering methods. Improved clustering could yield superior sampling and sample 
generation outcomes. Furthermore, integrating cost-sensitive learning techniques into the framework, which 
allocates distinct misclassification costs to different classes, presents a promising avenue for future research. As 
datasets scale in size, the adaptability of frameworks becomes challenging; therefore, optimizing the process to 
achieve reduced processing times emerges as another compelling direction for future expansion.

Data availability
The datasets generated during and/or analyzed during the current study are available from the corresponding 
author on reasonable request.
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