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Enhancing two‑stage object 
detection models via data‑driven 
anchor box optimization 
in UAV‑based maritime SAR
Beigeng Zhao * & Rui Song 

The high‑altitude imaging capabilities of Unmanned Aerial Vehicles (UAVs) offer an effective solution 
for maritime Search and Rescue (SAR) operations. In such missions, the accurate identification of 
boats, personnel, and objects within images is crucial. While object detection models trained on 
general image datasets can be directly applied to these tasks, their effectiveness is limited due to the 
unique challenges posed by the specific characteristics of maritime SAR scenarios. Addressing this 
challenge, our study leverages the large‑scale benchmark dataset SeaDronesSee, specific to UAV‑
based maritime SAR, to analyze and explore the unique attributes of image data in this scenario. We 
identify the need for optimization in detecting specific categories of difficult‑to‑detect objects within 
this context. Building on this, an anchor box optimization strategy is proposed based on clustering 
analysis, aimed at enhancing the performance of the renowned two‑stage object detection models in 
this specialized task. Experiments were conducted to validate the proposed anchor box optimization 
method and to explore the underlying reasons for its effectiveness. The experimental results show 
our optimization method achieved a 45.8% and a 10% increase in average precision over the default 
anchor box configurations of torchvision and the SeaDronesSee official sample code configuration 
respectively. This enhancement was particularly evident in the model’s significantly improved ability 
to detect swimmers, floaters, and life jackets on boats within the SeaDronesSee dataset’s SAR 
scenarios. The methods and findings of this study are anticipated to provide the UAV‑based maritime 
SAR research community with valuable insights into data characteristics and model optimization, 
offering a meaningful reference for future research.

Remote sensing  imagery1,2 refers to earth surface images captured from high altitudes by satellites, high-altitude 
cameras, or unmanned aerial vehicles (UAVs). The maturation and widespread application of UAV  technology3,4 
in recent years have significantly increased its adoption by a variety of enterprises and organizations for image 
collection in numerous fields. Images captured by UAVs at high altitudes provide a rich source of information 
on surface topography and terrestrial  objects5,6. They are indispensable in a range of specialized applications, 
including environmental  monitoring7, disaster and emergency  response8, crop  management9, urban  planning10, 
and in the surveillance of forests and  oceans11–14, as well as in national defense and  security15. Marine search and 
rescue (SAR) represents a notable application in this area. In these scenarios, UAVs capture overhead images of 
the sea, enabling the accurate identification of objects such as boats, floaters, and life jackets. This information 
is crucial in enhancing the effectiveness of rescue and recovery  operations16.

In the field of image object detection, methods utilizing deep learning models have become a hotbed of 
research, achieving significant strides in this  area17,18. This encompasses the construction of large-scale, general-
purpose image object detection  datasets19–22 and the development of effective deep learning  models17. Within 
these developments, two primary types of models have emerged as mainstream in UAV image object detection: 
the two-stage  models23,24, known for their accuracy, such as R-CNN and its  variants25 (e.g., Faster R-CNN26), 
and the one-stage  models27, celebrated for their speed, like  You Only Look Once (YOLO)28. General-purpose 
image object detection models, as well as those specifically designed for UAV imagery, can be directly adapted 
or integrated into the marine SAR domain. However, images captured by UAVs for maritime SAR significantly 
differ from general-purpose images and other remote sensing  scenarios16. Therefore, a thorough analysis of the 
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unique data characteristics in this field and the development of targeted optimization strategies to improve the 
accuracy of detection models is of paramount importance for advancing UAV-assisted maritime SAR research.

In response to the aforementioned challenge, our research objective is to enhance the accuracy of two-stage 
object detection models, known for their precision in UAV-based maritime SAR scenarios, through a data-driven 
approach that includes the strategic optimization of anchor  boxes29. By refining anchor box parameters, we aim 
to leverage their critical role in improving detection efficacy within these complex scenarios. Specifically, we 
conducted an in-depth analysis and exploration of the data characteristics within the large-scale benchmark 
dataset  SeaDronesSee16, tailored for UAV-based maritime SAR. Our focus narrowed down to three particularly 
challenging categories of objects: swimmers on boats, floaters on boats, and life jackets. This led to the formula-
tion of targeted research questions. Building upon this, we designed an anchor box optimization strategy for 
two-stage models, employing clustering analysis. The effectiveness of this method was corroborated through 
experiments, thereby addressing and answering the proposed research questions.

Our contributions are primarily threefold. Firstly, we have conducted an in-depth analysis of the data char-
acteristics in UAV-based maritime SAR object detection tasks, as exemplified by the SeaDronesSee dataset. This 
analysis identified several object categories that pose significant challenges in terms of accurate detection, thereby 
formulating the foundation of our research questions. Secondly, in response to these questions, we developed a 
strategy for anchor box optimization through clustering analysis, aimed at enhancing the detection accuracy of 
two-stage models in UAV-based maritime SAR tasks. Additionally, we designed and executed experiments to 
validate the effectiveness of our proposed method. The results and corresponding analyses not only answered 
our research questions but also deepened our understanding of data in the specialized scenarios.

Related work
Anchor boxes play a pivotal role in modern object detection models, providing a predefined set of reference 
frames to facilitate the detection of diverse objects within an image. By encompassing a variety of sizes and 
aspect ratios, well-defined anchor boxes adeptly adapt to and identify targets of varying shapes and sizes. In the 
original Faster R-CNN framework as presented by Ren et al.26, a combination of anchor boxes with scales of 128, 
256, and 512 and aspect ratios of 1:1, 1:2, and 2:1 was implemented, yielding nine distinct initial sizes for these 
anchor boxes. The Single Shot MultiBox Detector (SSD)30 method extends this configuration by including addi-
tional ratios of 1:3 and 3:1. Similar approaches are also utilized in other methodologies like Cascade R-CNN31, 
 RefineDet32, and Guided  Anchoring33. In these models, anchor boxes are set with common scales and ratios to 
aid in the detection process. During detection, these predefined-sized anchor boxes undergo localization regres-
sion, adjusting in size and position to accurately determine significant areas in the images.

In some studies, researchers have developed adaptive methods to generate optimized anchor boxes. For 
example, Zhang et al.34 designed a semantic-guided anchor adaptive learning network capable of producing 
anchor boxes optimized for ship targets, thereby enhancing the efficiency of ship instance segmentation models 
within the hybrid task cascade  framework35. Yang et al.36 and Zhong et al.29 approached anchor box dimensions 
as trainable parameters, enabling the model to dynamically adjust anchor sizes during training based on anno-
tated data. While our method, in contrast to these approaches, relies on clustering analysis of specific datasets 
and cannot generate anchor boxes adaptively, it is dedicated not only to enhancing the detection precision of the 
model but also to identifying and investigating objects that are challenging to detect accurately in UAV-based 
SAR scenarios and tasks represented by specific datasets.

In specialized object detection tasks, optimizing the shape of anchor boxes according to the characteristics of 
the objects can enhance the detection capabilities of the models. For instance, Liao et al.37 proposed additional 
predefined anchor boxes with ratios of 5:1 and 1:5 for text detection, improving model performance due to the 
typically elongated rectangular shape of text. Similarly, Najibi et al.38 and Zhang et al.39 employed anchor boxes 
with a 1:1 ratio, achieving better results in face detection tasks, as the bounding boxes for faces are generally 
square. Wei et al.40 proposed a clustering analysis method based on Intersection over Union (IoU) to identify 
more suitable initial anchor box sizes for the COCO  dataset22. In pedestrian detection, Zhang et al.41 observed 
a substantial impact of anchor box size on model performance and selected an optimized ratio of 0.41 based on 
data characteristics. Inspired by these data-driven and clustering analysis-based methods of anchor box optimi-
zation, our research question emerged, exploring the effect of anchor box optimization on model performance 
in maritime SAR object detection scenarios using drones, as exemplified by SeaDronesSee, and uncovering the 
underlying principles.

Building upon the foundational work highlighted above, we observe that while the optimization of anchor 
box dimensions has been reported to improve model accuracy in various  studies37–40, there remains a gap in 
understanding the specific reasons behind these improvements, particularly in relation to the unique data char-
acteristics of different scenarios. In this study, we delve into a detailed analysis of how different anchor box 
optimization strategies affect the accuracy of object detection in maritime SAR scenarios using drones, such 
as those exemplified by SeaDronesSee. Through an exploration that combines the analysis of object detection 
accuracy across different categories with an examination of their visual characteristics, we aim to uncover the 
sensitivity of various objects to changes in anchor box configurations. This approach allows us to identify object 
categories that pose significant challenges to detection, thereby revealing the underlying principles that govern 
the effectiveness of anchor box optimization in maritime SAR scenarios.

Method
Data analysis
We utilized the SeaDronesSee object detection  dataset16 to analyze data characteristics in UAV-based maritime 
SAR scenarios, formulating research questions and designing experiments accordingly. Released in 2021, the 
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SeaDronesSee dataset is a large-scale open-water dataset of boats and personnel. This dataset comprises 5630 
high-definition images captured by UAVs of varying specifications during search and rescue missions. The images 
are of high clarity, with resolutions of either 3840×2160 or 5456×3632 pixels. Each object within these images is 
accurately annotated with ground truth bounding boxes following the COCO standard. Representative images 
from the SeaDronesSee dataset, along with their bounding boxes, are illustrated in Figs. 1 and 2.

Further, a detailed statistical analysis was performed on the number and area (measured in pixels) of differ-
ent object categories within the dataset, as illustrated in Table 1. The data reveals a considerable variance in the 
area of all objects, with the most significant span observed in floaters and boats, ranging from as small as 50 and 
165 pixels to as large as several hundred thousand pixels. Even the category with the smallest span, life jackets, 
ranges from a minimum of 336 pixels to a maximum of 2052 pixels. Based on this observation, we deduce that 
optimizing anchor box sizes significantly influences the object detection performance in this specific context, 
particularly for state-of-the-art two-stage object detection models. This effect is further pronounced in models 
employing the feature pyramid network (FPN)42 architecture and complex feature layers. The variations in size 

Figure 1.  Representative images from the SeaDronesSee dataset, captured by UAVs of varying specifications at 
different times, altitudes, and angles.

Figure 2.  Objects of various categories in the SeaDronesSee dataset, with their annotated ground truth 
bounding boxes (red rectangles in the image).

Table 1.  Statistical annotation information of different object categories in the SeaDronesSee dataset, with 
areas measured in pixels.

Object Annotation count Min area Max area Avg area

Swimmer 2480 110 65601 5368.39

Floater 5963 50 172788 6631.17

Boat 7643 165 351330 31416.82

Swimmer on boat 3501 108 35530 4323.04

Floater on boat 1603 100 36736 4361.91

Life jacket 82 336 2052 987.34
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among objects of the same category within this dataset underscore the importance of this optimization, high-
lighting its critical role in enhancing the detection capabilities of such advanced models.

Furthermore, we identified two data characteristics that could potentially affect model performance. Firstly, 
there is an imbalance in the annotation counts across different object categories: the category ’boat’ has the 
highest number of annotations with over 7000 bounding boxes, while ’life jacket’ has the least, with just over 80. 
Secondly, there is an overlap among four categories - ’boat’, ’swimmer on boat’, ’floater on boat’, and ’life jacket’, 
as illustrated in Fig. 2d–f.

Given the analysis presented, the UAV-based maritime SAR scenario data likely pose distinct challenges. These 
include considerable size variations within the same object category, an imbalance in annotation quantities, and 
overlapping bounding boxes for certain unique object categories. Addressing these specific characteristics of the 
dataset is essential, necessitating the development of focused research questions and the exploration of effective 
methods to resolve and respond to these challenges.

Research questions
Based on the aforementioned data analysis, we propose the following three research questions that need to be 
addressed and answered:

• RQ1. Given the overlapping nature of objects such as boats, swimmers on boats, floaters on boats, and the 
notably scarce annotations of life jackets in the images, are these categories truly challenging to recognize?

• RQ2. The two-stage models have been established as advantageous in terms of recognition accuracy. In 
UAV-based maritime SAR tasks, can anchor box optimization strategies further enhance the accuracy of 
such models?

• RQ3. If different anchor box optimization strategies contribute to overall model accuracy improvements, in 
what specific aspects do these enhancements manifest?

Proposed method
Overall, we explored the research questions by conducting cross-validation of various models under multi-
ple anchor box optimization strategies. Our methodology is discussed in detail in the following subsections, 
encompassing four key aspects: model selection, anchor box optimization strategies, validation criteria, and 
experimental setup.

Model selection
For model selection, we employed a series of two-stage object detection models based on the Faster R-CNN 
 framework26, combined with different backbones and configurations, including both with and without the feature 
pyramid network (FPN)42. These models have been validated for state-of-the-art accuracy in the field of UAV 
images object  detection16. Moreover, anchor boxes play a pivotal role in the object detection mechanism of these 
models, making them highly suitable for addressing the research questions we have put forth.

Specifically, Faster R-CNN is a two-stage object detection model. The first stage involves a Region Proposal 
Network (RPN) that generates object proposals. The RPN slides over the feature map obtained from the input 
image and outputs a set of rectangular object proposals (anchors) along with objectness scores. Mathematically, 
for a given anchor a , the RPN predicts a bounding box regression �a = (�x,�y,�w,�h) to adjust the anchor’s 
position and size, leading to the refined anchor a′ = a+�a . The objectness score oa indicates the likelihood of 
the anchor containing an object.

The second stage of Faster R-CNN refines these proposals and classifies them. Each proposal is pooled to a 
fixed-size feature map and then passed through a series of fully connected layers. The output includes a refined 
bounding box �b and a set of class probabilities p . In the context of Faster R-CNN, anchor boxes are predefined 
bounding boxes of various scales and aspect ratios that serve as references for object detection. The optimization 
of these anchor boxes is crucial, especially in datasets where objects vary significantly in size.

Integrating the FPN with Faster R-CNN significantly enhances the model’s performance, particularly in the 
context of anchor box optimization. FPN constructs a top-down architecture with lateral connections, facilitating 
the use of multi-scale, pyramidal hierarchy features. This multi-level feature representation allows for a more 
effective deployment of anchor boxes across different scales, compared to a Faster R-CNN model without FPN. 
In a standard Faster R-CNN without FPN, anchor boxes are applied to a single-scale feature map, which can 
limit their effectiveness in detecting objects of varying sizes. However, with FPN, anchor boxes are strategically 
distributed across different levels of the feature pyramid. This approach enables the model to better match anchor 
boxes with objects of corresponding sizes at different levels of the pyramid, enhancing the model’s ability to detect 
objects across a broader range of sizes. The combination of optimized anchor boxes and the multi-scale feature 
representation of FPN provides a robust framework for accurately identifying and localizing objects in complex 
scenes, making it particularly beneficial for scenarios with diverse object sizes and dimensions.

Anchor box optimization strategies
We conducted a comparative analysis of model performances under four distinct anchor box optimization 
strategies. These included: 

1. The default anchor box configuration as provided by a third-party framework (torchvision, in our experi-
ments);

2. The anchor box configuration recommended in the official example  code43 of the SeaDronesSee dataset;
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3. Anchor box sizes derived from IoU-based  clustering40;
4. Anchor box sizes determined through k-means clustering;
5. Configurations optimized for specific FPN feature map layers based on the k-menas clustering.

Each of these approaches represents a unique method of tuning anchor boxes, offering insights into how differ-
ent configurations impact the model’s ability to accurately detect and localize objects in marine SAR scenarios.

Specifically, the default configuration in torchvision utilizes anchor boxes with sizes of 32, 64, 128, 256, and 
512, and aspect ratios of 0.5, 1.0, and 2.0. In contrast, the official example  code43 of the SeaDronesSee dataset rec-
ommends a broader range of sizes: 8, 16, 32, 64, 128, 256, and 512, with the same aspect ratios of 0.5, 1.0, and 2.0.

IoU-based  clustering40 optimizes a given list of anchor boxes iteratively. In each iteration, every ground 
truth box bi in the training set is assigned to the anchor box aj in the list with the highest IoU. The distance 
dij(bi , aj) = 1− IoU(bi , aj) is calculated, and each ground truth box is assigned to the anchor box aj for which 
this distance is minimized, effectively selecting the anchor with the maximum IoU. The average dimensions of 
all ground truth boxes assigned to each anchor box, denoted as Cj , are calculated to determine a more optimal 
size µj . This process is repeated until the sizes of the anchor boxes in the list, now represented by A∗ , no longer 
change. The related process is outlined in Algorithm 1, where the set of all ground truth boxes assigned to the 
j-th anchor box is represented by Cj , and the updated list of anchor boxes with optimized dimensions is denoted 
by A∗ . We followed the method proposed by Wei et al.40 to select a list containing five initial anchor box sizes 
for iterative optimization. On the SeaDronesSee training dataset, with all images normalized to 1080x1920, the 
results of the IoU-based clustering optimization for anchor box widths and heights were (10.6, 11.9), (23.4, 28.2), 
(45.0, 48.3), (60.8, 101.2), and (150.6, 177.1).

Algorithm 1.  IoU-based clustering method
Regarding the k-means clustering method, we first standardized the input image size to 1080×1920 pixels to 

address the issue of varying image sizes in the dataset. Following this standardization, an exhaustive analysis of 
each image’s annotated information was conducted. This analysis involved collecting the widths and heights of 
all annotated bounding boxes present in the training dataset. Utilizing this data, the k-means clustering method 
was employed to categorize these dimensions into distinct groups. K-means is an algorithm for partitioning n 
observations into k clusters, where each observation belongs to the cluster with the nearest mean. It minimizes 
the within-cluster sum of squares. The mathematical formulation of this objective is:

where x represents a data point, Si is the i-th cluster, and µi is the centroid of points in Si . By employing k-means 
on the bounding box dimensions, distinct clusters indicative of common object sizes within the dataset were 
identified.

To determine the appropriate number of clusters k , we employed the elbow method which involves calculat-
ing and comparing the inertia for different values of k in the k-means clustering process. Inertia, in this context, 
refers to the sum of the squared distances between each data point and the centroid of its assigned cluster. The 
values of inertia corresponding to different numbers of clusters k are illustrated in Fig. 3. The principle behind 
the elbow method is based on observing the rate of decrease in the inertia as the number of clusters k increases. 
Initially, as k increases, there is a significant reduction in inertia, indicating a substantial gain in defining more 
distinct clusters. However, beyond a certain point, the reduction in inertia becomes marginal, suggesting limited 
improvement in cluster definition. The mathematical representation of inertia is given by:

where x denotes a data point, Si represents the set of data points in the i-th cluster, and µi is the centroid of the 
i-th cluster.

arg min
S

k∑

i=1

∑

x∈Si

�x − µi�
2

Inertia =

k∑

i=1

∑

x∈Si

�x − µi�
2



6

Vol:.(1234567890)

Scientific Reports |         (2024) 14:4765  | https://doi.org/10.1038/s41598-024-55570-z

www.nature.com/scientificreports/

Based on the elbow method visualization results depicted in Fig. 3, we have preliminarily determined the 
preferable number of clusters, k , to lie between 7 and 10. The visualization of the cluster center dimensions for 
four different cluster counts, ranging from 7 to 10, is illustrated in Fig. 4. We opted for k = 9 as the number of 
clusters, as this configuration provided a more comprehensive coverage of the two-dimensional space compared 
to k = 7 and 8. For instance, the region around the point (107.0, 133.1) in Fig. 4c is not effectively encompassed 
by cluster centers in Fig. 4a,b. Furthermore, compared to the case with k = 10 , the visualization for k = 9 does 
not exhibit any notably vacant areas. Based on these observations, k = 9 was selected as the cluster number.

Figure 3.  Variation of inertia values with different numbers of clusters using the elbow method.

Figure 4.  Anchor box sizes obtained from clustering with different cluster numbers. The x-axis and y-axis 
represent the width and height of the anchor boxes, respectively, measured in pixels. Subfigures (a–d) 
correspond to the clustering results with 7, 8, 9, and 10 clusters, respectively.
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In optimizing anchor boxes for the FPN feature layers, we employed a size-scaling approach grounded in 
k-means clustering analysis tailored to each specific feature layer. In the case of our experiments with the Faster 
R-CNN model equipped with an FPN and based on a ResNeXt101 64x4d backbone, its five feature layers were 
observed to be downscaled by factors of 4, 8, 16, 32, and 64, respectively, relative to the original input image 
size. Consequently, we scaled the sizes of the anchor boxes fed into each feature layer in accordance with these 
downscaling factors, ranging from 4 to 64 times smaller than the sizes determined by the cluster analysis.

Experimental setup and validation criteria
We constructed the object detection model described in Method Section using PyTorch 2.1 and torchvision 
0.1644,45, and leveraged an RTX 4090 graphics processor to expedite the model training and evaluation processes. 
Specifically, we crafted distinct Faster R-CNN models, each utilizing ResNet50, ResNet101, and ResNeXt101 
64 × 4d as  backbones46–48, with and without FPN integration. Notably, given the significantly superior perfor-
mance of the ResNeXt101 64 × 4d backbone compared to ResNet50 and ResNet101, the latter two were exclu-
sively relegated to control groups and were not subjected to further experimentation as backbones for models 
integrated with FPN. This strategic approach ensures a focused exploration of the most promising configurations, 
thereby optimizing our investigation of enhanced detection capabilities.

During training, we accumulate four distinct loss components generated by the Faster R-CNN architecture, 
namely the object loss, RPN box regression loss, classification loss, and ROI box regression loss. These losses are 
aggregated, and model parameters are optimized through backpropagation. Following each complete epoch of 
training, the model’s performance is assessed using the COCO evaluation  interface22, measuring average preci-
sion and recall across various Intersection over Union (IoU) thresholds. To mitigate overfitting, we employ an 
early stopping strategy. Specifically, training halts when the average precision at IoU thresholds ranging from 
0.50 to 0.95 (the AP score in Table 2) shows no improvement over ten consecutive epochs. The model with the 
highest AP score in the training history is then selected as the optimal model.

Results
Impact of anchor box sizes on model performance
The evaluation performance of models with various architectures and different anchor box optimization strate-
gies on the SeaDronesSee dataset is presented in Table 2. The models represented in the first eight rows of the 
table do not employ an FPN, and the results indicate that while transitioning the backbone from ResNet50 to 
the more complex ResNeXt101 can improve model performance, this enhancement is not as significant as the 
introduction of an FPN. Moreover, the anchor box optimization strategies based on clustering analysis (whether 
IoU-based40 or k-means) not only failed to improve models without an FPN but also led to negative optimiza-
tion. The intuitive reason behind this phenomenon is that these models use anchor boxes in a relatively basic 
manner. Fine-tuning the sizes of the anchor boxes, derived from clustering analysis and lacking extreme small 
and large values like 2 or 256, without incorporating the FPN’s scaling of image features, actually leads to model 
deoptimization. The absence of these extreme sizes and the omission of FPN’s image feature scaling compromise 
regression efficiency, resulting in counterproductive optimization efforts.

In the last five rows of Table 2, the performance of models equipped with an FPN under five different anchor 
box optimization strategies, as described in the Method Section, is shown. The results clearly demonstrate that 
anchor box optimization strategies significantly enhance the performance of models with an FPN in the mari-
time rescue object detection scenario presented by the SeaDronesSee dataset. The two optimization schemes 

Table 2.  Performance assessment using COCO metrics: Average precision (AP) and recall (AR), along with 
category-specific average precision categorized as swimmer (S), floater (F), swimmer on boat ( S∗ ), floater on 
boat ( F∗ ), boat (B), and life jacket (LJ). In model names, “F” denotes Faster R-CNN. Suffixes “-default” and 
“-SDS” indicate models using torchvision’s default anchor configurations and SeaDronesSee official sample 
 code43 recommendations, respectively. “-IoU” and “-KM” correspond to anchor boxes optimized based on 
 IoU40 and k-means clustering. “-FL” signifies layer-by-layer anchor size optimization for the FPN layer.

Model AP AP50 AP75 AR1 AR10 S F S
∗

F
∗ B LJ

F.ResNet50-default 11.1 24.8 8.7 6.4 15.6 36.1 28.0 2.4 0.0 82.3 0.0

F.ResNet50-SDS43 11.3 24.9 8.5 6.7 16.7 36.5 29.2 2.4 0.2 81.0 0.0

F.ResNet50-IoU40 6.3 16.2 4.3 3.8 9.1 20.4 15.1 0.7 0.0 60.8 0.0

F.ResNet50-KMeans 7.6 20.0 4.8 4.6 11.4 25.6 21.5 1.7 0.0 71.4 0.0

F.ResNeXt101-default 13.6 28.4 11.1 7.6 18.3 44.2 37.9 1.6 0.0 86.8 0.0

F.ResNeXt101-SDS43 12.7 27.6 9.9 7.2 18.5 41.9 36.3 2.4 0.8 84.1 0.0

F.ResNeXt101-IoU40 5.4 13.6 3.9 3.6 8.0 18.6 16.4 0.5 0.0 54.2 0.0

F.ResNeXt101-KMeans 7.4 18.7 5.3 4.4 10.9 23.3 21.9 0.6 0.2 66.2 0.0

F.ResNeXt101-FPN-default 24.9 44.8 22.9 14.0 30.5 71.5 87.3 12.8 0.6 96.8 0.0

F.ResNeXt101-FPN-SDS43 32.7 62.8 24.9 22.5 41.8 71.6 88.1 39.2 30.5 96.8 50.5

F.ResNeXt101-FPN-IoU40 33.1 67.1 26.4 23.0 42.7 73.7 90.1 37.0 54.2 96.8 50.5

F.ResNeXt101-FPN-KMeans 33.3 66.7 27.3 22.8 41.8 72.0 90.8 43.5 48.1 95.9 50.5

F.ResNeXt101-FPN-FL 36.3 68.8 30.0 25.7 45.1 73.8 90.4 40.5 60.6 96.9 50.5
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based on clustering analysis not only significantly outperform the default configuration of torchvision but also 
surpass the anchor box configuration recommended by the official SeaDronesSee sample  code43. Furthermore, 
the anchor box configurations optimized layer-by-layer for each level of the FPN, based on clustering analysis, 
notably exceed the other strategies. In the following subsection, we will delve further into the reasons behind 
this improvement by analyzing the detection discrepancies across different object categories.

Impact of anchor boxes on detecting different categories
From the six columns on the right side of Table 2, it is evident that the model with FPN, even without anchor 
box optimization, already demonstrates a high degree of accuracy in detecting and recognizing categories such 
as swimmers, floaters, and boats. The primary reason for the overall improvement in the model’s average preci-
sion due to anchor box optimization lies in its enhanced capability to accurately locate and identify three key, 
smaller-sized object categories that overlap with boats, as outlined in Data Analysis Section, namely, swimmer 
on boat, floater on boat, and life jacket. To more clearly observe and validate this conclusion, we visualized the 
average detection precision for each category across different anchor box optimization strategies in the FPN-
enhanced models during each training epoch, as illustrated in Fig. 5.

Combining the data from Table 2 and Fig. 5, it is observable that the unoptimized default anchor boxes in 
torchvision are already highly accurate in detecting common object categories such as swimmers, floaters, and 
boats. In fact, models optimized with anchor box strategies did not show significant improvement in detect-
ing these standard objects. The main benefit of anchor box optimization is the substantial enhancement in the 
model’s ability to detect three specific object categories: swimmer on boat, floater on boat, and life jacket. The 
introduction of more small-sized anchor boxes, denoted as the ’-SDS’ models in the table, improved the detection 
of life jackets. Meanwhile, anchor boxes optimized through clustering analysis and tailored for FPN feature lay-
ers further advanced the model’s capability to identify the more challenging categories of swimmer on boat and 
floater on boat. Among these, the model further optimized based on cluster analysis for FPN feature layer sizes 
(denoted as “-FL” in Table 2 and Fig. 5) exhibited significant improvements in recognition across all categories.

Figure 5.  Average detection precision for each category across different anchor box optimization strategies in 
the FPN-enhanced models during each training epoch.
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Discussion
Answers to research questions
Based on data analysis and experimental results, we provide the following answers to the research questions 
proposed:

• A1 Among the overlapping object categories, boats are relatively easy to detect, while the other three cate-
gories-swimmers on boats, floaters on boats, and life jackets-pose challenges for recognition. The intuitive 
reason is that, in cases of overlap, boats have a significantly larger area compared to the other three categories, 
and their bounding boxes encompass the smaller objects with a high-contrast sea background. In contrast, 
the three smaller categories are much smaller than boats, their bounding boxes are nested within those of 
boats, and they have a boat texture background that is difficult to distinguish.

• A2 In UAV-based maritime SAR object detection tasks, anchor box optimization strategies have a modest 
effect on structurally simpler two-stage models (e.g., models without FPN and with a ResNet50 backbone 
as used in our experiments), occasionally leading to negative optimization. However, they are highly effec-
tive for more complex structured models (e.g., models with an FPN and a ResNeXt101 64 × 4d backbone 
in our experiments). This effectiveness is evident in various aspects such as the range of anchor box sizes, 
whether the anchor boxes are optimized based on cluster analysis of bounding boxes, and whether further 
optimization is tailored for FPN feature layers. The underlying reason is that complex two-stage models are 
particularly sensitive to the refinement and accuracy of anchor boxes.

• A3 The effectiveness of anchor box optimization is manifested in the increased detection precision of small, 
overlapping objects in UAV-based maritime SAR target detection. The more refined and closely aligned the 
anchor box sizes are with the distribution of actual bounding boxes, the more pronounced this improvement 
becomes.

Limitation and extensibility of proposed method
A limitation of the work reported in this article is the scope of validation for our proposed method, which could 
potentially be applied to a wider range of recent mainstream models. This includes, but is not limited to, Cascade 
R-CNN, RefineDet, and Guided  Anchoring31–33. However, constraints in manpower and time limited our ability 
to extensively validate and test these applications in our experiments. According to the official  leaderboard49 
statistics from SeaDronesSee, the optimized model used in our study has already surpassed many other state-
of-the-art approaches. Plans for broader exploration and deeper optimization of these methodologies are part of 
our future research agenda, aiming to further validate and enhance the applicability of our proposed approach.

The methodology and approaches proposed in this paper hold promising potential for experimental applica-
tion across various remote sensing or UAV object detection datasets. This includes but is not limited to bench-
marks in maritime surveillance such as the SSDD dataset based on remote sensing  imaging50,51, and UAV-
collected datasets exemplified by the VisDrone  Dataset52,53. Additionally, the anchor box optimization and data 
analysis methodologies discussed in this paper hold potential for adaptation in other related tasks that rely on 
anchor boxes. This includes but is not limited to object classification and instance segmentation in maritime 
remote sensing  imagery54–58. These applications further underline the versatility and applicability of our proposed 
methods in a broader context of remote sensing and UAV-based imaging.

In addition, our proposed method relies on analyzing and mining the characteristics of data within specific 
datasets. Datasets from different scenes and tasks in the real world possess unique features. Our method is 
anticipated to be applicable in identifying the data characteristics of specific datasets collected by UAVs in the 
real world, and in optimizing the application of anchor-based object detection models in particular scenes and 
tasks. For instance, by integrating UAVs commonly used by search and rescue organizations and considering 
restrictions on flying areas, altitudes, and angles, the data characteristics in these scenarios and tasks can be 
deeply mined. This information can then be used to optimize and train anchor-based object detection models.

Discrepancy between validation and test set results
In our experiments, we trained and evaluated models using the officially designated training and validation 
sets of the SeaDronesSee dataset, which comprise 2976 training images and 859 validation images. The results 
shown in Table 2 and Fig. 5 originate from this experimental configuration. We observed a decline in model 
accuracy when applying predictions to the test set, where all models experienced a reduction in performance. For 
instance, a model scoring an AP of 36.3 on the validation set dropped to 28.9 on the test set (data sourced from 
the official  leaderboard49). Potential causes for this reduction might include overfitting control methods, as well 
as differences in data distribution and annotation quality between the test and validation sets, which may impact 
the models’ generalization capability. The specific reasons for this phenomenon warrant further investigation 
in future research. However, given that the performance disparities among models with different anchor box 
optimization strategies were consistent across both the validation and test sets - that is, models performing bet-
ter on the validation set also excelled on the test set - our proposed solutions and conclusions regarding anchor 
box optimization for UAV-based maritime SAR target detection remain valid.

Conclusions
In this study, we analyzed the detection challenges of objects in a UAV maritime SAR scenario exemplified by the 
SeaDronesSee dataset. Building on this analysis, an anchor box optimization method was proposed using cluster 
analysis to enhance the detection accuracy of two-stage object detection models for hard-to-detect objects. Our 
experiments validated the effectiveness of this approach, particularly highlighting significant improvements in 
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detecting three specific challenging objects in these scenarios: swimmers, floaters, and life jackets overlapping 
with boats.

The proposed data-driven anchor box optimization method holds potential for application and validation in 
a broader range of models, datasets, tasks, and real-world scenarios. However, due to constraints in manpower 
and time, such explorations were not realized in this study. This limitation represents both a shortcoming of the 
current research and an avenue for future investigation.

Data availability
The SeaDronesSee dataset is available at https:// macvi. org/. The validation set predictions supporting the experi-
mental results of this paper, which are in the JSON format following the COCO standards, can be accessed at 
https:// pan. baidu. com/s/ 1zHiI ck1_ pDn4V 3e7gD iJnw? pwd= 2024.

Received: 8 December 2023; Accepted: 25 February 2024

References
 1. Cheng, G., Xie, X., Han, J., Guo, L. & Xia, G.-S. Remote sensing image scene classification meets deep learning: Challenges, meth-

ods, benchmarks, and opportunities. IEEE J. Sel. Top. Appl. Earth Obs Remote Sens. 13, 3735–3756 (2020).
 2. Sheykhmousa, M. et al. Support vector machine versus random forest for remote sensing image classification: A meta-analysis 

and systematic review. IEEE J. Sel. Top. Appl. Earth Obs Remote Sens. 13, 6308–6325 (2020).
 3. Alzahrani, B., Oubbati, O. S., Barnawi, A., Atiquzzaman, M. & Alghazzawi, D. UAV assistance paradigm: State-of-the-art in 

applications and challenges. J. Netw. Comput. Appl. 166, 102706 (2020).
 4. Zhou, Y., Rao, B. & Wang, W. UAV swarm intelligence: Recent advances and future trends. IEEE Access 8, 183856–183878 (2020).
 5. Bouguettaya, A., Zarzour, H., Kechida, A. & Taberkit, A. M. Deep learning techniques to classify agricultural crops through UAV 

imagery: A review. Neural Comput. Appl. 34, 9511–9536 (2022).
 6. Srivastava, S., Narayan, S. & Mittal, S. A survey of deep learning techniques for vehicle detection from UAV images. J. Syst. Architect. 

117, 102152 (2021).
 7. Fascista, A. Toward integrated large-scale environmental monitoring using WSN/UAV/crowdsensing: A review of applications, 

signal processing, and future perspectives. Sensors 22, 1824 (2022).
 8. Jin, W., Yang, J., Fang, Y. & Feng, W. Research on application and deployment of uav in emergency response. In 2020 IEEE 10th 

International Conference on Electronics Information and Emergency Communication (ICEIEC), 277–280 (IEEE, 2020).
 9. Zhu, W. et al. UAV-based indicators of crop growth are robust for distinct water and nutrient management but vary between crop 

development phases. Field Crop. Res. 284, 108582 (2022).
 10. Preethi Latha, T., Naga Sundari, K., Cherukuri, S. & Prasad, M. Remote sensing UAV/drone technology as a tool for urban devel-

opment measures in APCRDA. Int. Arch. Photogramm. Remote. Sens. Spat. Inf. Sci. 42, 525–529 (2019).
 11. Guimarães, N. et al. Forestry remote sensing from unmanned aerial vehicles: A review focusing on the data, processing and 

potentialities. Remote Sens. 12, 1046 (2020).
 12. Yang, Z. et al. Uav remote sensing applications in marine monitoring: Knowledge visualization and review. Sci. Total Environ. 838, 

155939 (2022).
 13. Zhang, T. & Zhang, X. High-speed ship detection in SAR images based on a grid convolutional neural network. Remote Sens. 11, 

1206 (2019).
 14. Zhang, T., Zhang, X., Shi, J. & Wei, S. Depthwise separable convolution neural network for high-speed SAR ship detection. Remote 

Sens. 11, 2483 (2019).
 15. Mustofa, A. et al. The use of drones: From the perspective of regulation and national defense and security. Turk. J. Comput. Math. 

Educ. 12, 670–677 (2021).
 16. Varga, L. A., Kiefer, B., Messmer, M. & Zell, A. Seadronessee: A maritime benchmark for detecting humans in open water. In 

Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, 2260–2270 (2022).
 17. Hoeser, T. & Kuenzer, C. Object detection and image segmentation with deep learning on earth observation data: A review-part 

i: Evolution and recent trends. Remote Sens. 12, 1667 (2020).
 18. Zhao, Z.-Q., Zheng, P., Xu, S.-T. & Wu, X. Object detection with deep learning: A review. IEEE Trans. Neural Netw. Learn. Syst. 

30, 3212–3232 (2019).
 19. Ding, J. et al. Object detection in aerial images: A large-scale benchmark and challenges. IEEE Trans. Pattern Anal. Mach. Intell. 

44, 7778–7796 (2021).
 20. Shao, S. et al. Objects365: A large-scale, high-quality dataset for object detection. In Proceedings of the IEEE/CVF International 

Conference on Computer Vision, 8430–8439 (2019).
 21. Sun, X. et al. Fair1m: A benchmark dataset for fine-grained object recognition in high-resolution remote sensing imagery. ISPRS 

J. Photogramm. Remote. Sens. 184, 116–130 (2022).
 22. Lin, T.-Y. et al. Microsoft coco: Common objects in context. In Computer Vision–ECCV 2014: 13th European Conference, Zurich, 

Switzerland, September 6-12, 2014, Proceedings, Part V 13, 740–755 (Springer, 2014).
 23. Du, L., Zhang, R. & Wang, X. Overview of two-stage object detection algorithms. In Journal of Physics: Conference Series, vol. 1544, 

012033 (IOP Publishing, 2020).
 24. Sultana, F., Sufian, A. & Dutta, P. A review of object detection models based on convolutional neural network. Intell. Comput. 

Image Process. Based Appl.https:// doi. org/ 10. 1007/ 978- 981- 15- 4288-6_1 (2020).
 25. Bharati, P. & Pramanik, A. Deep learning techniques-r-cnn to mask r-cnn: a survey. Comput. Intelli. Pattern Recognit. Proc. CIPR 

2019, 657–668 (2020).
 26. Ren, S., He, K., Girshick, R. & Sun, J. Faster r-cnn: Towards real-time object detection with region proposal networks. Adv. Neural 

Inform. Process. Syst.28 (2015).
 27. Zhang, Y., Li, X., Wang, F., Wei, B. & Li, L. A comprehensive review of one-stage networks for object detection. In 2021 IEEE 

International Conference on Signal Processing, Communications and Computing (ICSPCC), 1–6 (IEEE, 2021).
 28. Jiang, P., Ergu, D., Liu, F., Cai, Y. & Ma, B. A review of yolo algorithm developments. Procedia Comput. Sci. 199, 1066–1073 (2022).
 29. Zhong, Y., Wang, J., Peng, J. & Zhang, L. Anchor box optimization for object detection. In Proceedings of the IEEE/CVF Winter 

Conference on Applications of Computer Vision, 1286–1294 (2020).
 30. Liu, W. et al. Ssd: Single shot multibox detector. In Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The 

Netherlands, October 11–14, 2016, Proceedings, Part I 14, 21–37 (Springer, 2016).
 31. Cai, Z. & Vasconcelos, N. Cascade r-CNN: Delving into high quality object detection. In Proceedings of the IEEE Conference on 

Computer Vision and Pattern Recognition, 6154–6162 (2018).
 32. Zhang, S., Wen, L., Bian, X., Lei, Z. & Li, S. Z. Single-shot refinement neural network for object detection. In Proceedings of the 

IEEE Conference on Computer Vision and Pattern Recognition, 4203–4212 (2018).

https://macvi.org/
https://pan.baidu.com/s/1zHiIck1_pDn4V3e7gDiJnw?pwd=2024
https://doi.org/10.1007/978-981-15-4288-6_1


11

Vol.:(0123456789)

Scientific Reports |         (2024) 14:4765  | https://doi.org/10.1038/s41598-024-55570-z

www.nature.com/scientificreports/

 33. Wang, J., Chen, K., Yang, S., Loy, C. C. & Lin, D. Region proposal by guided anchoring. In Proceedings of the IEEE/CVF Conference 
on Computer Vision and Pattern Recognition, 2965–2974 (2019).

 34. Zhang, T. & Zhang, X. Htc+ for SAR ship instance segmentation. Remote Sens. 14, 2395 (2022).
 35. Chen, K. et al. Hybrid task cascade for instance segmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision and 

Pattern Recognition, 4974–4983 (2019).
 36. Yang, T., Zhang, X., Li, Z., Zhang, W. & Sun, J. Metaanchor: Learning to detect objects with customized anchors. Adv. Neural 

Inform. Process. Syst.31 (2018).
 37. Liao, M., Shi, B. & Bai, X. Textboxes++: A single-shot oriented scene text detector. IEEE Trans. Image Process. 27, 3676–3690 (2018).
 38. Najibi, M., Samangouei, P., Chellappa, R. & Davis, L. S. Ssh: Single stage headless face detector. In Proceedings of the IEEE Inter-

national Conference on Computer Vision, 4875–4884 (2017).
 39. Zhang, S. et al. S3fd: Single shot scale-invariant face detector. In Proceedings of the IEEE International Conference on Computer 

Vision, 192–201 (2017).
 40. Weiyue, H. & Xiaohong, L. Clustering anchor for faster r-cnn to improve detection results. In 2020 IEEE International Conference 

on Artificial Intelligence and Computer Applications (ICAICA), 749–752 (IEEE, 2020).
 41. Zhang, L., Lin, L., Liang, X. & He, K. Is faster r-cnn doing well for pedestrian detection? In Computer Vision–ECCV 2016: 14th 

European Conference, Amsterdam, The Netherlands, October 11-14, 2016, Proceedings, Part II 14, 443–457 (Springer, 2016).
 42. Lin, T.-Y. et al. Feature pyramid networks for object detection. In Proceedings of the IEEE Conference on Computer Vision and 

Pattern Recognition, 2117–2125 (2017).
 43. Ben93kie. Seadronessee: Drone-based maritime search and rescue operation code examples. Accessed 19 Feb 2023, https:// github. 

com/ Ben93 kie/ SeaDr onesS ee (2023).
 44. Paszke, A. et al. Pytorch: An imperative style, high-performance deep learning library. Adv. Neural Inform. Process. Syst. 32, 8026 

(2019).
 45. Pytorch (2023). Accessed 3 Dec 2023, https:// pytor ch. org/.
 46. He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer 

Vision and Pattern Recognition, 770–778 (2016).
 47. Shafiq, M. & Gu, Z. Deep residual learning for image recognition: A survey. Appl. Sci. 12, 8972 (2022).
 48. Xie, S., Girshick, R., Dollár, P., Tu, Z. & He, K. Aggregated residual transformations for deep neural networks. In Proceedings of 

the IEEE Conference on Computer Vision and Pattern Recognition, 1492–1500 (2017).
 49. Seadronessee object detection leaderboard (2023). Accessed 3 Dec 2023, https:// macvi. org/ leade rboard/ airbo rne/ seadr oness ee/ 

object- detec tion.
 50. Zhang, T. et al. Sar ship detection dataset (SSDD): Official release and comprehensive data analysis. Remote Sens. 13, 3690 (2021).
 51. Zhang, T. et al. Ls-ssdd-v1.0: A deep learning dataset dedicated to small ship detection from large-scale sentinel-1 SAR images. 

Remote Sens. 12, 2997 (2020).
 52. Cao, Y. et al. Visdrone-det2021: The vision meets drone object detection challenge results. In Proceedings of the IEEE/CVF Inter-

national Conference on Computer Vision, 2847–2854 (2021).
 53. Du, D. et al. Visdrone-det2019: The vision meets drone object detection in image challenge results. In Proceedings of the IEEE/

CVF International Conference on Computer Vision Workshops,(2019).
 54. Zhang, T. & Zhang, X. A mask attention interaction and scale enhancement network for SAR ship instance segmentation. IEEE 

Geosci. Remote Sens. Lett. 19, 1–5 (2022).
 55. Zhang, T. & Zhang, X. A full-level context squeeze-and-excitation ROI extractor for SAR ship instance segmentation. IEEE Geosci. 

Remote Sens. Lett. 19, 1–5 (2022).
 56. Zhang, T. & Zhang, X. A polarization fusion network with geometric feature embedding for SAR ship classification. Pattern Recogn. 

123, 108365 (2022).
 57. Zhang, T. et al. Hog-shipclsnet: A novel deep learning network with hog feature fusion for SAR ship classification. IEEE Trans. 

Geosci. Remote Sens. 60, 1–22 (2021).
 58. Zhang, T. & Zhang, X. Squeeze-and-excitation Laplacian pyramid network with dual-polarization feature fusion for ship clas-

sification in SAR images. IEEE Geosci. Remote Sens. Lett. 19, 1–5 (2021).

Author contributions
B.Z. was primarily responsible for the project’s main conceptualization, experimentation, and manuscript writ-
ing. R.S. conducted data analysis, figure editing, and contributed to manuscript writing. All authors reviewed 
the manuscript.

Competing interests 
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to B.Z.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2024

https://github.com/Ben93kie/SeaDronesSee
https://github.com/Ben93kie/SeaDronesSee
https://pytorch.org/
https://macvi.org/leaderboard/airborne/seadronessee/object-detection
https://macvi.org/leaderboard/airborne/seadronessee/object-detection
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Enhancing two-stage object detection models via data-driven anchor box optimization in UAV-based maritime SAR
	Related work
	Method
	Data analysis
	Research questions
	Proposed method
	Model selection
	Anchor box optimization strategies

	Experimental setup and validation criteria

	Results
	Impact of anchor box sizes on model performance
	Impact of anchor boxes on detecting different categories

	Discussion
	Answers to research questions
	Limitation and extensibility of proposed method
	Discrepancy between validation and test set results

	Conclusions
	References


