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The analysis on groundwater 
storage variations from GRACE/
GRACE‑FO in recent 20 years 
driven by influencing factors 
and prediction in Shandong 
Province, China
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Jinjie Zhu 5, Zhiwei Wang 1*, Jingxue Bi 1, Chengcheng Zhu 1, Yulong Zhong 6 & Shanbo Lu 1

Monitoring and predicting the regional groundwater storage (GWS) fluctuation is an essential support 
for effectively managing water resources. Therefore, taking Shandong Province as an example, the 
data from Gravity Recovery and Climate Experiment (GRACE) and GRACE Follow‑On (GRACE‑FO) 
is used to invert GWS fluctuation from January 2003 to December 2022 together with Watergap 
Global Hydrological Model (WGHM), in‑situ groundwater volume and level data. The spatio‑temporal 
characteristics are decomposed using Independent Components Analysis (ICA), and the impact 
factors, such as precipitation and human activities, which are also analyzed. To predict the short‑
time changes of GWS, the Support Vector Machines (SVM) is adopted together with three commonly 
used methods Long Short‑Term Memory (LSTM), Singular Spectrum Analysis (SSA), Auto‑Regressive 
Moving Average Model (ARMA), as the comparison. The results show that: (1) The loss intensity of 
western GWS is significantly greater than those in coastal areas. From 2003 to 2006, GWS increased 
sharply; during 2007 to 2014, there exists a loss rate − 5.80 ± 2.28 mm/a of GWS; the linear trend of 
GWS change is − 5.39 ± 3.65 mm/a from 2015 to 2022, may be mainly due to the effect of South‑to‑
North Water Diversion Project. The correlation coefficient between GRACE and WGHM is 0.67, which 
is consistent with in‑situ groundwater volume and level. (2) The GWS has higher positive correlation 
with monthly Global Precipitation Climatology Project (GPCP) considering time delay after moving 
average, which has the similar energy spectrum depending on Continuous Wavelet Transform (CWT) 
method. In addition, the influencing facotrs on annual GWS fluctuation are analyzed, the correlation 
coefficient between GWS and in‑situ data including the consumption of groundwater mining, farmland 
irrigation is 0.80, 0.71, respectively. (3) For the GWS prediction, SVM method is adopted to analyze, 
three training samples with 180, 204 and 228 months are established with the goodness‑of‑fit all 
higher than 0.97. The correlation coefficients are 0.56, 0.75, 0.68; RMSE is 5.26, 4.42, 5.65 mm; NSE is 
0.28, 0.43, 0.36, respectively. The performance of SVM model is better than the other methods for the 
short‑term prediction.
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Groundwater Storage (GWS) resources are an essential part of global water cycle system and one of the most 
critical issues concerning to the country’s economic and social  development1–3. The traditional methods of moni-
toring GWS change include pressure gauge and ground network measurement. The groundwater model can also 
estimate regional GWS change, but it has excellent limitations for model description and data acquisition. The 
launch of GRACE could provide an essential opportunity for monitoring global and regional GWS  change4,5.

At present, it has been successfully applied in many regions of China, such as North China Plain, Huang-Huai-
Hai Plain, Songhua River Basin Northwestern China, Southwest China, etc. These studies mainly focus on the 
overall changes of GWS and the consistency analysis on trends with precipitation. However, the detail correlation 
characteristic on the time series of rainfall and GWS change from GRACE needs to further study. Furthermore, 
the impact of human activities on GWS change is not considered in most studies, and the measured shallow 
groundwater level data is used to verify for GRACE data. Still, the in-situ data reflecting the regional GWS change 
is lacking. Shandong Province is considered as a significant agricultural province in China, which locates in the 
lower reaches of the Yellow River, and plays a vital role in the eastern route for South-to-North Water Diver-
sion Project. Therefore, the GWS change driven by climate change and human activities in Shandong Province 
is complex. Monitoring the GWS change in Shandong province over the recent 20 years, and investigating the 
causes are of great significance to the management and sustainable development of regional water resources.

Additionally, accurately predicting the GWS change can provide an important reference for water resources 
planning and management. However, the instability and mutability for the time series of GWS changes, as well 
as the small-sample characteristics of GRACE data, which can bring some difficulties to accurately  prediction6. 
The prediction of time series is one of the leading research topics in artificial  intelligence7–10. How to establish 
a training model depending on small samples for GRACE data to achieve higher-precision prediction is an 
important content in the entire water resources field. There are standard methods on predicting for the time 
series, such as least squares fitting, SSA, ARMA, neural  network11–14. Statistical learning is a machine learning 
theory for small samples, aiming to control the generalization ability by managing the complexity of learning 
 machine15–18. The SVM method is developed under the theory of Vapnik–Chervonenkis (VC) Dimension and 
Structural Risk Minimization. This method can solve practical problems such as small samples, over-learning, 
nonlinear, high-dimensional, etc.

GRACE data combined with the Global Land Data Assimilation System (GLDAS) hydrological model are 
used to invert GWS changes. Most of the domestic research focuses on the analysis of spatio-temporal evolu-
tion characteristics of typical  regions19–23, such as North China, Tianshan Mountains, Liaohe River Basin, etc., 
while the long-term series of GWS changes in Shandong Province and its prediction research is relatively scarce. 
Therefore, the changes of GWS in Shandong Province in recent 20 years is focused on this paper. Piecewise 
linear fitting and continuous wavelet transform (CWT) methods are adopted to analyze the detailed character-
istics. Multi-type data are introduced, such as Watergap Global Hydrological Model (WGHM) model, GPCP 
precipitation model, measured groundwater exploitation and groundwater level data. The inversion results are 
comprehensively verified, and the influence of precipitation and human factors is deeply analyzed. The SVM 
machine learning algorithm is used to model the long time series of GWS and predict the changes of GWS.

It should be noted that meteorological data such as precipitation, temperature, and evapotranspiration are 
not introduced as constraints in the process of sample training, but only the time series of GWS derived from 
GRACE data with about 330 km spatial resolution are adopted, and artificial intelligence algorithms such as 
SVM method are used for prediction and analysis, the accuracy of which is evaluated, comparing with that from 
LSTM, SSA, ARMA methods.

Data
The study area
Shandong Province is located in the eastern part of China. It has a warm, temperate monsoon climate. Except 
for the east coast of the Jiaodong Peninsula, the continental climate is significant. It is affected by the combined 
effects of atmospheric circulation, monsoon, and topographic conditions, and the interannual variation of pre-
cipitation. The summer precipitation accounts for 60–70% of the annual rainfall. Small and medium-sized rivers 
are densely distributed in the province, including Tuhaimajia River system, Huayuankou River system, Yishusi 
River system, Shandong Peninsula coastal river system and so on. The spatial distribution of annual runoff in 
Shandong Province is  uneven24., and the distribution during the year is also uneven. The runoff in flood season, 
especially in July and August, accounts for about 80% of the annual natural runoff. The study area of Shandong 
Province is shown in Fig. 1.

GRACE data
The spherical harmonic product from GRACE and GRACE-FO with Level-2 RL06.1 version is used in this paper, 
provided by the Center for Space Research (CSR) of the University of Texas in the United States from January 
2003 to December 2022. The data product after decorrelation and denoising kernel 3 (DDK3) filtering is adopted 
to filter the solid noise for extracting the terrestrial water storage (TWS) change. The first-order data of GSM 
should be added by the results from the TN13  file25.  C20 and  C30 value is substituted with corresponding  C20 and 
 C30 in the TN14 file from  CSR26,27. The missing data in gap period of GRACE and GRACE-FO is compensated 
by TWS changes released by Zhong et al.28 in the Qinghai-Tibet Plateau Data Science Center. Missing data for 
individual months could be obtained by SSA interpolation.

GLDAS model
The GLDAS global land surface model version 2.1 with the spatial resolution 0.25° × 0.25° and monthly time 
resolution, established by USA, Goddard Earth Sciences Data and Information Services Center (GES DISC), 
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was adopted with the same time span as the GRACE data. The model reflects the monthly parameters changes 
such as soil water, ice and snow, and vegetation water content on the earth’s surface (https:// mirad or. gsfc. nasa. 
gov/). There are four models, which are NOAH, VIC, CLM and MOSAIC model. Meanwhile, GLDAS grid data 
is spherically expanded to the same order as GRACE data. In addition, the soil water, ice and snow, and vegeta-
tion water content changes in the study area are estimated by removing the average, combined filtering, and 
scale factor recovery methods. To reduce the uncertainty from each hydrological model, the mean values of four 
models for GLDAS are taken here.

Groundwater data from WGHM
The surface water and groundwater data used in this paper are from the Watergap Global Hydrological Model 
(WGHM), which belongs to the monthly global terrestrial hydrological model (2.2c), including surface water 
and  groundwater29. The model has been developed by the Institute of Physical Geography (IPG, University of 
Frankfurt, Germany). Its spatial resolution is 0.5° × 0.5°, one value per month, and the unit is mm. The model 
is constructed by monthly time series parameters, climate, and geographic data. The time span of the WGHM 
data ranges from 2003 to 2019, obtained by applying to the Müller S H professor from IPG,  Germany29. The 
Groundwater hydrological data from WGHM is adopted in this paper to compare with the results from GRACE.

GPCP precipitation model
The monthly GPCP data is derived from the Global Precipitation Climatology Centre (GPCC). The data is 
constructed by integrating the microwave and infrared data from dozens of geostationary satellites and polar-
orbiting satellites, which is corrected by the data from multiple measured stations worldwide to obtain global 
satellite precipitation products. In this paper, the monthly data with the 2020 version is selected from January 
2003 to April 2021, which can be downloaded from the website: https:// www. psl. noaa. gov/ data/ gridd ed/ data. 
gpcc. html. The spatial latitude and longitude coverage is 90° S ~ 90° N, 0° E ~ 360° E, its resolution is 1° × 1°.

In‑situ groundwater volume and level data
In this paper, the inversion results from GRACE data are comprehensively compared with in-situ data of annual 
precipitation, groundwater level, the volume of groundwater resources, groundwater mining, and water consump-
tion for agricultural irrigation in Shandong Province from 2003 to  202130. The data unit of precipitation is mm, 
and the latter two are  km3. The data is from water resources bulletin issued by Shandong Provincial Department 
of Water Resources (http:// wr. shand ong. gov. cn/ zwgk_ 319/ fdzdg knr/ tjsj/).

Gap data compensation for GRACE and GRACE‑FO
Given missing gap data from two generations of gravity satellites, a set of TWS change data based on precipitation 
reconstruction in China (2002.04–2019.12) is adopted in this paper, which has been released by the National 
Qinghai-Tibet Plateau Scientific Data  Center31,32. High-precision China’s gridded gauge-based Daily Precipita-
tion Analysis (CGDPA) precipitation products and CN05.1 temperature products in China are used in the data. 
The data gap between GRACE and GRACE-FO satellites for more than one year could be supplemented by this 
dataset.

Figure 1.  The regional position picture of Shandong Province (It was generated by ArcMap 10.8.2 software 
(https:// www. esri. com/ en- us/ arcgis/ produ cts/ arcgis- pro/ overv iew)).

https://mirador.gsfc.nasa.gov/
https://mirador.gsfc.nasa.gov/
https://www.psl.noaa.gov/data/gridded/data.gpcc.html
https://www.psl.noaa.gov/data/gridded/data.gpcc.html
http://wr.shandong.gov.cn/zwgk_319/fdzdgknr/tjsj/
https://www.esri.com/en-us/arcgis/products/arcgis-pro/overview
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Methods
Inversion method on GWS change
GRACE data are used to invert the TWS change in the study area, the formula of which can be expressed based 
on the change of equivalent water height �hw(ϕ, �).

where (φ, �) are the geocentric colatitude and longitude of ground points;(�Cnm,�Snm) are filtered potential 
coefficient with degree n and order m; Pnm(·) is the normalized associative Legendre functions; kn is the load 
LOVE number with degree n ; ρw ≈ 103kg/m3 is the density of water; ρe ≈ 5.5× 103kg/m3 is the average density 
of solid earth; R is the radius of the Earth.

The TWS change (∆TWS) actually includes the sum of soil water (SMS), ice and snow content (SnWS), surface 
water storage (SWS) represented by rivers, lakes and reservoirs, the vegetation water content (CWS), and GWS. 
It can be expressed by the following formula:

The �TWS could be obtained from GRACE data. Because the GLDAS model is widely used to estimate the 
SnWS and SWS4–6. Therefore, the GLDAS with 2.1 version hydrological model of the same period can be adopted 
to obtain �SnWS , �SMS , �CWS . WGHM model is used to obtain �SWS . ΔGWS, the change of GWS, can be 
estimated from the formula �GWS = �TWS −�SnWS −�SWS −�CWS −�SMS.

SVM method
Let the given nonlinear training set sample be S=

{(

xi , yi
)

, i = 1, 2, . . . , n
}

 , xi ∈ Sn . Find a nonlinear function 
ϕ(·) and construct a linear optimal classification hyperplane f (x) = wϕ(·)+ b , where the vector w ∈ Sn , b ∈ S1 , 
f (x) is the output value of model. In order to solve the regression fitting problem using SVM, the specific problem 
can be described as an error function model :

On the basis of classification, the error function is introduced to find the absolute maximum ε of the sum 
of the model output value and the real output value. The quadratic error function is replaced by the insensitive 
error function Eε , and the error model can be described as:

where, C is the penalty coefficient; Eε is an insensitive loss function.

On this basis, two slack variables ξ , ξ∗ are introduced, then SVM optimization problem can be written as:

According to the Karush-Kuhn-Tucher (KKT) condition, the vector product of the Lagrange multiplier and 
constraint condition at the optimal point is 0. Then, it can be solved, parameter b is:

The prediction function is:

The SVM network structure method is used in this paper. The structure diagram is shown in Fig. 2, 
xi(0 < i < n) is the input vector, K

(

x, x′
)

 is the vector mapped from the low-dimensional space to the high-
dimensional space by the kernel function, ai ∼ a∗i  is the weight of network. f (x) is the output value of the SVM 
network.

Based on the basic principle of SVM, the time series (ti , yi), i = 1, 2, . . . , 240 of GWS change from GRACE 
is analyzed in this paper. The prediction accuracy is compared with that from LSTM, SSA and ARMA methods. 
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Taking n consecutive data of GWS change as training samples, the optimal model is established through mul-
tiple training and learning, GWS change with short-term, medium-term, long-term in the n + 12, n + 36 and 
n + 60 months is predicted, respectively. The prediction process is shown in Fig. 3.

Taking the time series of GWS change derived from GRACE as an example, the short-medium-long-term 
training of prediction was carried out with different samples of 228, 204 and 180 months, respectively, so the 
SVM network model was established. The initial setting of SVM model is that the gradient descent method is 
used to find the optimal penalty parameter C, the kernel function parameter, the loss function parameter is 
0.01. The training model established depending on SVM method is used to predict the change of GWS on the 
different time-scale.

Evaluation index of prediction accuracy
The correlation coefficient r, NSE (Nash–Sutcliffe Efficiency), root mean square error (RMSE) and sample deter-
mination coefficient (R2) are used to comprehensively evaluate the accuracy of SVM prediction method in this 
paper. The calculation formulas are as follows:

Figure 2.  SVM network structure diagram.

Figure 3.  Flow chart of deep learning prediction with SVM method.
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Among them, n represents the number of samples, that is, different prediction durations, i(i=1, 2, 3 . . . , n) 
is each monthly time point, x̂i is the true value of the predicted signal, x is the average value of the predicted 
signal, xi representing the actual predicted value. yi is the prediction data, ŷi is the actual data, n is the number 
of samples. R2 represents the “goodness of fit” between the predicted value and the sample observation value. It 
should be noted that R2 is equal to 1, indicating that the predicted value and the true value of sample are equal, 
without any prediction error. The NSE range is from − ∞ to 1, and the closer the value is to 1, the better the 
consistency between the predicted time series and the actual amplitude signal.

Results and analysis
Spatio‑temporal analysis on GWS fluctuation
In this paper, the DDK3 filtered product from CSR is used to obtain the change of TWS in Shandong Province 
from 2003 to 2022, the product has been filtered by CSR. In addition, the missing data in individual months 
rather than gap period are compensated by SSA method. Due to the gap from GRACE and GRACE-FO, the data 
is divided two parts, which is from January 2003 to June 2017, from June 2018 to December 2022, respectively. 
In addition, we compared the GLDAS data model with the TWS change from GRACE to ensure accuracy in 
the data obtained, shown in Fig. 4. The correlation coefficient between the results from GRACE and GLDAS is 
0.65, which has a good correlation.

Furthermore, depending on the GLDAS and WGHM model, GWS change in Shandong Province is obtained 
according to formula (2). To reveal the more detailed characteristics of GWS changes, the ICA method is used 
in this paper to decompose the time series signal of GWS change from January 2003 to June 2017 derived from 
GRACE. The time series signal is decomposed into several independent components IC1, IC2, IC3 and IC4, 
which reflect the characteristics of different periods and trend terms. Meanwhile, the data has been centralized, 
and how to select the number of principal components is the critical link of the ICA method to extract signals. 
Firstly, the self-covariance matrix is constructed based on the principle of the ICA method by using the central-
ized data. Secondly, the constructed autocovariance matrix is diagonalized. Thirdly, the eigenvalues obtained 
by the eigenvalue decomposition method are sorted from large to small, as shown in Fig. 5. Finally, the number 
of spatio-temporal pattern components is selected according to the percentage of each principal component in 
the total energy. The size of the eigenvalue represents the contribution of the corresponding eigenvector to the 
entire matrix after the matrix is orthogonalized.

Figure 5 shows that the first characteristic value accounts for the highest proportion. The first four independ-
ent component signals already contain the primary information of regional GWS change of about 97.5%, which 
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Figure 4.  The comparison with the results from GLDAS and TWS from GRACE data.



7

Vol.:(0123456789)

Scientific Reports |         (2024) 14:5819  | https://doi.org/10.1038/s41598-024-55588-3

www.nature.com/scientificreports/

can fully explain the change of GWS. The component signal after the fifth is relatively small and could not be 
considered. Therefore, the first four components from spatio-temporal change of GWS in Shandong Province 
may be analyzed in this paper.

The spatio-temporal features extracted by ICA method are shown in Figs. 6 and 7, respectively. Normaliza-
tion processing has been performed, and the four principal components of spatio-temporal maps are arranged 
from large to small according to the proportion of eigenvalues. The unit of time pattern diagram in Fig. 4 is 
dimensionless, there is no actual physical meaning, but only the numerical size is represented. The numerical 
unit of spatial pattern in Fig. 7 is mm. The colors of spatial signal in Fig. 7 have positive and negative value. The 
value greater than zero indicates that the change of GWS in Shandong Province is the same as corresponding 
component in Fig. 6. Values less than zero indicate the opposite trend. The actual change of each component of 
GWS needs to be multiplied by corresponding temporal results from Fig. 6.

It can be seen from Fig. 6 that during the period from January 2003 to June 2017, the GWS in Shandong 
Province decomposed by ICA method were dominated by the changes with long-term trend. To more clearly 
distinguish the periodic characteristics of each principal component, the fast Fourier transform algorithm (FFT) 
is adopted to detect the first four principal components. The results show that IC1 component has obvious trend 
changes. The principal components of the IC2 and IC3 signal showed a monthly periodic signal. The IC4 signal 
has a significant piecewise linear trend, which decreased obviously from 2003 to 2011, showing an increasing 
trend after 2012.

Combined with Figs. 6 and 7, it can be found that GWS represented by IC1 shows that there is different trend 
between 2003–2007 and 2007–2017, showing a increasing trend and a decreasing trend continuously, respectively. 
This deficit signal is relatively strong in the western region in Shandong Province, the signal intensity shows a 
stepwise distribution from inland to coastal. The monthly cycle signals represented by the principal components 
of IC2, IC3 showed spatial inhomogeneity. IC4 indicates that GWS in the central region decreased continuously 
during 2003, it is relatively stable between 2004 and 2011 year although fluctuates. It indicates that GWS showed 
a significant downward trend from 2007 to June 2017, and the intensity of GWS loss in the western area was 
significantly greater than that the coastal region.

On this basis, the data products released by Yulong Zhong is adopted to fill the gap missing data for GRACE 
and GRACE-FO, so continuous time series of TWS changes from January 2003 to December 2022 is obtained, 
as shown in Fig. 8, a total of 240 months. There are distinctions between Figs. 5 and 7. Figure 5 shows the time 
changes of the four principal components, with high energy proportion after the ICA decomposition of GWS in 
Shandong Province. Figure 7 shows the overall time series of GWS changes in Shandong Province.

Figure 5.  The first eight principal component eigenvalues of GWS change in Shandong decomposed by ICA.

Figure 6.  The time principal component of GWS change decomposed by ICA in Shandong Province (It was 
generated by GMT software (https:// gmt- china. org)).

https://gmt-china.org
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Considering the impact of the East Route of the South-to-North Water Diversion Project on the change of 
GWS in Shandong Province since its implementation in 2014, the three different linear trends of GWS changes 
are obtained in GRACE inversion from 2003 to 2006, 2007 to 2014 and 2015 to 2022, respectively, which are 
shown as cyan, red, and green curve. From Fig. 8, we can find that the linear change rate of GWS from 2003 
to 2006 is 9.84 ± 6.35 mm/a; there is an apparent loss in the GWS from GRACE, its linear rate from 2007 to 
2014 is − 5.80 ± 2.28 mm/a; the trend of GWS from GRACE loss weakened, linear rate from 2015 to 2022 is 
− 5.39 ± 3.65 mm/a, which may be owing to the effect of South-to-North Water Diversion Project. However, after 
2014, the loss trend of GWS from GRACE continued to exist until 2019. From 2020 to 2021, GWS rebounded 
sharply, and the specific reasons need to further study.

Figure 7.  The spatial principal component of GWS change decomposed by ICA in Shandong Province (It was 
generated by GMT software (https:// gmt- china. org)).

Figure 8.  Variation of GWS and its linear trend in Shandong Province during the recent 20 years.

https://gmt-china.org
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Comparison with model data
Comparison with WGHM model
To verify the validity of GWS change derived from GRACE, WGHM model is used for comparative analysis, as 
shown in Fig. 9, which are averaged for region. Since the current WGHM is only updated to December 2019, 
the brown curve in Fig. 9 represents GWS change from WGHM model from January 2003 to December 2019.

It can be found from Fig. 9 that GWS from GRACE obviously increases between 2003 and 2006, GWS from 
GRACE obviously decreases from 2004 to 2019. However, overall, there is decreasing trend of GWS derived from 
GRACE between 2003 and 2019, which is consistent with global groundwater hydrological model from WGHM. 
In addition, the differences between the two results during 2003 to 2006 means that there are some uncertainties 
in the results from GRACE and WGHM model. The correlation coefficient of both the results is 0.67, which is 
positively correlated, indicating that WGHM model can better verify GRACE results.

Comparison with monthly precipitation from GPCP
To analyze the relationship between the change of GWS and precipitation, the GPCP model is used in this 
paper to obtain the monthly precipitation data in Shandong Province from January 2003 to April 2021, a total 
of 220 months, as shown in Fig. 10 with yellow curve. The red curve shows the monthly precipitation data after 
a time delay (6 months) correction. In addition, time delay corrections with different months for GRACE results 
are performed. The statistical results are shown in Table 1, N represents the month number of time delay.

Figure 9.  Comparison between GWS change in Shandong Province from GRACE and WGHM.

Figure 10.  Comparison between GWS change in Shandong Province from GRACE and GPCP.

Table 1.  Correlation coefficient of monthly precipitation and the results from GRACE after time delay 
correction with different months. Significant values are in bold.

Time delay N = 0 N = 1 N = 2 N = 3 N = 4 N = 5 N = 6 N = 7 N = 8 N = 9 N = 10 N = 11 N = 12

Correlation coefficient − 0.23 − 0.22 − 0.16 − 0.09 0.05 0.18 0.21 0.18 0.13 0.04 − 0.08 − 0.19 − 0.19
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Combined with Fig. 10 and Table 1, it can be found that the correlation between the results from GRACE 
and the GPCP model is negatively correlated before correcting the time lag. When 0 < N < 6, the correlation 
coefficient is improved gradually. When N = 6, the positive correlation reaches the highest value of 0.21. When 
6 < N ≤ 12, the correlation coefficient decreases, when N = 12, the negative correlation reaches the maximum. It 
indicates that precipitation is an essential factor of affecting the change of GWS in Shandong Province, from the 
perspective of hydrology, the infiltration process of precipitation from surface to underground is relatively slow, 
and it has an impact on GWS in Shandong Province with time delay (6 months).

To facilitate the comparison between GPCP data and GWS from GRACE, precipitation anomaly value of 
monthly time series could be calculated firstly, and then the 3-month moving average method is adopted to elimi-
nate the random fluctuation of both the time series. In Fig. 11, cyan curve and green curve shows precipitation 
data and GWS from GRACE after moving average. In addition, the time delay correction with different months 
for precipitation data after the moving average is performed to determine the maximum correlation coefficient 
between precipitation data and GRACE results. The statistical results are shown in Table 2.

From Table 2, when time delay correction N = 6, the positive correlation between precipitation anomaly and 
GRACE results after the 3-month moving average reaches the highest value of 0.23, shown as a red curve in 
Fig. 10, which improved to about 10% ((0.23–0.21)/0.21) comparing with the results without moving average.

In addition, to further analyze the relationship between precipitation anomaly and GWS, the CWT method 
is used in this paper to obtain both the energy spectrum, which are shown as in Fig. 12a and b.

In Fig. 12, below the black dashed line is the wavelet influence cone area with significant data edge effect. We 
can find that monthly precipitation anomaly and GWS from GRACE after the 3-month moving average has the 
similar energy spectrum. There is obvious period signal with 12 months of both the data. However, during 2010 
to 2017 year, seasonal signal is weaker in GRACE results than precipitation from GPCP model, indicating that 
human factors could has more significant effect than that of rainfall on GWS fluctuation from GRACE between 
2010 and 2017.

Comparison with actual observations
Comparison with in‑situ groundwater data
To further validate the results from GRACE, the in-situ data of GWS (unit: billion  m3) is used in this paper, 
which has been released by the Shandong Provincial Department of Water Resources. These in-situ data is annual 
change, and groundwater level is shallow data. To ensure the unity of both the time resolution, the monthly 
variation of results derived from GRACE are processed by yearly average to obtain the annual change of GWS, 
which are shown with blue curve in Fig. 13. The red curve represents in-situ annual variation of groundwater 
resources, the yellow curve shows in-situ annual change of shallow groundwater level.

It can be seen from Fig. 13 that the results from GRACE are consistent with the in-situ annual variation of 
groundwater resources and groundwater level. From 2007 to 2019, the results from GRACE showed a decreasing 
trend continuously,both the data showed apparent losses in 2019. The GWS increased significantly from 2020 to 
2021, in-situ data also showed a consistent trend. The annual GWS change from GRACE is positively correlated 

Figure 11.  Comparison between GWS change in Shandong Province derived from GRACE and GPCP with a 
3-month moving average.

Table 2.  Correlation coefficient of precipitation anomaly and GRACE after 3-month moving average with 
time delay correction of different months.

Time delay N = 0 N = 1 N = 2 N = 3 N = 4 N = 5 N = 6 N = 7 N = 8 N = 9 N = 10 N = 11 N = 12

Correlation coefficient − 0.27 − 0.26 − 0.19 − 0.08 0.05 0.17 0.23 0.21 0.14 0.03 − 0.09 − 0.19 − 0.23
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with the in-situ groundwater resources and groundwater level data, and the correlation coefficients between 
them are 0.34 and 0.18, respectively. It can be shown that GWS are consistent with the overall trend of in-situ 
data. However, there are still differences in detailed time characteristics, which may be owing to the low spatial 
resolution of GRACE, leading to some uncertainty in results.

Comparison with annual precipitation and human activities
To further analyze the factors influencing GWS changes in Shandong Province, the relevant data from the water 
resources bulletin issued by Shandong Provincial Department of Water Resources is adopted for comprehensive 
analysis, including annual rainfall, annual groundwater mining, and annual water consumption for agricultural 
irrigation.

To unify the time resolution for different data, the results derived from GRACE are averaged annually. 
Meanwhile, to unify the data of precipitation, groundwater mining and agricultural irrigation in the same time 
benchmark, the average value of every kind of data from 2003 to 2021 is deducted to reflect the annual anomaly 
value in this paper. In order to more intuitively analyze the impact of regional GWS change, the annual changes 
of GWS are compared with precipitation anomalies, annual groundwater mining, and water consumption for 
agricultural irrigation, as shown in Fig. 14a–c. The right axis in the three sub-diagrams represents the annual 
change of GWS, and the left axis represents the water volume change of three influencing factors. In addition, the 
water consumption for annual groundwater mining and agricultural irrigation in Fig. 14 has also been deducted 
from the average of all years.

From Fig. 14, it can be seen that annual variation of GWS in Shandong Province derived from GRACE is more 
consistent with the trend of annual groundwater exploration and farmland irrigation, on the whole. From 2009 to 
2010, the GWS from GRACE showed a downward trend, while precipitation was less and the groundwater exploi-
tation and farmland irrigation increased. During 2019, precipitation decreased severely, groundwater mining 

Figure 12.  The energy spectrum of the time series from GRACE results and GPCP with the 3-month moving 
average in Shandong Province.

Figure 13.  Comparison on the annual variation of GWS in Shandong Province from GRACE and in-situ data.
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and farmland irrigation volume are all negative, GWS also decreased obviously. From 2020 to 2021, precipitation 
increased obviously, groundwater mining and farmland irrigation almost all decreased more remarkably, mean-
while, there is significant increase in GWS. In addition, the correlation coefficient is calculated between GWS 
and influencing factors. The correlation coefficient is 0.18, 0.80, 0.71, respectively, which are as follows in Table 3.

Prediction on GWS change
The predicted results from SVM
To predict the change of GWS in Shandong Province, based on the basic principle of SVM prediction, SVM 
method is adopted for predicting. The short-medium-long-term trend of predicting GWS change in Shandong 
Province is evaluated. In addition, SVM modeling is performed on the different training samples. The short-
medium-long-term prediction training results are shown in Fig. 15, respectively.

Specifically, the time series of GWS change with 240 months is divided into training and testing samples, 
respectively. Taking the data with 228 months as training samples in short-term prediction, taking the data with 
204 months as training samples in medium-term prediction, and taking the data with 180 months as training 
samples in long-term prediction.

The red curves in the Fig. 15a represent the original data of training samples, the blue curve shows the mod-
eled value from SVM method in short-term prediction. The blue curves in the Fig. 15b and c shows the modeled 
value in medium-term and long-term prediction, respectively. The short-medium-long-term signal of prediction 
is very close to the original signal, and R2 is 0.97, 0.97 and 0.98, respectively.

Based on the above established SVM model, the time series of GWS in Shandong Province is predicted on 
the different time scale. The predicted results from SVM are compared with testing samples on short-medium-
long terms, which are shown in Fig. 16. The evaluation indexes are R2, RMSE, and correlation coefficient. The 
statistical results are shown in Table 4.

It can be seen from Fig. 16 and Table 4 that based on different training samples, GWS change with short-term 
signal predicted by SVM method has a certain degree of agreement with the overall trend of testing sample. 
The time series of predicting GWS change with medium and long-term deviates significantly from the testing 
signal. The predicted time series is consistent with short-term testing samples, and the correlation coefficient is 
relatively high, reaching 0.65–0.75.

Figure 14.  Comparison of the results derived from GRACE with annual precipitation anomaly and water 
consumption change caused by human factors.

Table 3.  The correlation coefficient between GWS from GRACE and precipitation, groundwater exploration, 
farmland irrigation.

Influence factors on GWS Precipitation Groundwater exploitation Farmland irrigation

Correlation coefficient 0.18 0.80 0.71
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Comparison with other methods
To more effectively evaluate the superiority of predicting short-term changes of regional GWS depending on 
SVM method, the prediction results from SVM model is compared with that from SSA, ARMA and LSTM 
methods for short-term prediction. Figure 17a–c shows the predicted signal based on different training samples. 
The blue curve is regarded as an actual signal. The correlation coefficient, NSE, and RMSE are used to evaluate 
the prediction accuracy comprehensively.

It can be found from Fig. 17 that in terms of short-term prediction, the change of GWS predicted by SVM 
model is most consistent with the testing samples of GRACE. In addition, it is also consistent with the results 
from SSA and ARMA method, but it is quite different from that of LSTM method. To quantitatively evaluate 
the superiority of SVM method, the index of precision including correlation coefficient, NSE, RMSE are used, 
to comprehensively assess the predicted accuracy for the four methods in the short-term period. The predicted 
experiments with different training samples will be carried out, such as 228, 204, and 180 months. Table 5 shows 
the correlation coefficient, RMSE and NSE accuracy indexes of short-term prediction for GWS change with 228, 
204 and 180 training samples, respectively.

It can be found from Table 5 that from the perspective of short-term prediction, the correlation coefficients 
between predicted results from the SVM model based on training samples of 228, 204, and 180 months and the 
accurate signals are 0.68, 0.75, and 0.56, respectively, which are significantly better than that from LSTM and SSA 
methods, but are not much different from the results of ARMA. RMSE were 5.65, 4.42, 5.26 mm, its accuracy 
index was better than that from the other three methods. The NSE values were 0.36, 0.43 and 0.28, respectively, 
which were superior to the other three methods. It shows that the SVM model has higher prediction accuracy, 
on the whole.

Based on the above performance evaluation on short-term prediction from SVM, SVM method is adopted 
to train and model the time series of GWS changes in Shandong Province from January 2004 to December 2022. 

Figure 15.  Short-medium-long term prediction for training samples of GWS change based on SVM method.
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The number of training samples used in this paper is 228 months. The predicted signal from SVM and actual 
value for training from GRACE are shown as blue and red curves in Fig. 18.

It can be seen from Fig. 18 that the predicted signal from SVM modeling has a high degree of agreement 
with the original signal. Both R2 reaches 0.97, RMSE is 8.89 mm, indicating that SVM model based on training 
samples with 228 months can better reflect the characteristics of GWS changes in Shandong Province.

Discussions

 (1)  The limitation of each dataset
   There are limitations in the inversion of GWS changes in Shandong Province depending on GRACE 

data combined with hydrological models. On the one hand, it comes from the low spatial resolution with 
about 330 km of  GRACE33,34, on the other hand, it is caused by the uncertainty of GLDAS and WGHM 

Figure 16.  Short-medium-long term prediction for testing samples of GWS change from SVM.

Table 4.  Evaluation for predicting GWS changes with different training samples using SVM method.

Training /testing precision evaluation
Short-term forecast
(12 months)

Medium-term forecast
(36 months)

Long-term forecast
(60 months)

180 training samples (200,301–201,712) R2 = 0.98/Correlation = 0.56 R2 = 0.98/Correlation = − 0.27 R2 = 0.98/Correlation = − 0.14

204 training samples (200,301–201,912) R 2= 0.97/Correlation = 0.75 R2 = 0.97/Correlation = − 0.06

228 training samples (200,301–202,112) R2 = 0.97/Correlation = 0.68
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models. Due to the lack of measured data in some areas during the construction of the GPCP model, the 
model also has uncertainty in the local area. In addition, the GWS data from WGHM model also have 
limitations, which may lead to a significant difference between the results from GRACE and WGHM 
model during 2003 to 2006.

 (2)  Error consideration

Figure 17.  Prediction for GWS change in Shandong based on SVM and comparison with different methods.

Table 5.  Comparison of short-term prediction accuracy of GWS change with different training samples.

Index of precision
SVM
(228/204/180)

LSTM
(228/204/180)

SSA
(228/204/180)

ARMA
(228/204/180)

Correlation coefficient 0.68/0.75/0.56/ 0.26/− 0.39/0.26 0.65/0.79/− 0.38 0.72/ 0.73/0.44

RMSE/mm 5.65/4.42/5.26/ 6.85/6.71/5.39 5.98/4.94/5.78 5.98/5.74/5.25

NSE 0.36/0.43/0.28/ − 0.12/− 0.30/0.05 0.35/0.62/− 0.26 0.35/0.30/0.15

Figure 18.  Predicted GWS change in Shandong Province from January 2023 to December 2023 from SVM.
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   There are errors in the spatio-temporal changes of GWS in Shandong Province derived from satellite 
gravity. On the one hand, it comes from the band noise existing in the time-variable gravity field model 
and filtering effects. In addition, leakage error is an essential source of error in GRACE inversion  results35, 
which could be caused by leakage signal from GWS in Hebei Province monitored by GRACE.

 (3)  Results interpretation
   The source of irrigation water is also crucial for GWS change. If the water source is local surface and 

ground water, and irrigation reduces the total amount of water in the study area. On the other hand, the 
water source comes from the outside of the study area such as the South to North water diversion project, 
the irrigation increases the amount of water in the study area. The impact of agricultural irrigation on 
GWS change in Shandong Province is relatively complex, the specific impact mechanism needs to be 
further studied (Supplementary information). It can be seen from the in-situ groundwater level and water 
volume change data in the water resources bulletin that there was a significant uplift in 2015, which may 
be owing to the South-to-North Water Diversion Project.

   The SVM method is used to train and model the sample data with only 228 months, however, the 
uncertainty of predicted results is not given. 204 and 180-month data can also be used for training and 
prediction. Because the pure mathematical method is adopted for predicting GWS in this paper, in the 
following research, the hydrological and meteorological data, such as precipitation, evapotranspiration, 
temperature, runoff and other data, can also be added to the external constraints, to provide the accu-
racy of prediction. The SVM network structure is used to establish the optimal prediction model, which 
can realize the short-term prediction of the results derived from GRACE. However, regarding medium 
and long-term prediction, the SVM algorithm has certain limitations. Based on the different number of 
training samples, the prediction results from SVM, LSTM, SSA and ARMA methods are compared and 
analyzed. It can be seen that the superiority of SVM model, but the prediction accuracy still needs to be 
improved. There will be some uncertainty in predicting GWS changes based on GRACE data.

 (4)  Comparison with other studies
   Evapotranspiration is an essential part of the terrestrial water cycle. Climate warming increases poten-

tial evapotranspiration. Existing research results have proved that surface evapotranspiration caused by 
climate warming accelerates the consumption of groundwater resources in the United  States36. Therefore, 
the impact of evapotranspiration on the change of GWS in Shandong Province should be considered, 
which will be improved in the subsequent study. In this paper, the research area is selected as Shandong 
Province in China. For areas with small spatial scales, it is difficult to effectively reveal the detailed charac-
teristics of water storage changes by using GRACE data alone. Recently, many studies have used artificial 
intelligence algorithms such as machine learning and deep learning, combined with hydrometeorological 
data, to carry out downscaling processing to improve the spatial resolution of monitoring results from 
GRACE. The downscaling method for the results derived from GRACE will also be considered in future 
work.

Conclusion
The GWS change derived from GRACE data in Shandong Province can be analyzed, compared with WGHM, 
GPCP, in-situ groundwater level, etc. The prediction of GWS change in Shandong Province under the deep learn-
ing framework is studied. The results show that SVM method have higher prediction accuracy than that from 
LSTM, SSA and ARMA model for short-term prediction. The specific conclusions are as follows:

(1) The loss intensity of GWS in the west of Shandong Province decomposed by the ICA method is significantly 
greater than that in the coastal areas. The linear change rate of GWS from 2003 to 2006 is 9.84 ± 6.35 mm/a; 
there is an apparent loss in the GWS from GRACE. Its linear rate during 2007 to 2014 is − 5.80 ± 2.28 mm/a; 
the trend of GWS from GRACE loss weakened, linear rate during 2015 to 2022 is − 5.39 ± 3.65 mm/a, which 
may be owing to the effect of the South-to-North Water Diversion Project. However, after 2014, the loss 
trend of GWS continued to exist until 2019, from 2020 to 2021, GWS rebounded sharply, and the specific 
reasons need to further study.

(2) The correlation coefficient between the overall GWS change derived from GRACE and WGHM model is 
0.67. The annual trend of GWS is consistent with in-situ groundwater volume and level. The correlation 
coefficient between GWS and monthly precipitation reaches 0.23 after correcting time delay and smooth-
ing average, which is also consistent with annual precipitation anomaly using CWT method. The variation 
of GWS derived from GRACE has a strongly correlates with the in-situ groundwater mining, and water 
consumption for agricultural irrigation. The correlation coefficients are 0.80 and 0.71, respectively. It shows 
that groundwater mining is the main factor affecting the change of GWS, followed by farmland irrigation 
water.

(3) Based on the training samples of GWS change with different numbers of 228, 204 and 180 months, R2 
between the predicted signal and training samples depending on SVM method is above 0.97. Compared 
with LSTM, ARMA, SSA methods, the accuracy index from SVM method is superior, indicating that SVM 
model has higher prediction accuracy for GWS change.

Data availability
All data generated or analysed during this study are included in this published article [and its supplementary 
information files].
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