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Modeling protective action 
decision‑making in earthquakes 
by using explainable machine 
learning and video data
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Earthquakes pose substantial threats to communities worldwide. Understanding how people respond 
to the fast‑changing environment during earthquakes is crucial for reducing risks and saving lives. 
This study aims to study people’s protective action decision‑making in earthquakes by leveraging 
explainable machine learning and video data. Specifically, this study first collected real‑world CCTV 
footage and video postings from social media platforms, and then identified and annotated changes in 
the environment and people’s behavioral responses during the M7.1 2018 Anchorage earthquake. By 
using the fully annotated video data, we applied XGBoost, a widely‑used machine learning method, 
to model and forecast people’s protective actions (e.g., drop and cover, hold on, and evacuate) during 
the earthquake. Then, explainable machine learning techniques were used to reveal the complex, 
nonlinear relationships between different factors and people’s choices of protective actions. Modeling 
results confirm that social and environmental cues played critical roles in affecting the probability of 
different protective actions. Certain factors, such as the earthquake shaking intensity and number of 
people shown in the environment, displayed evident nonlinear relationships with the probability of 
choosing to evacuate. These findings can help emergency managers and policymakers design more 
effective protective action recommendations during earthquakes.

Earthquakes threaten communities across the United States. Due to the sudden-onset nature of earthquakes, it is 
critical to understand how people respond to earthquake hazards to recommend appropriate protective actions to 
save lives. Using the Protective Action Decision Model (PADM) proposed by Lindell and Perry (2012)1, previous 
studies have investigated how environmental cues, social cues, information perceptions, individual characteris-
tics, and warning messages impact people’s protective action decision-making processes during  earthquakes2–4. 
However, we argue that major research gaps remain.

The first major research gap is the modeling framework used to investigate decision-making during earth-
quakes. Previous studies have investigated how different factors (e.g., environmental cues and social cues) affect 
protective action decision-making using statistical models such as random utility models (e.g., logit model)2,5,6. 
These models usually have a predetermined (linear/log-linear) model structure. Most of these models can only 
identify linear trends between each factor and the target variable and are often less accurate and less  flexible7,8. To 
better capture people’s dynamic behavioral responses during earthquake emergencies, we require more advanced 
models that can account for more complex, nonlinear  relationships9. With the recent development of Artificial 
Intelligence, researchers have started to apply machine learning to model human  behavior7,9. With more flexible 
model structures, machine learning models can produce highly accurate predictions and automatically identify 
complex relationships (e.g., nonlinearities and interactions) between decision-making behavior and different 
factors. However, to our knowledge, few studies have applied machine learning to investigate how different fac-
tors shape the protective action decision-making process during  earthquakes10.

OPEN

1Department of Civil and Coastal Engineering, University of Florida, Gainesville, FL 32611, USA. 2Department 
of Psychology/Clark Honors College, University of Oregon, Eugene, OR 97405, USA. 3U.S. Geological Survey, 
Earthquake Science Center, Moffett Field, CA 94040, USA. 4U.S. Geological Survey, Earthquake Science Center, 
Pasadena, CA 91106, USA. 5U.S. Geological Survey, Geologic Hazards Science Center, Golden, CO 80401, 
USA. 6Department of Geography, University of Utah, Salt Lake City, UT 84112, USA. *email: xiaojianzhang@
ufl.edu

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-024-55584-7&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |         (2024) 14:5480  | https://doi.org/10.1038/s41598-024-55584-7

www.nature.com/scientificreports/

The second major research gap is the availability and use of various data types to fully understand decision-
making during earthquakes. Previous studies have adopted survey and interview data when modeling the pro-
tective action decision-making  process2,11,12. However, such data may not accurately capture the length of time 
required to take action, which may drive an individual’s behavioral  responses9,13. More importantly, surveys 
or interviews alone cannot explicitly reflect the influence of environmental and social cues and often contain 
retrospective  bias14, which limits the ability to accurately model behavior. An alternative approach is to use 
empirical data collected from videos such as Closed Circuit Television (CCTV) footage and phone recordings, 
which have unique advantages. For example, CCTV videos can detect environmental changes in the background 
at a given location and relate that to the impact of an  earthquake15. More recently, with the increasing popularity 
of social media platforms, video data from these platforms have been leveraged to conduct protective action 
 modeling16. Although video data contain rich information about people’s behavioral changes and surrounding 
environment, extracting information from video data is not trivial. It requires rigorous annotations and data 
recoding to transform the unstructured data into structured data. To our knowledge, studies using empirical 
data generated from CCTV footage and social media videos are still very  scarce17,18.

To fill these knowledge gaps, this paper leverages state-of-the-art explainable machine learning methods 
combined with video data to model and analyze individuals’ protective actions during the earthquake. We first 
collected CCTV footage and videos from social media for the 2018 Anchorage earthquake. Then, we systemati-
cally annotated each individual’s time-stamped protective action decisions during the earthquake along with 
environmental cues such as the building settings, cover availability, and others. Also, we identified certain social 
cues, e.g., the role of each decision-maker and the number of people shown in the environment during the earth-
quake. By using the annotated data, we used a popular machine learning model, i.e.,  XGBoost19, to model the 
protective action decision-making process. Consequently, we applied two explainable machine learning tools, 
i.e., variable  importance20 and partial dependence plots (PDPs)20, to interpret the model. Specifically, variable 
importance was used to investigate the predictive contribution of each variable, while PDPs were used to reveal 
their (nonlinear) relationships with the probability of choosing different protective actions at each time stage 
during the earthquake. Overall, the presented model and the corresponding behavioral interpretations can pro-
vide nuanced evidence for formulating more effective and context-targeted protective action recommendations.

Literature review
Influencing factors of protective action decision‑making
Recently, several theoretical frameworks have been proposed by disaster professionals to study human behavior 
under emergent threats such as earthquakes and wildfires and provide guidelines to understand when and why 
people take action in different scenarios. One of the most widely applied frameworks is the Protective Action 
Decision  Model1,11. The PADM is a multistage conceptual model that highlights people’s thinking and decision-
making process in response to environmental hazards and  disasters21. It indicates the critical characteristics to be 
accounted for, at both external (e.g., environmental and social cues) and internal (e.g., individual characteristics) 
levels. Another important theoretical framework is Emergent Norm Theory (ENT)22,23. ENT seeks to explain 
how the collective (e.g., group or crowd) behavior forms during times of crisis or uncertainty. It also highlights 
the importance of social and environmental cues in influencing how people respond to  disasters23.

Social cues including social interactions, one’s proximity to others, and family concerns can affect decisions of 
protective actions. Studies showed that evacuees display grouping behavior, often moving with familiar individu-
als or authority figures and assisting those  nearby9,17. However, the evacuation group size is negatively associated 
with the probability of evacuation and taking protective  actions6,24. Also, factors that relate to family concerns 
such as the presence of children, are found to positively impact the likelihood of taking protective  actions11,25,26. 
Overall, when multiple people are present in a room, their behavioral responses are expected to be diverse, due 
to differing professional capacities and social roles (e.g., parents, staff)25.

Environmental cues also significantly influence people’s protective action decision-making. For example, 
the damage status of a  building27, the distance to exits and the flow of evacuees (i.e., number of people per 
second)5, the presence of obstacles and alarms are both found to be important components of protective action 
 determinants6,9,27. Physical context factors including the ongoing activities and positions (e.g., standing, sit-
ting, and walking), whether in a public place or private place, whether in an indoor setting or an open area also 
potentially affect decision maker’s choices towards protective  purposes11,25,28.

Earthquake intensity can have a strong effect on people’s protective decision-making17. Researchers have 
suggested that people may pause and remain still for a while to receive, perceive, and assess risks, instead of 
immediately taking protective  actions25,29. Higher shaking intensity may lead to less pausing and waiting time 
before taking protective  actions30. In addition, aligned with our intuition, severe shaking can highly influence 
people’s emotional reactions and the possibility of taking protective  actions11. Therefore, it is also necessary to 
consider earthquake intensity when forecasting an individual’s protective action decision-making.

Temporal features such as warning time and the time from noticing the first cue (e.g., an alert or event) are 
also important in influencing an individual’s behavioral responses toward natural  hazards9,16,31,32. Other features 
including preparedness, prior experiences of earthquakes, risk perceptions and warning information sources are 
also shown to be important in determining protective  actions12,33. In addition, demographic factors, including 
age, gender, education level, income, etc, are also influential to protective action decision-making11,26,34,35. Previ-
ous studies found that male, younger adults, more educated people and people with a relatively higher income 
are more likely to take protective actions during  earthquakes11,34,36. However, regarding the specific protective 
actions (drop, cover and hold on, or evacuate), research has shown conflicting  results12,16,26. For example, Sha-
pira et al.12 found that people with a higher income were more likely to evacuate from buildings while Lindell 
et al.11 indicated that high-income populations were more likely to drop and find covers. We believe that these 
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discrepancies could be mainly attributed to the differences in culture and earthquake  features12,16. Despite the 
significance, these psychological and demographic features are usually collected by surveys or interviews and 
are not easily accessible from the footage or  videos18.

Approaches to modeling and interpreting protective action decision‑making
The multifaceted nature of the factors influencing protective action decision-making indicates a need for flexible 
approaches to explore the human behavior behind the data. In recent years, based on theoretical frameworks 
like PADM and ENT, scholars have widely applied traditional statistical models and machine learning to model 
and interpret protective action decision-making5,6,9,37.

There exist two major categories of modeling approaches: statistical models and machine learning. Discrete 
choice  models38, e.g., mixed logit and multinomial logit models, are commonly-used statistical models in explor-
ing an individual’s decision-making process in emergencies. Built upon random utility theory, these models can 
quantify how individuals react to influencing  factors39. However, these models are less accurate and less flexible 
since they usually have a pre-specified (linear/log-linear) model structure. Also, most of them assume that the 
relationship between each explanatory variable and the outcome is linear. However, the influence of environ-
mental and social cues on an individual’s decision-making process was found to be  nonlinear9. Accordingly, the 
reliability of the modeling results could be significantly impacted if we ignore the nonlinearity behind the data.

Machine learning has shown great potential in exploring the complex (e.g., nonlinear) relationships and 
interactions between exploratory variables, due to its flexible model structure and high prediction accuracy. 
Recently, several scholars have applied machine learning approaches to model protective action  behavior9,40–42. 
These sets of evidence collectively suggest the capability of machine learning to model complex human behavior 
before, during, and after a disastrous event. To date, studies using machine learning to model protective action 
behavior during earthquakes are still uncommon. However, this approach is valuable because it can reveal com-
plex, non-obvious connections between various factors and how they affect individuals’ choices during such 
events. Understanding these intricate relationships can greatly benefit stakeholders such as emergency managers 
to effectively design context-targeted solutions for earthquake protective action decision-making.

Methods and data
Methodology
Methodological framework
We present a methodological framework for identifying behavioral insights from earthquake protective-action 
decision-making. A schematic of the framework is shown in Fig. 1. We first collected CCTV footage data and 
personal videos posted on social media from multiple  sources43 . After data collection, we manually annotated 
the data using ELAN (European Distributed Corpora Project [EUDICO] Linguistic Annotator)44. Specifically, 
we identified several key factors including the environmental cues such as alarm availability and shaking inten-
sity, social cues such as roles of different decision-makers and leaders among the evacuation group, and most 
importantly, the behavior states of each decision-maker through time. We open-sourced the videos and annota-
tions on an Open Science Framework (OSF)  repository45 (https:// osf. io/ pbyzx). We transformed the annotations 
into numeric variables (as shown in Table S1) using Python46. We fed the data into the XGBoost  model19 and 
evaluated the predictive performance using several metrics. Afterward, we interpreted the model by calculating 
variable importance and generating partial dependence  plots20. The modeling results were then synthesized to 

Figure 1.  Methodological framework.

https://osf.io/pbyzx
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draw insights about the effects of different factors on protective action decision-making. We also open-sourced 
the code along with an example dataset and an annotation demo (from ELAN interface) on GitHub (https:// 
github. com/ Xiaoj ian- Zhang/ EQ_ PA_ ML_ Video Data).

XGBoost model
We adopt a commonly-used tree-structured machine learning model, i.e.,  XGBoost19, to model earthquake 
protective action decision-making. Essentially, XGBoost relies on a process called boosting, where multiple 
decision trees are built sequentially, with each new decision tree correcting errors made by previous  trees19. The 
boosting process ensures the improvement of predictive performance and can be operated in parallel. Therefore, 
XGBoost can efficiently handle large and complex datasets while maintaining high prediction accuracy, and has 
been widely used in behavior  modeling47,48. In this study, suppose we use a decision tree as the base learner for 
XGBoost and we have training data D = {zi = (xi , yi), i = 1, 2, . . . , n} , with x representing the input features 
(e.g., environmental and social cues) and y representing the behavioral status (i.e., drop and cover, hold on, and 
evacuate). Suppose the trees are built on m dimensions of features and K additive functions, then the XGBoost 
model can be formulated as:

where in Eq. (1), F =
{
f (x) = wq(x)

}(
q : Rm → T ,w ∈ R

T
)
 represents the space of all classification decision 

trees; q refers to the structure (e.g., depth) of each tree and T is the number of leaves in each tree. fk represents 
an individual tree constructed with structure q and leaf weights w.

Explainable machine learning methods
To identify the determinants of protective action decision-making and their associations, we further interpret the 
XGBoost model with two state-of-the-art explanation tools: variable importance and partial dependence  plot49.

Variable importance. The variable importance provides the relative contribution of a variable to the predictive 
power of the modeling results. The more a model relies on a variable to make predictions, the more important 
it is. For the XGBoost model, there are three specific approaches to compute variable  importance19. The first 
approach is the Gain method, which is the contribution of each feature to each tree in the model. The principle 
idea behind the Gain method is that by adding a new split to a variable, the two newly-generated branches will be 
more  accurate19,50. Essentially, if a variable exhibits a higher Gain value relative to others, it implies that this vari-
able plays a more crucial role in producing precise predictions. The second one is Coverage, which is measured 
by the relative number of observations that are related to each  variable19. The third one is the Frequency method, 
which evaluates, as a percentage, the relative number of times a particular variable appears (in splits) in the trees 
of the  model19. The latter two importance metrics cannot directly measure the contribution of a specific feature 
on improving the model’s predictive performance, and could be biased towards categorical variables. Therefore, 
in this study, we choose to use the Gain method.

Partial dependence plot. While variable importance is comparable to the magnitude of the beta coefficient 
in traditional statistical models such as multinomial logit (MNL) model, it cannot indicate the direction (i.e., 
sign) of the variable’s relative contribution. PDPs reveal the direction of associations between the predictors and 
the target  variable49. Introduced by  Friedman51, PDP can display the marginal effect that the studied variable 
has over the predicted  outcome20. Specifically, suppose the set S contains the features of interest and set C is the 
complement of S and let x denote the predictors, the PDP works by marginalizing the predicted outcome over 
xC . Eq. (2) defines the partial dependence of the model f on xS:

In this study, f̂xS is estimated by taking the average of the data samples, as shown in Eq. (3) where n is the number 
of total instances:

With PDP, we are able to investigate the average marginal effect of a given value of feature(s) in S on the protec-
tive action decision-making.

Model training and performance evaluation
We split the entire dataset into two disjoint sets, 90% for training purposes and the remaining 10% for testing 
purposes. We adopted a stratified sampling technique to preserve the distribution of target variable in each split. 
We tuned the XGBoost with Grid Search and a five-fold Cross Validation on the entire training  set52. The grid 
search space is described as follows. We examined the effect of the number of trees by varying the number from 
100 to 700 at an interval of 100; we tested the learning rate using values ranging from 0.01 to 0.05 with a step of 
0.01; we also evaluated the depth of each individual by setting the range as 4 to 6. Consequently, the XGBoost 
was built with 100 trees with a learning rate of 0.05. Each tree has a depth of 5. After obtaining the best hyper-
parameter combination, we evaluate the model’s predictive performance on the testing set.

Several performance metrics were used to evaluate the model’s predictive performance. These metrics include 
accuracy, recall, precision and F1  score52. Accuracy reflects the model’s predictive accuracy in correctly predicting 

(1)ŷi = f̂ (xi) =

K∑

k=1

fk(xi), fk ∈ F

(2)f̂xS(xS) = EXC

[
f̂ (xS, xC)

]

(3)f̂xS(xS) =
1

n

n∑

i=1

f̂
(
xS, xC

(i)
)

https://github.com/Xiaojian-Zhang/EQ_PA_ML_VideoData
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the observed protective action decisions. Recall measures the proportion of correctly predicted instances in a 
behavioral state against the total instances of that state. Precision is the ratio of correct predictions for a specific 
behavioral state to the total number of predictions made for that behavioral state. F1 score is the harmonic mean 
of recall and precision, providing a balance between them.

Performance comparison
This study compares the performance of XGBoost with a commonly-used traditional statistical model, i.e., 
 MNL53. MNL is based on a random utility maximization framework, where it assumes that each choice (i.e., 
protective action) offers each individual (i.e., decision-maker) a specific level of utility. MNL consists of two major 
parts: (1) the effects of the observed variables and (2) a random error term that is independently and identically 
Gumbel-distributed53. Mathematically, the utility of choosing protective action j can be written in Eq. (4):

where βj is the coefficient vector of the corresponding xj and εj is the unobserved random error when choosing 
protective action j. The probability of choosing protective action j for decision-maker i can be formulated as 
Eq. (5):

Given the coefficients, the MNL can then be formulated by the likelihood function in Eq. (6):

We can adopt maximum likelihood estimation technique to estimate the coefficients β̂ = argmaxβ L(β) . And 
then we can substitute β̂ back to the Eq. (5) to obtain the probability of choosing each protective action.

Data
Background of 2018 M7.1 anchorage earthquake
The 2018 M7.1 Anchorage earthquake occurred on the morning of November 30, 2018 at 8:29 am local  time54. 
The earthquake started about 10 km north of the city of Anchorage at a depth of almost 50 km, occurring 
within the Pacific Plate that is being subducted beneath the North American  plate54. The resulting shaking was 
the strongest to impact Anchorage in more than 50 years. Shaking intensities across the city of Anchorage were 
Modified Mercalli Intensity (MMI) VII–VIII (very strong to severe), as reported by residents and recorded on 
 seismometers55. The distribution of shaking intensities is shown in Fig. 2. Shaking, and secondary impacts such 
as ground failure, resulted in damage to many buildings including hospitals, schools, and lifeline infrastructure 
such as water and power  lines54,55.

Data collection
After the Anchorage 2018 earthquake, a Virtual Emergency Response Team (VERT) was initiated to identify 
and download publicly available video footage of the earthquake that had been voluntarily posted to social 
media websites, please refer to McBride et al. (2022)43 for the sources of the videos. A total of 90 videos depict-
ing Anchorage-related earthquake footage were identified. Only 66 of these displayed unique content, and of 
these, only 45 displayed human behavior during earthquake shaking. 37 videos displayed behavior inside a 
structure (25 were public structures and 12 were private structures). Children were present in 43% of the 45 
human behavior videos, and 60% of those 45 videos depicted CCTV footage (the other 40% depicted footage 
filmed from a handheld camera or phone). Further detail about the VERT process for identifying the videos 
can be found in McBride et al. (2022)43. Note that this project has received an exemption determination from 
the University of Oregon (UO) Institutional Review Board (IRB) (#10302019.043) for using publicly available, 
earthquake-related videos from social media. We strictly follow the privacy guidelines and ensure our research 
remains within the scope of the exemption.

Data annotation and recoding
Open-source ELAN (European Distributed Corpora Project [EUDICO] Linguistic Annotator)  software44 was 
utilized to support the annotation of the video footage. A multi-tier template for annotation was designed 
specifically for the purpose of annotating earthquake-related behavior. The template guided the time-locked 
transcription of unfolding earthquake-related events and people’s behavior, including all interpretable action, 
language, gesture, and emotion produced during the videos. The lexicon also included codes related to demo-
graphic variables of interest, such as inferred age, gender, ability status, and nature of relationship to others 
present (e.g., parent, child, teacher, student, security guard, member of general public, etc.). An estimate of the 
number of people present was also provided, and a judgment was made about the extent to which the setting was 
crowded depending on the number of people shown in the environment, where they are, the density of people, 
and the crowdedness of the physical environment such as furniture quantity and arrangement. A lexicon of 
earthquake events (e.g., shaking begins and ends, initiation of P-wave in audio signal, etc.), earthquake-related 

(4)Uj

(
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)
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events that might trigger human action (e.g., alarm sounds, observable shaking commences, objects sway, objects 
fall, obstacles present on the floor, etc.), protective actions (e.g., run, evacuate, drop, cover, hold on, etc.), social 
responses (e.g., announce earthquake, alert others, direct others, etc.), and whether an alarm sounded (e.g., 
building fire alarm, car alarm, etc.) was also created to guide annotation. Judgments of shaking intensity were 
also provided. To ensure the reliability of the annotations, we have undertaken a formal reliability analysis for 
some aspects of the annotation process with regard to coder-annotators’ judgments that involved the lexicon. 
The inter-annotator reliability estimate yielded an overall percent agreement of 94%. Please refer to Supplemen-
tary Material for more details.

In this study, we adopted a multi-phase annotation procedure. Specifically, in the first phase, all 45 videos with 
evident human behavior during earthquake received full annotations of these above-mentioned characteristics. 
As this study focused on the individual-level behavior, annotators then provided a judgment of whether or not 
a leader/decision-maker was present within the video (e.g., a parent, teacher, security guard, etc.) and whether 
or not a follower was present (e.g., a child, a student, member of the general public, etc.). Annotations were then 
standardized and conducted, for any given video, on the individual level for both one leader/decision-maker 
and one or two followers depicted within each video. It is worth noting that, in many videos, others were also 
present in addition to the individuals identified as leaders or followers. However, the data presented here are 
based solely on the behavior of the leaders and followers. Here, we treat each individual, no matter whether a 
leader or follower, as a decision-maker. Lastly, 17 videos received the final phase of annotation and were fully 
annotated with leader and follower designation. These videos were then utilized for follow-up analysis. For a 
detailed description and corresponding statistics, please refer to Table S1.

We translated all annotations into numeric variables, including the behavioral state, shaking intensity, whether 
an alarm was on, if there were obstacles present, whether the environment was crowded, availability of cover, 
the starting position of the decision maker, whether the decision maker was a leader, and whether the decision 
maker was far from the egress. All variables were calculated and recoded at each timestamp (per-second level). 
Recoding was conducted at the individual level (each decision maker). In total, we processed 17 videos with a 
total of 1593 unique behavioral statuses. The mean video length was 41 s; the standard deviation was 51 s. The 
longest video was around 216 s while the shortest only lasted for 10 s. On average per video, 6.6 people were 
present. As we described above, we only annotated some of the individuals as leader/decision-maker or followers. 
Accordingly, on average one leader and two followers’ behavioral states were identified per video.

Descriptive statistics
Table S1 summarizes all variables we include in this study and their descriptive statistics. Among the 17 anno-
tated videos, a large majority of them (87.1%) were filmed in a public setting. About one third (32.4%) of videos 

Figure 2.  Distribution of shaking intensities near the 2018 M7.1 Anchorage earthquake as reported by the U.S. 
Geological  Survey55. The epicenter of the earthquake (black star) was located just to the north of the population 
center of Anchorage (black square). Coastlines are shown by black lines and major fault traces are shown by the 
dashed gray lines.
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displayed evidence of a leader present. Most people were sitting (74.6%) when the earthquake began and at a 
considerable distance from egress (67.0%). We observed nine levels of shaking intensity. “Not felt” accounted for 
the largest proportion and most of the remaining observations were concentrated between MMI 3 (weak shaking 
intensity) to MMI 6 (strong shaking intensity), although videos included shaking up to MMI 8 (severe shaking). 
Observations regarding whether an alarm was present were highly imbalanced with only 4.4% of observations 
with an alarm (not from an earthquake early warning system but a school alarm triggered after onset of an emer-
gency). Obstacles were not present in 57.1% of observations, while 42.9% showed evidence of obstacles (e.g., 
shifted furniture, swing doors and falling objects). 12.9% of observations were in uncrowded environments, while 
87.1% were in crowded environments. Availability of cover, such as a table, was only observed in 12.0% of videos. 
The target variable, i.e., the protective action behavioral state, had four categories: other, drop and cover, hold on, 
and evacuate. The behavioral state other (e.g., communicating and seeking proximity with others) accounted for 
more than 55% of observations, followed by drop and cover with 26.9%, hold on with 8.8%, and evacuate with 
8.7%. The distributions shown in Table S1 and the descriptions above show a strong class-imbalance issue (i.e., 
certain categories are significantly more frequent than others) existing among almost all variables.

Results
This section will first introduce the predictive performance comparison between machine learning and traditional 
statistical model. Then, we will present the predictive contribution for each variable using variable importance. 
Finally, we identify the potential nonlinear associations between each variable that has high importance values 
and protective action decision-making.

Predictive performance
Table 1 displays the calculated performance metrics. The overall prediction accuracy of XGBoost is 95%, and 
that of MNL is 66.9%. The flexible model structure and the strength of capturing nonlinear relationships behind 
the data enable XGBoost to deliver highly accurate protective action predictions. In terms of classifying the 
behavioral status, XGBoost is highly accurate in predicting evacuate and drop and cover, followed by hold on. 
This finding holds across the results calculated by both precision, recall and F1-score. By contrast, MNL has less 
predictive power for predicting each protective action, especially for hold on (none of the predictions is correct). 
This result is intuitive since MNL has a fixed (less flexible) model structure, which limits its capability in captur-
ing the complex relationships of the data.

Variable importance
Figure 3 presents the variable importance, i.e., the predictive power of each variable on classifying protective 
action decision-making. Results show that the leader indicator variable has the highest influence (16.38%) on 
the decision outcome. This suggests that social influence plays an important role in protective action decision-
making9,56. The leader’s decision may highly impact the other’s decisions regarding how to respond to earthquake 
threats. The number of people in the environment accounts for the most important (15.80%) environmental 
cue, followed by whether it is a public setting (13.65%), whether cover is available (8.98%), whether he/she is far 
away from the egress (8.97%), whether there is an obstacle on the floor (8.14%), earthquake shaking intensity 
(7.30%), and whether the environment is crowded (6.80%). Time elapsed after the video starts (10.09%) is also 
of great importance in forecasting the decision-making process. The starting position (e.g., sitting versus stand-
ing) of the decision maker when an earthquake occurs only accounts for 3.35%. Finally, whether an alarm is on 
only shows a 0.54% predictive importance for protective action decision-making. We also calculated variable 
importance aggregated by categories (as shown in Table S1). Overall, time-varying variables contribute to 26.1% 
predictive importance whereas static variables collectively account for 73.9% predictive power. On average, each 
time-varying variable accounts for 6.5% importance while each static variable has 10.6% importance.

Nonlinear relationships
While the variable importance suggests variables have differential abilities to predict outcomes, it is still not 
possible to directly connect each variable with specific protective-action decision-making. To address this, we 
adopted PDP to examine their relationships. The results of PDP for time-varying and static variables for the 
three behavioral statuses (drop and cover, hold on, and evacuate) with predictive importance larger than 5% were 
generated. Four selected variables are illustrated in Fig. 4, including shaking intensity, the number of people, 
if the decision-maker is a leader, and if the decision-maker is far from egress. For other variables, please refer 

Table 1.  Testing-set predictive performance of MNL and XGBoost. Overall Accuracy: MNL: 0.669, XGBoost: 
0.950.

Protective action Share of obs.

Precision Recall F1-score

MNL XGBoost MNL XGBoost MNL XGBoost

Other 0.556 0.717 0.978 0.798 1.000 0.755 0.989

Drop and Cover 0.269 0.587 0.909 0.628 0.930 0.607 0.920

Hold on 0.088 0.000 0.833 0.000 0.714 0.000 0.769

Evacuate 0.087 0.600 1.000 0.643 0.929 0.621 0.963
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to Fig. S1. The rug marks (i.e., tick marks) at the bottom of each plot show the distribution of the variable of 
interest. Note that the reliability of the results may be compromised in regions with fewer data points (where 
the rug marks are sparse).

Shaking intensity is positively associated with choosing drop and cover and/or hold on (Fig. 4a,b). Similarly, as 
shaking intensity increases from no shaking to MMI V (particularly from MMI IV-V), people are more likely to 
evacuate (Fig. 4c). However, after the shaking intensity exceeds MMI V, such that the shaking intensity increases 
from moderate to strong, the probability of evacuate drops rapidly between MMI V-VI and then plateaus at a 
medium level.

The number of people shown in the environment (Fig. 4d–f) has a nonlinear relationship with protective 
action decision-making. Specifically, when the number of people increases from 0 to 5, the probability of choosing 
drop and cover significantly increases. However, when the number of people exceeds 5, the probability of choos-
ing drop and cover gradually decreases. This finding suggests that this variable has a threshold effect, where the 
threshold is 5. When the number of people is less than 5, there may be more opportunities to find cover; while 
it is difficult for a large group of people to find available shelters/covers. A threshold effect is also shown in the 
PDP of evacuate. As the number of people rises from 0 to 5, the probability of choosing evacuate first slightly 
increases (the peak is when the number of people is 3) and then drastically drops. Above 5, the probability of 
evacuate remains flat.

The decision maker being a leader relates negatively with the likelihood that they will undertake any of the 
three protective actions, as shown in Fig. 4g–i. A leader is more likely to guide others (e.g., the teacher guides 
the students) than to take protective action(s). Figure 4j–l show that when the decision maker is far away from 
the egress, drop and cover or hold on are more likely, while it is less likely that the decision maker will evacuate.

Figure S1a–c present that time elapsed has a positive correlation with a decision-maker’s probability of 
choosing evacuate. This aligns with our intuition because as time goes on, the shaking intensity may become 
weaker, allowing people to evacuate from the building. By contrast, time elapsed is negatively associated with 
the probability of choosing drop and cover or hold on. Figure S1d–f show that the presence of obstacles on the 
floor has a negative relationship with the probability of drop and cover or evacuate, whereas it relates positively 
to the probability of hold-on actions. Figure S1g–i display that people are more likely to hold on and evacuate 
in a crowded environment while less likely to drop and find cover. Figure S1j–l show that cover availability is 
positively associated with the possibility of choosing drop and cover or hold on while it is negatively associated 
with evacuate. This finding suggests that when cover is available, the decision-maker is more likely to take a local 
action, rather than risking evacuating during shaking. The PDPs of the public setting indicator (Fig. S1m–o) show 
that a public setting has a positive association with choosing to hold on and evacuate but a negative relationship 
with the probability of drop and cover.

Figure 3.  Variable importance.
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Discussion
Based on the results above, in this section, we will discuss (1) the strengths of adopting explainable machine 
learning for modeling and interpreting protective-action decision-making, and (2) major findings with their 
connections to the existing literature and implications for future decision-making.

Figure 4.  Partial dependence plots. The y-axis is the probability of choosing different protective actions. The 
x-axis is the value range for the variable of interest. The rug marks (i.e., tick marks) at the bottom of each plot 
show the distribution of the variable of interest. Note that the y-axis limit changes across protective actions and 
variables.
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Strengths of adopting machine learning
First, accuracy. Machine learning models can outperform traditional statistical models in terms of prediction 
 accuracy7,47,57. The present study provides additional confirmation on this front. For example, Table 1 suggests 
that the machine learning model has a 95% prediction accuracy, significantly outperforming the traditional sta-
tistical model. The superior predictive performance can be attributed to machine learning’s more flexible model 
structure, enabling it to capture complex underlying relationships behind the data. Specifically, a pre-specified 
model structure is not required for machine learning models, and, therefore, it can effectively capture the interac-
tions among  variables7. Our machine learning model showed the highest prediction accuracy when forecasting 
evacuate, followed by drop and cover and hold on. This finding holds for all evaluation metrics including Precision, 
Recall and F1-score. One possible explanation for the relatively lower accuracy of hold on is that this behavior 
has an observation share of only 8.8% and is in an intermediate behavioral stage. Fewer observations and the 
underlying connections between drop and cover as well as evacuate may introduce significant difficulties in the 
prediction of hold on for the machine learning model. The high performance on forecasting evacuate is prob-
ably because evacuation usually has unique characteristics such as the decision maker being in close proximity 
to an exit. Drop and cover also showed high prediction accuracy; its recall rate is higher than precision. A lower 
precision rate suggests that machine learning has a comparatively higher likelihood of incorrectly classifying 
other protective actions (e.g., hold on) as drop and cover.

Second, nonlinear relationships. Another important advantage of using a machine learning model is that 
machine learning can automatically capture nonlinear relationships between explanatory variables and the tar-
get  variable9. This merit enables us to identify more detailed nonlinear relationships between each feature and 
protective behavior. Traditional statistical models usually only offer the direction of associations, i.e., negative 
or  positive7. Relationships between behaviors under investigation could display greater systematic diversity that 
is not captured by such models. For example, we would not expect there to be a linear (or monotonic) relation-
ship between shaking intensity and the probability of choosing evacuate, given that shaking intensity changes 
dramatically over the course of the  earthquake17. Using a machine learning model, we found that the effects of 
shaking intensity on the probability of choosing evacuate is nonlinear (i.e., an inverse U-shape) and there exists 
a threshold (i.e., MMI V), as shown in Fig. 4c. The revealed nonlinear relationships and identified thresholds 
can significantly enhance our understanding of how different explanatory variables shape protective actions and 
provide useful insights for policymakers to develop more effective protective-action guidelines.

Major findings
Whether the decision-maker is a leader demonstrated the highest predictive importance (15.65%) among 
all predictors. This finding reinforces the critical role of social interactions in determining protective-action 
 behaviors25,34. When focusing on the association of the leader/follower variable with each behavior, we found that 
decision-makers being a leader are less likely to have any protective action (e.g., drop and cover, hold on, or evacu-
ate). One possible reason is that the leaders observed are mostly parents, teachers, or directors; and they tend to 
provide immediate guidance and reach out to individuals who may need assistance (e.g., children or students) 
due to responsibilities and professional capacities rather than taking immediate protective actions  themselves34.

Distance from egress was found to be predictively significant in shaping protective action choices. This find-
ing aligns with our intuition that a decision-maker who is close to the egress is more likely to evacuate, while 
others at a greater distance from egress may opt to drop and find cover. The partial dependence plots, as depicted 
in Fig. 4j–l, further confirm our intuitions. Previous studies have also reported a negative relationship between 
distance to exits and evacuation choices inside  buildings5,58. However, a threshold for the distance from egress, 
or more fundamentally, the perception of the distance from egress that could determine whether an individual 
is more likely to evacuate or choose to drop and cover, and hold on, remains unknown. Answers to this question 
are critical for understanding which protective actions people are inclined to take based on their  location32. 
Nevertheless, hints towards this threshold may be concealed within our dataset, as estimating the actual distance 
from egress from videos is challenging. Future studies may consider exploring such a threshold by integrating 
videos and  surveys5 or  simulations27.

The number of people in the environment was a strong predictor for forecasting protective actions; however, 
the specific relationship between the number of people and the probability of response was complex. This find-
ing aligns with a recent study by Zhao et al.9: on the one hand, the authors showed that the relationship between 
group size and the probability of responding to an emergency, such as a fire alarm, was not monotonic. At the 
same time, it was observed that the presence of more individuals responding within a group tended to increase 
the chance of others also choosing to respond. This finding highlights the important role of social interactions 
in influencing an individual’s decision-making during an emergency. The probability of choosing to evacuate 
suddenly decreased when the number of people reached five and then remained almost stable. Previous studies 
reflected a similar finding. For example, Lovreglio et al.6 found that group size was negatively associated with the 
probability of evacuation. Additionally, people were more likely to evacuate from a building if they were  alone24, 
perhaps because they were less likely to be influenced by others’ behavioral responses. We also found that the 
probability of choosing to drop and cover significantly increased before the number of people reached five, but 
with larger numbers of people, it gradually dropped. With fewer people, there are likely more opportunities to 
find cover. However, it might become more difficult for a larger group of people to find available cover.

Another interesting variable is shaking intensity. Our empirical results showed that shaking intensity also 
influences decisions around protective actions. Figure 4c shows that MMI V may be a threshold for deciding to 
evacuate or not, which addresses a research question proposed by Lambie et al.17. The research question pertains 
to whether there exists a specific level of shaking intensity that triggers particular responses. People might be 
able to move around and seek an exit to evacuate when shaking intensities are weak (e.g., less than MMI V). As 
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shaking intensity grows larger than MMI V, the intense nature of the shaking may impede an individual’s mobility 
and reduce the probability of evacuate. However, scholars have argued that people’s behavioral responses could be 
diverse so that observations of certain protective actions may not be transferable globally to different  contexts29. 
Therefore, further investigations could test if the observed threshold holds for other scenarios or contexts.

We should note that previous studies found that personal experience and risk perceptions also play essential 
roles in people’s protective action decision-making2,12,34–36. However, we are not able to capture such factors from 
each individual via the video data. Our machine learning-based approach, even excluding personal experience 
and psychological factors, shows promising results in forecasting the protective actions of decision-makers, 
providing new insights for response behaviors during earthquakes.

Conclusion
Using CCTV footage and videos collected from the 2018 Anchorage earthquake, this study examines the applica-
tion of machine learning in modeling protective action decision-making. Overall, it contributes twofold to the 
literature. First, we show that machine learning methods have strong capabilities for modeling protective action 
decision-making during earthquakes. Specifically, they can not only deliver better prediction accuracy than 
commonly-used traditional statistical models , but also offer broader insights into behavioral interpretations. 
In particular, machine learning models automatically capture the complex, nonlinear relationships between 
various factors (e.g., social and environmental cues) and choices for protective actions (i.e., drop and cover, hold 
on, evacuate). Second, this study is one of the first few studies that employ real-world CCTV footage and videos 
to investigate protective action behavior during earthquakes. The results have shown great potential for such 
audio-visual data to enhance understanding of human behavior under emergency scenarios. Also, the results 
and insights can be further used for improving the design of earthquake early-warning  systems18,59. In short, 
this study can provide a foundation for emergency managers, policymakers, and safety professionals to develop 
more effective protective-action recommendations.

Despite the contributions, this study has limitations that open avenues for future research. We argue that 
this work could be conceptualized as a pilot study for several reasons. Firstly, this study only adopts 17 videos 
(albeit with 1593 unique behavioral statuses) for modeling. Future research could expand the video sample size 
by incorporating empirical data from multiple earthquake events. This would not only enhance the robustness 
of the results but also provide a more comprehensive understanding of protective action decision-making pro-
cesses across different contexts. Secondly, while utilizing CCTV footage and video data shows great potential, 
these sources fall short in accurately capturing certain crucial aspects such as sociodemographic factors, prior 
experience, and individuals’ perceptions of risk. In fact, prior research has demonstrated that these factors are 
also influential in decision-making during  emergencies2,12,34. Future studies might consider integrating multi-
source data, e.g., combining surveys with CCTV footage and videos, to better understand how various factors 
interplay with people’s perceptions of issues like timing and understanding critical barriers to ultimately shape 
protective action decisions.

Data availibility
Videos and annotations that support the findings of this study are published on an Open Science Framework 
 repository45: https:// osf. io/ pbyzx.

Code availability
The analysis was conducted using Python46. Code to reproduce our main results is available on GitHub: https:// 
github. com/ Xiaoj ian- Zhang/ EQ_ PA_ ML_ Video Data.
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