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Comparing the performance 
of machine learning methods 
in estimating the shear wave 
transit time in one of the reservoirs 
in southwest of Iran
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Shear wave transit time is a crucial parameter in petroleum engineering and geomechanical modeling 
with significant implications for reservoir performance and rock behavior prediction. Without accurate 
shear wave velocity information, geomechanical models are unable to fully characterize reservoir 
rock behavior, impacting operations such as hydraulic fracturing, production planning, and well 
stimulation. While traditional direct measurement methods are accurate but resource-intensive, 
indirect methods utilizing seismic and petrophysical data, as well as artificial intelligence algorithms, 
offer viable alternatives for shear wave velocity estimation. Machine learning algorithms have been 
proposed to predict shear wave velocity. However, until now, a comprehensive comparison has not 
been made on the common methods of machine learning that had an acceptable performance in 
previous researches. This research focuses on the prediction of shear wave transit time using prevalent 
machine learning techniques, along with a comparative analysis of these methods. To predict this 
parameter, various input features have been employed: compressional wave transit time, density, 
porosity, depth, Caliper log, and Gamma-ray log. Among the employed methods, the random forest 
approach demonstrated the most favorable performance, yielding R-squared and RMSE values of 
0.9495 and 9.4567, respectively. Furthermore, the artificial neural network, LSBoost, Bayesian, 
multivariate regression, and support vector machine techniques achieved R-squared values of 0.878, 
0.8583, 0.8471, 0.847 and 0.7975, RMSE values of 22.4068, 27.8158, 28.0138, 28.0240 and 37.5822, 
respectively. Estimation analysis confirmed the statistical reliability of the Random Forest model. The 
formulated strategies offer a promising framework applicable to shear wave velocity estimation in 
carbonate reservoirs.
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GR	� Gamma-ray log
HCAL	� Caliper log
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RF	� Random forest
RHOZ	� Density
SVR	� Support vector regression
Vp	� Compressional wave velocity
Vs	� Shear wave velocity
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Shear wave velocity is one of the important parameters in petroleum engineering and geomechanical modeling. 
The importance of shear wave velocity in petroleum engineering is significant in many ways1,2. Without accurate 
information about the shear wave velocity in an oil reservoir, geomechanical modeling cannot fully describe 
and predict the rock behavior in that reservoir3. In the field of geomechanical modeling, having high accuracy 
and precision in shear wave velocity estimation provides important information about rock properties, rock 
mechanical behavior, and pressure transfer in hydrocarbon reservoirs4. By using geomechanical modeling, it 
is possible to analyze and predict rock behavior in different reservoir conditions and oil and gas-related issues 
according to shear wave velocity and other relevant parameters, including rock density and resistance. For 
example, geomechanical modeling can be used in the analysis of reservoir pressure, rock fractures, crumpling 
of drill pipes, surface subsidence, and reservoir compaction, optimal design of well stimulation operations such 
as hydraulic fracturing, as well as simulation of rock behavior in porous environments5,6. As a result, accurate 
estimation of shear wave velocity is very important in geomechanical modeling and enables petroleum engineers 
to gain a complete understanding of rock properties and reservoir performance. This information is useful in 
choosing appropriate reservoir behavior scenarios, production planning, and increasing reservoir productivity7.

Shear wave velocity, as one of the significant properties of rock, indicates its hardness and resistance, and its 
accurate understanding provides valuable information about rock’s mechanical properties, plasticity, and rock 
behavior in response to mechanical actions8. In addition to using this parameter in geomechanical modeling, 
shear wave velocity also provides effective data about fractures, cracks, and rock weaknesses in oil reservoirs. By 
analyzing the shear wave velocity around fractures and rock weak points, they can be detected and their impact 
on reservoir behavior and performance can be modeled2. This information can be used in decisions related to 
hydraulic fracturing, acid injection, or creating appropriate mechanical stresses. In the following, some aspects 
of the importance of shear wave velocity are introduced9,10:

•	 Determination of mechanical properties of rock: shear wave velocity is directly related to the mechanical 
properties of rock, including hardness, and strength. By having the most accurate possible estimate of shear 
wave velocity, we can significantly improve the determination of these properties and make the best decisions 
about drilling, injecting, and extracting oil.

•	 Diagnosis and analysis of fractures: shear wave velocity can help us identify fractures and weak points in 
rock. By analyzing the shear wave velocity around fractures, we can obtain important information about 
the location, size, and properties of fractures. This information is invaluable for evaluating their behavior, 
optimizing operations, and managing the reservoir.

•	 Relationship with other parameters: shear wave velocity in combination with compressive velocity provides 
more complete information about oil reservoirs. By having detailed information about these parameters, we 
can improve the reservoir pressure estimation, detect the mechanical behavior of the reservoir rock, estimate 
the mechanical stresses, and improve the productivity of the reservoir.

•	 Basic data in geomechanical modeling: as stated, the shear wave velocity is one of the most basic data in the 
construction of mechanical earth models, whose applications were mentioned above.

Shear wave velocity can be measured through laboratory or field methods. In the laboratory method, the core 
sample taken from the well is stimulated directly using shear waves, and when the shear waves reach a point in 
the rock, the time of their passage is recorded. According to the distance between the excitation source and the 
detector (identifier/receiver), shear wave velocity is calculated. It is noteworthy that this method, which is known 
as the direct method, despite its high accuracy, requires a lot of time and money, as well as expert manpower. Also, 
coring and conducting direct tests to estimate the physical and mechanical properties of the rock is expensive and 
difficult in many cases due to its destructive nature. Alternatively, indirect methods such as using seismic data or 
petrophysical data taken from well logs can be used with acceptable accuracy. This is possible by using statistical 
analysis of well logging and seismic data as well as using empirical relationships extracted by researchers. Also, 
today, this can be done with high accuracy using artificial intelligence algorithms11.

The estimation of shear wave velocity using empirical relations has been introduced by many researchers. 
Among these, we can mention the relationships presented by12–16. In these models, different empirical relation-
ships have been proposed to estimate Vs using only pressure wave velocity (VP) in different rocks. One of the 
most important disadvantages of experimental methods is the lack of use of other petrophysical parameters such 
as density, porosity, etc., which have an effective relationship with shear wave velocity. Also, since these methods 
are generally developed for specific lithology or field and geological conditions, they are not comprehensive and 
cannot be generalized to different types of fields with different lithological conditions. Along with experimental 
methods, machine learning systems and intelligent algorithms can be very effective and used comprehensively. 
In the following, some prominent studies conducted in this field are mentioned.

Tabari et al.17 used artificial neural networks to estimate shear wave velocity in underground formations. Data 
obtained from various well log measurements such as pressure wave velocity, gamma, neutron, and density have 
been used in this study. The neural network was trained using 80% of the data and validated with the remaining 
20%. This study showed that using VP is more accurate and reliable than using porosity to approximate shear 
wave velocity. The mentioned study highlights the potential of machine learning algorithms for the accurate 
estimation of subsurface parameters such as shear wave velocity using borehole data17.

In 2015, Norafken and Kodkhodaei used machine learning algorithms such as NF, GA, ANN, and ACOFIS 
intending to improve shear wave velocity estimation. The well logging data of pressure wave velocity, density, 
and neutron porosity were used as input to the four mentioned algorithms and the performance of different 
algorithms was investigated. The results showed that the new and combined approach mentioned in that study 
(ACOFIS model), in addition to the successful estimation of the shear wave velocity, is also able to estimate 
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other reservoir parameters. In the mentioned study, the ACOFIS model showed the lowest error and the highest 
correlation coefficient, so that the Vs values predicted using the ACOFIS model were in good agreement with 
the measured values18.

In 2019, Bokar et al. conducted a study to increase the accuracy of predicting shear wave velocity values 
through machine learning algorithms using well log data. They used conventional well logging data such as 
caliper, gamma, neutron, density, shear and compression wave transit time, resistivity, water saturation, and 
total porosity. Algorithms used in this study include various regression methods and support vector machines. 
The results showed that the Gaussian Exponential Process regression model has the lowest root mean square 
error and shows the best model. The findings of this study demonstrate a notable enhancement in the precision 
of prognostications as compared to the linear regression model and furthermore underscore the potential of the 
approach utilized in reservoir intervals. The results of this study also accentuate the significance of employing 
machine learning algorithms to achieve precise assessments of reservoir rock properties19.

In 2020, Zhang et al. used the Bayesian method to determine the shear wave velocity in a Chile Formation 
in South China. This study used data from various well logs, including measurements of gamma rays, pres-
sure wave velocity and shear wave velocity, volume fraction, neutron, density, and saturation components. This 
study showed that the Bayesian approach is more efficient in estimating the shale formation velocity than the 
usual methods. The findings of this study can be valuable for reservoir exploration and identification in shale 
formations20.

Olayiwola et al. in 2021 using MD, GR, RHOB, NPHI, RES-SHT, RES-MED, RES-DEP, CAL data, and 
machine learning algorithms (ANN, ANFIS, LLSVM, regression) on a comprehensive dataset of About 6526 
data points from an oil field in the northern Norwegian basin were used to estimate Vs and Vp. Based on the 
reported results, the LSSVM model is the most accurate technique for estimating both Vp and Vs. The accuracy 
order of the models was reported as LSSVM > ANFIS > ANN > REG21.

Zhang et al. conducted a study in 2022 to develop a model for lithology prediction using well log data. Vari-
ous types of input data and machine learning algorithms have been used in the mentioned study. CNN model 
was reported as the most accurate model with a 4.2% improvement compared to other models. The performance 
ranking of the algorithms used in this study is CNN > SVR > ANN. In this study, 768 training and testing sets 
with time series features were used22.

In 2023, a study was undertaken by Kheirollahi et al. to develop a precise model to predict shear wave veloc-
ity. This was accomplished through the utilization of data derived from an oil field located in the northern basin 
of Norway. In this study, different well logging measurements and machine learning algorithms, including 
MLR, ELM, and ANN, were used. The dataset contained 455 data points and pre-processing was performed 
before applying the algorithms. The feed-forward neural network exhibited the utmost level of precision, whilst 
a profound artificial neural network was posited for the prognostication of the target response in additional 
wells. The model underwent adjustment via the network search optimization technique to procure the optimal 
configuration23.

In 2023, Rajabi et al. conducted a study to develop an accurate model for predicting VP using logs including 
GR, RHOB, NPHI, RES-SHT, and average resistance. They used machine learning algorithms such as Melm-
PSO, Melm-ga, and CNN. According to the results, the CNN model is the most accurate model for predicting 
VP, followed by Melm-PSO and Melm-ga1.

In 2023, Feng et al. conducted studies to develop an accurate model for predicting shear wave velocity using 
the deep neural network (DNN) algorithm. The DNN model was very accurate in velocity prediction, with errors 
of less than 5% in both laboratory and field domains. The findings of this study highlight the potential of using 
DNN algorithms to estimate subsurface features24.

By reviewing the studies, it seems that most of the studies in this field have used machine learning algorithms 
and limited well logging data, and a comprehensive study that evaluates and compares all widely used machine 
learning methods to shear wave velocity estimation, It is less noticeable.

In this study, in addition to using various types of well logging data related to a reservoir in the southwest 
of Iran, common machine learning algorithms also be used to estimate Vs. Therefore, perceptron multilayer 
artificial neural network, random forest, Bayesian, generalized least squares, multivariate linear regression, and 
support vector machine methods have been used. These data were taken from one of the wells of a hydrocarbon 
field in the southwest of Iran in the Darian Formation. This formation is a carbonate formation with dolomite 
and calcite units. Furthermore, an evaluation has been conducted in each of the methods to determine the 
impact of the parameters on the estimation of shear wave velocity. The novelty of this research can be compared 
to the commonly utilized machine learning techniques for the assessment of shear wave velocity in a particular 
carbonate reservoir located in the southwestern region of Iran. Additionally, the analysis estimates the influ-
ence of distinct petrophysical parameters on shear wave velocity assessment within each of the methods. One 
of the main differences between the present study and previous researches is the application and simultaneous 
comparison of a common set of machine learning methods in shear wave estimation in a carbonate reservoir. 
This is seen as a shortcoming and a lack of literature in previous studies.

Methodology
Available data and studied reservoir formation
In this study, the petrophysical data set of the Wire-line logs, one of the wells located in the oil field in the south-
west of Iran, in the area of Dezful subsidence, has been used. The data set is related to the depth of 4305–4554 
from the well in front of the Darian Formation, which is a carbonate formation. In this research, several petro-
physical well logs have been used as input to intelligent methods to create a relationship for shear wave velocity 
estimation. Finally, the finest method using selected statistical parameters and the method that provides the 
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best performance is used to forecast shear wave velocity in other wells in the field that lack shear wave data. The 
data used include shear wave transit time, compression wave transit time, gamma, depth, neutron, density, and 
diameter measurement. The statistical information of the data sets and their distribution is presented in Table 1. 
Knowing the statistical characteristics of the data can help the process of removing outliers and also build a suit-
able machine learning model for prediction. From statistical data, information such as dispersion, frequent data, 
average data, average deviation, etc. can be obtained.

The standard deviation represents the dispersion of the data, DTS, DTC, GR, HCAL, RHOZ, and HTNP data 
have the highest dispersion, respectively. Positive kurtosis means that the data has a greater deviation from the 
mean, as a result, GR and HCAL data have a greater deviation from the mean compared to other parameters. 
Also, the skewness values indicate the accumulation of data on the sides of the average. If the value of skewness 
is positive, it means that the data tends more to the left of the mean, and if it is negative, it means that the data 
tends more to the right of the mean. GR, HCAL, and RHOZ data are to the left of the mean and DTS, DTC, and 
HTNP data are to the right of the mean. Figure 1 shows the profile of input data relative to depth.

As mentioned, the studied reservoir formation is the Darian Formation. Darian Formation is one of the 
recognizable geological formations in the southwest of Iran. This formation is located in parts of Khuzestan, 
Kohgiluyeh and Boyer Ahmad, Lorestan and Chaharmahal and Bakhtiari provinces. Darian Formation usually 
includes limestone, shale, and clay sedimentary masses with variable thicknesses and due to its wide coverage, 
it can show different characteristics in different areas. This formation is considered a hydrocarbon reservoir. 
The age of the Darian Formation in Dezful depression is reported as the Lower Cretaceous. This formation is 
located in the Khami group. Its upper border is formed by Kazhdami carbonates and its lower border is formed 
by Fahlian formations and in some areas by Gadvan formations. The stratigraphic column of Dezful subsidence 
formations and the placement of the Darian Formation are shown in Fig. 2.

Data preprocessing and outlier data removal
In data mining, removing outliers is very important and is considered an important step in data preprocessing. 
Outlier data refers to data that differs significantly from the general patterns of other data and unexpectedly 
compromises some of the quality and accuracy of the data. Removing outlier data can have several effects25. 
Below are some of the importance of removing outlier data26–28

•	 Improving modeling accuracy: outlier data may cause irrational deviations in the models and make the 
estimates inaccurate.

•	 Reducing the impact of noise: by removing outlier data, the effect of noise and undesirable deviations in data 
analysis can be reduced.

•	 Improving the quality of data and interpretation of phenomena: by removing outliers, we can focus more on 
important data patterns and relationships.

To pre-process the data and remove outliers, spacing methods such as Z-score, modified Z-score, standard 
deviation, Tukey, adjusted boxplot, median, and median absolute deviation have been chosen by researchers29. 
Besides the mentioned methods, graphic methods can also be used.

In this research, outlier data were removed using the standard deviation method. The standard deviation 
method is a commonly used statistical technique that involves calculating the standard deviation of a dataset 
and then removing any data points that fall outside a certain number of standard deviations from the mean. This 
method uses two powerful estimators, which are defined as follows29:

where x is the mean and SD is the standard deviation. Data that do not fall within these ranges are known as 
outlier data30. This method is applied to symmetric data that follow a normal distribution and is a powerful 
method for large normal data31. Figure 3 shows the correlation of the input data as well as the deleted outlier data.

(1)2SDMethod : x ± 2SD

(2)3SDMethod : x ± 3SD

Table 1.   Statistical information of the data used in the study.

DTS DTC GR HCAL HTNP RHOZ

Mean 116.3657 62.65156 25.21375 6.192439 0.102329 2.4623

Std 13.72256 9.913601 9.198272 0.801655 0.062093 0.110064

Median 118.1413 62.75445 22.9317 5.863 0.1074 2.449

Mode 105.0251 65.52693 22.2379 5.7711 0.0185 2.3791

Kurtosis − 1.23967 − 0.46232 2.041928 13.04231 − 1.1655 − 0.52548

Skewness − 0.02531 − 0.05874 1.361315 3.002278 − 0.0282 0.289958

Min 88.82855 38.99416 9.0195 5.6562 0.0029 2.1002

Max 145.3697 86.66428 65.0151 12.1149 0.2337 2.7615
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In Fig. 3, the red points represent the deleted data from the input data series. It should be noted that by remov-
ing an outlier from a parameter, the entire row of data including other parameters is removed. That is why the 
red points in some graphs are exactly between the blue points.

Machine learning methods
Neural network method
The function of neural networks is similar to that of biological neural systems because they both consist of a 
group of interconnected neurons. Important components of a neural network include the input layer, output 
layer, weights, bias, and activation function32,33. The input layer, which forms the first layer of the network, is 
responsible for receiving raw information. The performance of the hidden layers is determined according to the 
inputs and the relationship between the weights and biases. The performance of the output layer depends on the 
hidden layers and the weight. Weights determine the influence of each feature of the input on the network and the 
bias of the influence of each input data34. The difference between the output of the artificial neural network and 
the target data is called the error function. Equation (3) shows the relationship between input bias and weights32.

Figure 1.   Profiles of the log parameters used versus depth.
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where Wij represents the weights, Xi the input data and bj the bias. By choosing the optimal weight and bias, a 
logical relationship between input and output can be established. The optimality of the weight and bias values 
is very important in the performance of the system, that’s why the mean square error method is used for the 
optimal selection of these parameters. The data generated by the initial hidden layer undergoes transfer func-
tion processing to nullify the neurons that exert minimal influence on the outcome or lead to system deviation. 
Equation (4) is one of the most important transfer functions, the sigmoid function35 which is written as follows:

where F(Net) represents the activity values of each neuron and Net represents the neuron output of each layer. 
Figure 4 shows a schematic of the multilayer artificial neural network.

Bayesian algorithm
The Bayesian algorithm is one of the supervised learning methods in artificial intelligence. The history of the 
Bayesian algorithm dates back to the year 1763 when the Bayes formula was discovered by Thomas Bayes, but 
the equation of this algorithm was created in 198036,37. The performance of this algorithm is based on probabil-
istic and statistical methods. The Bayesian method is based on the Bayes rule, which allows to determination of 
probabilistic estimates for model parameters using previous information and new data38.

In Bayesian regression, only the probability distribution of the parameters is used instead of a fixed value for 
them. In other words, instead of finding an optimal value for the parameters, the probability distribution of the 
parameters is obtained. This probability distribution shows the probability that each parameter has a certain 
value. By having a probability distribution of parameters, we can calculate predictions and estimates that take 
uncertainty into account39.

(3)Net =
∑

WijXi + bj

(4)F(Net) =
1

1+ e−Net

Figure 2.   Stratigraphic column of Dezful subsidence formations (Zeinalzadeh 2020).
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Figure 3.   Correlation diagram of data used with shear wave velocity and outlier data display.

Figure 4.   Multilayer artificial neural network.
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One of the common methods in Bayesian regression is the use of prior distribution and posterior distribution. 
The prior distribution shows how much probability we give each value initially, and the posterior distribution 
shows how much probability we give each value after seeing the data. For inference and prediction in Bayesian 
regression, the posterior distribution is used. To calculate the posterior distribution, we first calculate the ana-
lytical or numerical posterior distribution using the prior distribution and the observed data. Then, using the 
posterior distribution, we can calculate estimates such as the mean, variance, confidence interval, and predictive 
distribution40,41.

In Bayesian regression, the governing equations of this method include Bayes’ theorem and the Markov chain 
rule. In general, the Bayes equation and the rule of the Markov chain can be expressed as follows42,43:

where P( θ |D) is the posterior distribution of the parameters (θ) considering the observed data (D). P( θ |D) 
Expresses the similarity function (Likelihood function) and shows how much data corresponds to the conditions 
that the parameters (θ) have. P(θ) is the prior distribution of the parameters, which shows how likely we believe 
different values for the parameters before seeing the data. P(D) is the normalization constant, whose inverse 
ratio makes the posterior distribution conform to the principles of probability.

Markov chain rule. 

where θ1, θ2, . . . , θn are the parameters of the regression model and P( θi|θ1, θ2, . . . , θi−1) is the prior distribu-
tion of the parameter θi considering the parameters θ1, θ2, . . . , θi−1 is Also, P(D|θ1, θ2, . . . , θn) is the function of 
similarity/accuracy of data considering all parameters42.

In the Bayesian method, our goal is actually to find the posterior distribution of P(θ|D) , which gives us more 
information about the parameters and their uncertainty.

Random forest method
Random Forest algorithm is a powerful machine learning method that is based on the combination of several 
decision trees. Random forest is used in regression and estimation problems and is very popular due to its gen-
eralizability, robustness to interactions, and good performance on new data. In the random forest algorithm, 
several decision trees are generated. Each decision tree is made separately and based on the division of input 
variables and their values, as a decision regression. This means that each leaf of the decision tree estimates the 
regression value that is extracted based on the training data for that leaf44.

A unique feature of random forest is that each decision tree is constructed using a random subset of input 
features. In other words, instead of using all the features to build each tree, several random features are chosen 
and the tree is built based on them. This stochastic process for feature selection leads to an increase in diversity 
and resolution between trees and allows the random forest model to respond to the data with high accuracy 
and good fit.

After building each decision tree, regression values are predicted for new samples. Finally, the final regres-
sion value for each sample is calculated as the average of the regression values of all decision trees. In this way, 
random forest can provide accurate predictions for regression and estimation problems.

Among the advantages of the random forest algorithm, the following can be mentioned44,45:

•	 Interpretability: according to the structure of the decision tree, it is easy to understand which features are 
important for prediction.

•	 Resistance to noisy data: random forest has a good ability to deal with noisy data and shows good performance 
for new data.

•	 Eliminating interactions: by using several decision trees, random forest can effectively reduce the interactions 
in the data.

•	 High speed: due to the distribution of calculations between trees, random forest can be implemented in 
parallel and has a high speed in general.

It should be noted that the random forest algorithm may tend to overfitting in some cases. Methods such as 
choosing the right number of trees and limiting the depth of trees can be used to deal with this problem. The 
random forest algorithm in regression is characterized by two equations: one for constructing decision trees and 
another for calculating the ultimate output of the random forest46.

The decision tree construction equation.  In each step of decision tree construction, input variables are ran-
domly selected and based on these variables, the tree is constructed. In general, the decision tree construction 
equation is as follows:

(5)P( θ |D) =
P(D|θ)P(θ)

P(D)

(6)P( θ1, θ2, . . . , θn|D) = P(θ1) · P( θ2|θ1) · P( θ3|θ1, θ2) · · · · · P( θn|θ1, θ2, . . . , θn−1) · P(D|θ1, θ2, . . . , θn)
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In this equation, X represents the training data set and m denotes the number of features that are selected 
each time the decision tree is built46.

The equation for calculating the final output of the random forest.  After building a certain number of decision 
trees, the final output of the random forest is calculated for an input sample. The equation used to calculate the 
final output in regression is as stated below:

where Ŷ  represents the estimated output for input X , T denotes the total number of trees random forest, and 
Predictioni(X) represents the output computed by decision tree i . Figure 5 shows the schematic of the random 
forest method.

Least‑squares boosting method
Regression tree ensembles are models used for predictions, generated by combining different regression trees, 
each with its weight. LSBoost is a regression suite designed to minimize the mean squared error. The steps of 
LSBoost method are as follows:

1.	 Base model: first, a base model (for example, a linear support vector machine) is defined, which is considered 
the first model in the set of models.

2.	 Prediction values: using the base model, prediction values are calculated for the training samples.
3.	 Calculation of model error: the calculation of model error involves determining the difference between the 

predicted values and the actual values. In regression tasks, the typical approach to measuring this error is by 
utilizing the sum of squared errors.

4.	 Building a new model: a new model is built based on the calculated errors. In LSBoost, this new model is 
built to reduce the error. Usually, the support vector machine is used with the kernel function.

5.	 Combination of models: the new model is combined with the previous models so that the final model is 
used for estimation. This combination is usually done using a weighting factor that is based on the calculated 
errors.

6.	 Repeating steps 2–5: steps 2–5 are repeated until reaching the best model for estimation. Usually, the number 
of models (number of steps) is determined by the user.

By repeating the above steps, LSBoost tries to build a stronger and more advanced model for estimating 
regression values by combining simple models. This method is widely used due to its power and effectiveness 
in estimation and regression48.

The governing equations of the LSBoost method for estimation and regression are as follows:

Xk = RandomSubset(X,m)

SplitVariable = SelectBestSplitVariable (Xk)

SplitValue = SelectBestSplitValue
(
SplitVariable, Xk

)

Xleft = {x ∈ Xk|x
[
SplitVariable

]
≤ SplitValue}

Xright = {x ∈ Xk|x
[
SplitVariable

]
> SplitValue}

LeftChild = BuildTree(Xleft)

RightChild = BuildTree
(
Xright

)

Tree =
(
SplitVariable, SplitValue, LeftChild, RightChild

)

(7)Ŷ =
1

T

∑T

i=1
Predictioni(X)

Figure 5.   Schematic of random forest algorithm47.
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Here f̂0(t) represents the base model, which is considered the first model in the set of models. To estimate the 
target value of y, a constant value of γ is chosen so that the sum of squared errors (SSE) is minimized.

1.	 Building a new model:

	   Here f̂m(t)  denotes the boosted model that is built in step m of LSBoost. This model is combined with 
the sum of the previous model f̂m−1(t) and the new model hm(t) which is called the weak learner function. 
� is a weighting factor that controls how much the new model adds to the previous model.

2.	 Weak learner

	   Here, hm(t) represents the weakness function constructed at step m. The optimization of this function 
involves utilizing the previous model, f̂m−1(t) , and aiming to minimize the discrepancies between the actual 
values of y and the predicted values obtained from the previous model, namely f̂m−1(ti)

49.

Multivariate regression method
Regression plays a crucial role as a data analysis tool, allowing for the examination of the relationship between 
independent and dependent variables. Specifically, multivariate regression focuses on identifying the most 
favorable relationship between several independent variables and the dependent variable50. The formula for the 
prediction function in linear regression is stated as follows:

In this context, the input parameter is represented by xi, and the weight coefficient is denoted as βi . The 
determination of the optimal weight coefficients involves minimizing the objective function. Typically, the objec-
tive function is computed by summing the squared errors, allowing for the identification of the best weight 
coefficients2:

Here, xn and yn are independent and dependent variables in training samples, respectively, and m is the num-
ber of training samples. The main goal in regression is to find the best values for the weight coefficients that will 
reduce the sum of the squared errors and obtain a more accurate prediction function for the dependent variable.

One of the most important algorithms used in regression and optimization problems is the gradient descent 
algorithm. The main goal of this algorithm is to minimize an objective function (such as a regression error func-
tion). This model has parameters such as regression coefficients, which values should be adjusted in such a way 
that the objective function (usually the sum of squared errors) is minimized.

The gradient descent algorithm to optimize this model, using the learning rate and the gradient of the objec-
tive function, gradually moves the value of the parameters to the minimum value. This algorithm is based on 
repeated steps as follows:

1.	 The initial value for the parameters is chosen (usually randomly).
2.	 The gradient of the objective function for each parameter is computed.
3.	 The parameters are updated as follows:

4.	 Steps 2 and 3 are repeated until a specified stopping condition (e.g., a specified number of iterations or reach-
ing a minimum acceptable value) is met.

The learning rate is the rate that determines how much the gradient descent algorithm should move towards 
reducing the parameter values at each step. If the learning rate is large, the algorithm may move towards an 
unstable minimum value instead of a local minimum, and instead of optimization, adverse rotations are gener-
ated. If the learning rate is small, the algorithm may progress as fast as the local minimum, but may not converge 
to the minimum value in general2.

The governing equation of the gradient descent algorithm in regression is as follows51:

In this equation, θnew indicates the new value of the parameter (regression coefficients). θold indicates the 
previous value of the parameter. learning_rate is the learning rate that determines how much move towards 
reducing the parameter value in each step. ∇j(θ) indicates the gradient of the objective function (regression error 
function) relative to the parameters. In each step of the algorithm, the new value of the parameter θnew is equal 

(8)f̂0(t) = argmin
∑n

j=1
(yj − γ )2

(9)f̂m(t) = f̂m−1(t)+ � · hm(t)

(10)hm(t) = argmin
h

∑n

i=1
(yi − f̂m−1(ti)− h(ti))

2

(11)h(x) = β0 + β1x1 + · · · + βnxn

(12)J =
1

2

m∑

i=1

(
h
(
xi
)
− yi

)2

Latestparametervalue = previousparametervalue− (learningrate× gradient)

(13)θnew = θold − (LearningRate ×∇j(θ)
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to the previous value of the parameter θold minus the product of the learning and the gradient of the objective 
function (∇J(θ)) relative to the parameters.

The primary objective of this algorithm is to iteratively perform these steps until it achieves the minimum 
value of the objective function and optimizes the parameters.

Support vector machine
Support vector regression is a machine learning algorithm used for regression and was introduced in 1995 by 
Vapnik52. The objective of this algorithm is to discover a function that can estimate the output using the available 
database. Within this algorithm, a subset of training samples known as support vectors is specifically taken into 
account53. The primary objective of this algorithm is to determine a linear correlation between input vectors 
with n dimensions, utilizing the following equation:

To this matter, θ represents the slope while β denotes the deviation of the regression line. To determine the 
values of these two, the following cost function minimization is required:

In this context, m refers to the count of training samples, C represents the coefficient controlling the bound-
ary, and ε signifies the cost function employed in Vapnik’s support vector regression, introduced as follows52.

By using support vector regression, the output prediction function is estimated with higher accuracy and can 
be used in many machine learning problems.

In support vector machine regression, kernel functions are employed to convert the input data into a higher-
dimensional space. These kernel functions extract new features from the data in a nonlinear manner, aiding 
in more precise predictions. Various kernel functions, such as linear, polynomial, radial, etc., are available and 
chosen based on the nature of the data and the specific problem at hand. The process of training and prediction 
in regression with support vector machine includes the following steps:

•	 Model training: in this step, training data with correct labels are used to make the SVM model to make pre-
dictions. The SVM algorithm tries to find an optimal surface in the feature space that separates the training 
data points well and maximizes the covariance between the data points and the surface.

•	 Determination of parameter values: in SVM, there are parameters such as C and ε, whose values affect the 
performance and efficiency of the model. In general, the parameter C indicates the amount of error allowed 
in the training data, and the parameter ε specifies how far from that value it will go to the side of the error.

•	 Prediction: once the model is trained, the test data is utilized to generate predictions for the corresponding 
values. In support vector machine regression, the model’s output comprises the predicted values for the 
continuous variables.
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Results and discussion
Determining the ratio of training to test data
After the initial processing of the data and the removal of outliers, using various machine learning methods 
described above, the shear wave velocity has been estimated. During this process, the available data is initially 
divided into two categories: training and testing. In each iteration, a specific portion of the data is chosen for 
training and testing purposes. The data is randomly selected and fed into the machine learning algorithm code 
based on the predetermined percentage. After 20 consecutive runs, the correlation (R2) and accuracy values of 
each model are averaged and reported as representative of the overall accuracy of that model. This work has been 
done for different ratios of data to extract the best ratio. The accuracy of methods at different train-to-test ratios 
based on test and train data sets are shown in Figs. 6 and 7. Figure 8 shows the accuracy of different methods in 
different ratios of training to test data. Based on the obtained results, the ratio of 70% generally shows the best 
accuracy in each method. Therefore, considering the ratio of 70–30 data for training to test, the methods have 
been compared and the performance of each has been evaluated.
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Figure 6.   Accuracy of different machine learning methods in different percentages of training-to-test data 
based on train data.

Figure 7.   Accuracy of different machine learning methods in different percentages of training-to-test data 
based on test data.

Figure 8.   Accuracy of different machine learning methods in different percentages of training-to-test data.
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The performance of machine learning methods in estimating Vs
Comparing the performance of different machine learning methods, including neural networks, Bayesian, linear 
regression, random forest, LSBoost and support vector machine regression, can be done based on several factors. 
Below are some of these factors and points of comparison:

•	 Generalization power: support vector machine regression, Neural networks and random forest, and usually 
has a high ability to generalize. Due to their powerful structure, they can model more complex patterns and 
non-linear interactions. On the other hand, linear and Bayesian regression are more suitable for modeling 
simple patterns and linear interactions.

•	 Model complexity: neural networks and random forest usually require more complex models and require 
more parameters. In contrast, linear and Bayesian regression work with simpler models and have fewer 
parameters. This can directly influence the training time and computational complexity involved.

•	 Training data: the amount of training data available can also have an impact on the performance of machine 
learning methods. If the training data is sparse, linear and Bayesian regression may perform better than more 
sophisticated methods because they suffer less from fitting noisy data. In contrast, if the training data is large 
and complex, support vector machine regression, neural networks and random forest usually perform better 
than linear and Bayesian regression.

•	 Ability to deal with high dimensions: when dealing with high-dimensional data, linear and Bayesian regres-
sion encounter challenges due to their limitations in effectively handling a substantial number of features. In 
this situation, support vector machine regression, neural networks and random forest perform best because 
they can extract complex features and nonlinear relationships between features.

•	 Comparability: the scalability of the methods is also very important in their comparison. Support vector 
machine regression, neural networks and random forest are highly scalable and can adapt to large amounts 
of data and features. On the other hand, linear regression and Bayesian regression face a large amount of data 
and considerable computational problems.

According to the above explanations, each machine learning method has its advantages and limitations, and 
choosing the best method depends on the problem in question, available data, and environmental conditions. The 
performance of each machine learning method employed in this study to estimate shear wave velocity is depicted 
in Fig. 11. Accordingly, the random forest method provides the best answer with an accuracy of R2 = 0.9495. 
After that, LSBoost, Bayesian and linear regression methods are located with an average value of R2 = 0.85. It 
should be noted that neural network and support vector machine methods showed the lowest accuracy among 
them. Meanwhile, in the process of training these algorithms, several meta-parameters were used to adjust these 
methods. In this regard, for neural network method, different types of network architecture, number of layers, 
number of neurons, types of activation functions such as logistic and sigmoid, different percentages of training to 
test and learning algorithms were used. To find the best training function all data used to build neural network. 
The R-squared of these training functions is presented in Fig. 9. Finally, the best solution in this algorithm can 
be obtained for the three-layer perceptron network, with the number of 20 neurons and the sigmoid activation 
function and the Levenberg–Marquardt learning algorithm. Also, about the support vector machine method, 
various kernel functions were investigated and the results are shwon in Fig. 10. Based on the results, the RBF 
kernel function provides the best response (Fig. 11).

Figure 12 shows a visual comparison between the performance graphs of each method. By using it, you can 
have a more accurate evaluation of the methods and observe the quality of each estimation. Based on R2 values 
and even by referring to the calculated errors in Table 3, ANN has a better performance compared to LSboost 
method. Meanwhile, based on Fig. 12, it can be seen that the LSboost method has performed better at depths 
greater than 4500 m. Therefore, a method may have overlay small error values, but it may not be effective in all 
depths. This doubles the importance of investigating the method results in different depths.

Figure 9.    Performance of different training functions in artificial neural network.
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Figure 10.    Performance of different kernel functions in SVM.

Figure 11.    Accuracy of different machine learning methods in estimating Vs.
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Sensitivity analysis
Sensitivity analysis to input data is one of the important steps in the machine learning process. This analysis 
helps to understand the sensitivity of machine learning algorithms to changes in input data and also states 
whether their output changes under the influence of these changes or not. Sensitivity analysis to input data can 
help in better understanding the performance of machine learning algorithms and better selection of relevant 
parameters and settings. By using this analysis, it is possible to have a better understanding of the behavior of 
the algorithms against the changes in the input data and to create better models. To identify the impact and 
importance of each well logging parameter on the output of the model, the following equation is used to calculate 
the correlation coefficients54:

where Ij,i and Ij  ̅ represents the i-th value of the j-th input parameter and its average, respectively. Similarly, DTSi 
and DTSj  represent the estimated shear wave velocity and its average, respectively. The dependence values of 
each method on the input parameters are shown in Table 2.

As shown in Table 2, in general, the sensitivity of different parameters in each of the machine learning meth-
ods for DTS estimation has a trend and approximately a specific value. Based on this, parameters such as DTC, 
Depth and HTNP have a positive effect and GR, Hcal and RHOZ parameters have a negative effect on the final 
response of the models. This means, for example, increasing density will decrease DTS and increasing porosity 
will increase DCT. Also, among the input parameters, porosity, compressional wave transit time, and density 
respectively have the greatest impact on the final response. Figure 13 shows the average effect of each parameter 
in the DTS calculation.
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Figure 12.   Visual comparison between performance graphs of each method.
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Evaluation of the performance of machine learning methods
Evaluating the performance of machine learning methods is of great importance so that the quality and perfor-
mance of machine learning models can be investigated in a quantitative and evaluable way. Therefore, statistical 
parameters such as R2, ARE, RMSE, and MSE can be used. Several researchers have used these parameters to 
evaluate the performance of their estimation methods using machine learning.

•	 R-square:

The R-squared method or more completely R-squared coefficient of determination is a measure that is used 
in statistical analysis of error and performance evaluation of regression models. This approach quantifies the 
degree to which the model elucidates variations in the dependent variable (output) compared to changes in the 
independent variables (features).

The R-squared value ranges from 0 to 1 and is typically presented as a percentage. A value of 1 for R-squared 
signifies that the model has successfully accounted for all variations in the dependent variable using the inde-
pendent variables, indicating high accuracy. If the R-squared is equal to 0, it indicates that the independent 
variables cannot predict or explain the dependent variable and the model is useless. If the R-squared is between 
0 and 1, it indicates the ability of the model to explain changes in the dependent variable, and a higher value 
indicates a better agreement between the model and the data. This parameter can be calculated through the 
following relationship:

•	 RMSE (root mean square error):

RMSE quantifies the error by computing the square root of the mean squared difference between the estimated 
values and the actual values. A larger RMSE indicates a larger difference between the estimated and actual values. 
This error measure is often used in regression problems. This parameter can be calculated from the following 
relationship:
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Table 2.   The sensitivity of the response of each method to the input data.

ANN Bay LB LIN RF SVR

DTC 0.744 0.784 0.746 0.783 0.738 0.841

GR − 0.391 − 0.448 − 0.402 − 0.447 − 0.422 − 0.507

Depth 0.198 0.202 0.228 0.199 0.205 0.232

HCAL − 0.664 − 0.673 − 0.658 − 0.673 − 0.654 − 0.751

HTNP 0.946 0.971 0.971 0.971 0.944 0.903

RHOZ − 0.774 − 0.795 − 0.788 − 0.796 − 0.768 − 0.719

Figure 13.   The sensitivity of the estimated DTS values to each of the input parameters.
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•	 ARE (absolute relative error):

ARE evaluates the error magnitude by determining the ratio of the absolute difference between the estimated 
values and the actual values to the actual value itself. This measure of error is proportional and shows how much 
the error is compared to the true value. It is often used in forecasting and estimating values in specific intervals. 
The relationship to calculate this parameter is as follows:

•	 MSE (mean square error):

MSE quantifies the error magnitude by computing the mean squared difference between the estimated values 
and the actual values. Similar to RMSE, MSE is employed to assess the disparity between estimated and true 
values in regression problems. A higher MSE value indicates a larger discrepancy between the values.

In the aforementioned interface, N represents the number of data points, DTSpredi   represents the estimated 
shear wave velocity, and  DTSexpi  represents the actual shear wave velocity. Overall, these methods provide a 
measure of the error or disparity between the estimated values and the actual values within a model or method. 
Table 3 displays the calculated values of the statistical parameters for each of the methods. Based on the results, 
the random forest method with the highest R2 value and the lowest error values of RMSE, MSE, and ARE is 
considered the best method for DTS estimation.

Conclusion
This review encompassed a study focused on estimating shear wave transition time utilizing machine learning 
algorithms and well logging data from a carbonate reservoir in southwestern Iran. The findings of this study 
identified the random forest method as the most suitable approach for estimating shear wave velocity. Several 
machine learning algorithms, including perceptron multilayer neural networks, Bayesian, Generalized least 
squares, multivariate linear regression, and support vector machine, were examined during the study. However, 
none of these methods exhibited superior performance compared to the random forest approach. The evaluation 
of each method’s performance was conducted using statistical parameters such as R2, ARE, RMSE, and MSE. 
This study also examined the influence of various petrophysical parameters on shear wave velocity estimation 
within each method. The findings indicated that the compression wave transit time and density had the most 
significant impact on the final response. A notable aspect of this study is the comparison of commonly employed 
machine learning methods for estimating shear wave velocity in carbonate reservoirs located in southwestern 
Iran. Based on the results obtained, the random forest method emerges as a recommended and reliable approach 
for accurately estimating shear wave velocity in such reservoirs.

Data availability
Data will be available upon request. Ali Ranjbar (Corresponding Author) will be contacted if someone wants to 
request the data from this study.
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Table 3.   Accuracy of machine learning methods in DTS estimation based on statistical parameters.

ANN Bay LIN RF LB SVM

ARE 0.0436 0.1998 0.1998 0.1011 − 0.2063 0.6219

MSE 22.4068 28.0138 28.0240 9.4567 27.8158 37.5822

RMSE 4.7336 5.2928 5.2938 3.0751 5.2741 6.1304

R2 0.8780 0.8471 0.8470 0.9495 0.8583 0.7975
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