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Weak evidence of density 
dependent population regulation 
when using the ability of two 
simple density dependent models 
to predict population size
Demissew T. Gebreyohannes * & Jeff E. Houlahan 

The relative importance of density dependence regulation in natural population fluctuations has long 
been debated. The concept of density dependence implies that current abundance is determined 
by historical abundance. We have developed four models—two density dependent and two density 
independent—to predict population size one year beyond the training set and used predictive 
performance on more than 16,000 populations from 14 datasets to compare the understanding 
captured by those models. For 4 of 14 datasets the density dependent models make better predictions 
(i.e., density dependent regulated) than either of the density independent models. However, 
neither of the density dependent models is statistically significantly superior to density independent 
models for any of the 14 datasets. We conclude that the evidence for widespread density dependent 
population regulation in the forms represented by these two simple density-dependent models is 
weak. However, the density dependent models used here—the Logistic and Gompertz models—are 
simple representations of how population density might regulate natural populations and only 
examine density-dependent effects on population size. A comprehensive assessment of the relative 
importance of density-dependent population regulation will require testing the predictive ability 
of a wider range of density-dependent models including models examining effects on population 
characteristics other than population size.

One of the central issues in ecology has been assessing the relative importance of density dependent factors in 
regulating natural  populations1–7. In the mid-1900’s  Nicholson8 asserts that most populations are strongly density 
dependent regulated, implying that current population sizes are regulated by past population sizes due to the 
negative impact of population size on population growth  rate8,9. It is widely accepted that population regulation 
cannot take place in the absence of density  dependence10–14. Thus, regulation requires density-dependent nega-
tive feedback, in which small populations tend to increase while large populations decrease because of  density7.

Peter Turchin has described 3 fundamental laws of population dynamics—first, that populations will grow or 
decline exponentially given a constant environment, second, that populations are self-limited, i.e. that there is a 
negative relationship between population growth rate and population density at high densities, and third, that 
there will be consumer-resource  oscillations15,16. One reasonable implication of these laws is that natural popula-
tions will exhibit density-dependent regulation once they move beyond the initial colonization process. However, 
there is also evidence that environmental factors such as disturbance, temperature, and precipitation can have 
density independent effects on populations. The question of the relative importance of density-dependent versus 
density-independent factors remains  unresolved17,18.

Traditional model selection in ecology has used model fit exclusively. Model selection is the process of com-
paring various competing models to identify the one that best fits the observed data. It is used to determine the 
most suitable model from a set of competing hypotheses by assessing how well each model fits the observed 
 data19,20. Models are evaluated based on quantitative measures and information criteria such as the Akaike 
Information Criterion (AIC), Bayesian Information Criterion (BIC), p-values, and Mallows’ Cp  statistic20. These 
metrics allow us to rank and weigh the competing models, providing insights into their goodness of fit and 
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complexity. Furthermore, model averaging can be employed to combine information from multiple models, lead-
ing to more robust parameter estimation and improved prediction accuracy. By incorporating various models, 
model averaging accounts for uncertainties and enhances the overall performance, particularly in cases where 
the true underlying model is uncertain or difficult to  identify21,22.

Although density dependent may be expected in natural populations that persist for a long time, the method-
ology of detecting density dependence in real datasets has been the subject of controversy. Ecologists have spent 
a great deal of time and energy identifying suitable statistical methods for the detection of density dependence in 
long-term time series  data1,12,23–27. Most involve choosing between density-dependent and density-independent 
models using traditional model selection techniques. There is no general consensus among ecologists about how 
to detect density dependent population  regulation24,25.

The detection of density dependence has proven to be a thorny methodological problem. Traditionally nega-
tive relationships between population size and per capita population growth rate have been a putative diagnostic 
of density  dependence24,26 but there is compelling evidence that such relationships can be found in populations 
that are not regulated by  density28. The debate about how best to detect density dependence has been ongoing 
for several decades but has shed more heat than light, in part, because it is the wrong question. The more useful 
question is—how does the incorporation of density dependence into ecological models improve our under-
standing of population fluctuations? Our approach follows on the philosophy that understanding can only be 
demonstrated by prediction on independent  data29,30.

Thus, we propose to use the predictive ability of models built using long-term population time series data to 
detect density dependence. We examined the predictive ability of simple population dynamic models to assess 
what we understand about the relationship between population size and per capita growth rate. Our objective 
is to use the predictive ability of density dependent models relative to density independent models to estimate 
how common and important density dependent population regulation is in natural populations.

Results
Density dependent versus density independent models
Mean prediction error
We found the ’Mean’ model had the smallest mean prediction error in 10 of 14 datasets, while the Gompertz 
model provided best mean prediction error for 4 of the 14 datasets (Figs. 1, 2). Thus, for ten of the fourteen 
datasets a density-independent model made the best predictions, on average. Often the Mean model that made 
the best predictions used small training sets (i.e. 1–5 years) implying that many populations fluctuated in a way 
that resembled a random walk or fluctuations around a recent short-term mean more than fluctuations around 
a long-term mean.

Binomial and Chi-square test for density dependent and independent models
For thirteen of fourteen datasets, density independent models made superior predictions more often than density 
dependent models. In 7 out of 14 datasets, a binomial test showed that density-independent models had superior 
predictive ability statistically significantly more frequently than density-dependent models (Table 1). For six of 
the seven remaining datasets density-independent models had better predictive ability more often than density-
dependent models but the difference wasn’t statistically significant.

The Chi-square test indicated that there was a significant difference in 12 of the 14 datasets among the four 
models in their predictive ability (Table 2, Supplementary Table 1). In none of the twelve cases does a density-
dependent model make superior predictions statistically significantly more frequently than both density-inde-
pendent models.

Generalized linear mixed models
Absolute prediction error
For 7 out of 14 datasets, the ‘model’ term was not statistically significant. For the 7 datasets where the ‘Model’ 
term was statistically significant, neither of the density dependent models was superior to both of density inde-
pendent models for any dataset (Table 3). For the seven datasets with a significant effect of model the Trend 
model resulted in significantly larger prediction errors than at least one of the other three models.

Error bars illustrating variability around mean prediction error
The error bars represent the variability or dispersion around mean prediction error of the four models at the 
training set where each model has better performance. The trend model displays considerably higher variation 
around the mean prediction error in five datasets, while the other three models show relatively lower variation 
(Supplementary Fig. 1).

Discussion
Weak evidence for density dependent regulation
On average, the two simple density dependent models used here never made statistically significantly superior 
predictions than both density independent models. However, for four of 14 datasets, on average, a density 
dependent model made better predictions than either of the density independent models—just not statistically 
significantly so. It is worth noting that each of the 14 datasets is comprised of multiple time series so density-
dependent models did have superior predictive performance for individual time series in a dataset. However, 
density-independent models had superior predictive performance more frequently than density-dependent 
models in 13 of 14 datasets and there was not a statistically significant difference for the one dataset where 
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Figure 1.  Mean absolute prediction error against the number of years of training set for each of 14 datasets. ‘x’ 
represents the minimum mean prediction error obtained by the best performing model. Note- Predictions can 
be made using one year of training data for the mean model but require at least three years of data for the other 
models. Where lines do not extend back to three years it is because the predictions were so poor they extended 
far beyond the scale of y-axis. Additionally, in cases where these models entirely resulted in a large prediction 
error across the training set, they were completely removed from the graph as in the case of North America bird 
survey (10 stops) datasets where the Logistic model was totally removed.
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density-dependent models had superior performance more frequently. This suggests that density-dependent 
population regulation is relatively rare and/or weak.

Empirical evidence for density dependent population regulation
The ecological literature has considerable evidence suggesting that both density dependent and density independ-
ent factors are important drivers of population  fluctuations31–36. For example,  Hanski12 concluded that 73% of 
moth species and 92% of aphid species showed evidence of density dependent regulation. Most studies examin-
ing multiple time series showed that 30–90% of time series showed evidence of density-dependent population 
regulation. By contrast, Gaston and  Lawton37 did not find evidence of density dependent regulation for any of 
the 27 complete time series they analyzed. However, most studies used “fit to data” rather than predictive ability 
to detect or estimate the relative importance of density dependent factors.

Holyoak and  Lawton38 detected density dependence in 10 (58.8%) of 17 taxa for series of 12 years and in 5 
(33.3%) of 15 taxa with time series of 8 years in length. However, they used six different tests for density depend-
ence and considered density dependence to have been detected if at least one of the six tests found evidence of 
density dependence. All of the tests used either statistical significance at the 0.05 threshold or permutation tests 

Figure 2.  Mean absolute prediction error using ‘best’ training set size for each of the 14 datasets. Because of the 
range values along the y-axis differed among the 14 datasets, we grouped datasets with similar y-axis ranges. 

Table 1.  Binomial test between density dependent and independent models in terms of predictive ability.

Sites Total number of time series Density dependent Density independent p-value

ALF 968 465 503 p > 0.05

Bakker 78 25 53 p < 0.05

BBSALL 5591 1972 3619 p < 0.001

BBS10Stop 7450 2889 4561 p < 0.001

BSS 40 19 21 p > 0.05

DBBS 726 212 514 p < 0.001

Hay 37 14 23 p > 0.05

Portal 11 6 5 p > 0.05

PUP 354 120 234 p < 0.001

PUS 293 112 181 p < 0.001

PUY 121 45 76 p < 0.05

RM 338 154 184 p > 0.05

SCZ 49 22 27 p > 0.05

SNF 23 10 13 p > 0.05
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of the fit to the data. Their research led to further discussion on the literature addressing the issue of ecologi-
cal density dependence (EDD) versus statistical density dependence (SDD). That is, evidence that time series 
show a return tendency (SDD) versus evidence that Nt has a causal effect on Nt+1 (EDD). Wolda, Dennis and 
 Taper39 provided a compelling case that statistical evidence of density dependence provides only weak evidence 
of ecological density dependence.

Woiwod and  Hanski40 used a much larger dataset of exclusively moths and aphids but only three rather 
than six tests of density dependence. Again, each of the tests used a statistical significance threshold of 0.05 to 
conclude whether there was evidence of density dependence. There was large variation among tests, sites and 
species in statistically significant evidence for density dependent regulation, but about 30–50% of time series 
showed statistically significant evidence for density dependence across all three tests.

Moreover, Brook and  Bradshaw41 took a similar approach as Holyoak and  Lawton38 but with a much larger 
dataset. They used several tests for density dependence, (1) multi-model inference comparing two density inde-
pendent models (i.e. random walk and exponential) and three density dependent models (the logistic, Gompertz 
and theta-logistic) and using AIC weights to assign the relative strength of evidence (Burnham and Anderson, 
2004), (2)  BIC42 and C-V15 model selection and (3) null hypothesis significance testing model  selection24,43,44. 
They concluded that 74.7% of 1198 populations showed evidence of density dependent population regulation 
using multi-model inference. Cross-validation indicated that 93.9 % of population showed evidence of density 
dependent regulation. Null hypothesis Statistical testing (NHST) approaches were more conservative suggesting 
that 30–50% of populations were density dependent. The evidence for the Gompertz model was twice as strong 
as for the logistic model. They also provided evidence that density dependent population regulation was more 
easily detected in longer time series.

Comparison of our study to previous research
Our study differed from previous studies in four important ways. First, we used prediction error rather than 
model fit to infer evidence of density dependent population regulation. Second, we used datasets containing 
multiple time series so that we had ‘within dataset’ replication. Third, we used a ‘moving window’ approach to 
building training sets so that we had ‘within time-series’ replication. Fourth, we had a much larger number of 
time series than any previous study.

In general, our results were consistent with studies that showed density dependent population regulation 
was weak or uncommon in most ecological communities though evidence for density dependent population 
regulation varied across types of ecological communities (i.e., “across dataset” differences) and across popula-
tions within particular ecological communities (i.e., “within dataset” differences). Consistent with previous 
studies we also found that when density dependent regulation was detected the Gompertz model was superior 
to the logistic model.

However, our results for predictive ability could be interpreted in two ways. First, the fact that for none of the 
datasets was either density dependent model statistically significantly superior to both of the density independ-
ent models for absolute prediction error, implies that there is no evidence that density dependent regulation is 
stronger or more common than we would expect by chance. However, it might be that some populations are 
strongly density dependent, and others are not density dependent at all, but that we don’t see an ‘average’ effect 
because one offsets the other.

Table 2.  Chi square significant test and pairwise comparison of the predictive ability of models in 14 datasets. 
NB: The values in each cell are the number of time series for that dataset that a particular model was identified 
as the best predictive model. For example: in ALF, the Gompertz model made the best predictions in 259 out 
of 968 time series. Values in bold are the most frequent or not statistically significantly different than the most 
frequent. Models that share the same letters are not statistically significantly different.

Datasets Gompertz Logistic Mean Trend

ALF 259a 206b 365c 138d

Bakker 17a 8a 41b 12c

BBSALL 1016a 956a 2968b 651c

BBS10STOP 1483a 1406a 3895b 666c

Buell-small (BSS) 15a 4b 16a 5c

DBBS 115a 97a 391b 123c

Hay 10a 4d 21b 2dc

Portal 3a 3a 4a 1a

Pumice plot 73a 47b 221c 13d

Pumice square 58a 54a 165b 16c

Pumice yard 24a 21a 67b 9c

Rothamsted 88abc 66b 107c 77ac

South central Ontario Zooplankton (SCZ) 11abc 11abc 23b 4c

San Nicolas fish (SNF) 4a 6a 10a 3a
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It is also important to note that we used two simple density dependent models, the logistic model and the 
Gompertz model, and it is possible that models incorporating density-dependence in different ways would 
have made better predictions than the logistic and Gompertz models and better predictions than the density-
independent models. In addition, these two models only incorporate density-dependent effects on overall popu-
lation size and density-dependence can affect many other characteristics of a population including abundance 
at different life stages, body size and sex  ratio45–47.

Summary
Identifying the key drivers of population fluctuations, including estimating the relative importance of density-
dependent factors, is important in managing natural populations and one of the fundamental questions in 
ecology. Here, we’ve used predictive ability to evaluate two simple density-dependent models and two density-
independent models and found only weak evidence of density dependent regulation of population size in natural 
populations. However, a comprehensive assessment of the relative importance of density-dependent population 
regulation will require extending the analysis to estimating the predictive ability of a larger suite of density 
dependent model, state-space models that explicitly incorporate both process and observation error and models 
that include other potentially important drivers such as climate and biotic interactions. In addition, we will need 
to assess the density-dependence of endpoints other than total population size.

Table 3.  Summary of statistical significance of the predictive ability of models for 14 datasets using 
generalized mixed modeling. NB: Models that share the same letters are not statistically significant. NA** 
in PUP despite the main effect being significant there were no pairwise comparisons that were statistically 
significant at the 0.05 threshold. *indicates the significance difference in the predictive ability of the four 
models that do not share the same letter when compared to one another.

Sites Models significance Pairwise comparison

ALF p < 0.001***

Gompertza

Logistica

Meana

Trendb

Bakker p > 0.05 NA

BBSALL p < 0.001***

Gompertza

Logistica

Meana

Trendb

BBS10Stop p < 0.001***

Gompertza

Logistica

Meana

Trendb

DBBS p < 0.001***

Gompertzab

Logisticb

Meana

Trendab

Hay p < 0.001***

Gompertzab

Logistica

Meana

Trendb

BSS p > 0.05 NA

Portal p > 0.05 NA

PUP p < 0.05** NA**

PUS p > 0.05 NA

PUY p > 0.05 NA

RM p > 0.05 NA

SCZ p < 0.001***

Gompertza

Logisticab

Meanab

Trendc

SNF p > 0.05 NA
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Methods
Dataset selection
We selected population time series data from 14 different databases (Supplementary Table 2). These datasets were 
from multi-sites, multi-year, and multi-species abundance/density databases. We chose only databases with at 
least 20 consecutive years of surveyed data. We also used only population time series from each database with 
abundance/density greater than zero for each of the years in the time series.

Data description
The datasets used in this analysis were from North America (10 out of 14), Canada (1 dataset), The Netherlands 
(2 datasets), and United Kingdom (1 dataset). Three aquatic ecosystems and eleven terrestrial ecosystems were 
represented in the datasets. Types of organisms under study were birds, plants, zooplankton, rodents, fish and 
moths. The minimum and maximum number of years in a time series is 20 and 30 years respectively. Thus, 
the maximum number of years in a training set ranged from 11 to 21 years (see section detailed descriptions 
of training sets and testing sets below). The number of time series in the datasets ranged from 11 to 7450. The 
mean number of different species in a dataset was around 60 and range of the number of different species was 
3–254. The mean number of different sites in a dataset was 53 and the range in the number of different sites 
was 4–283. Sampling methods included trawl surveys, visual searches, live trapping and quadrat mapping. The 
units of abundance/density estimates include number of individuals per 1 m2 plot, number of individuals per 
m2 and percent cover).

Using data to fit models
We fitted four (4) different models to each time series in each of the 14 datasets. The models were fit to a training 
set to estimate parameters then the fitted models were used to predict values in the test set.

The models
Dennis and Taper (1994)24 in a classic series of density dependent papers used the logistic equation to identify 
four plausible models which are still considered among the best density dependent models. These models have 
never been assessed in the context of their predictive ability. We used the same four models as follows.

Mean model

Trend model

Logistic model

Gompertz model

The key difference between density dependent (Eqs. (3) and (4)) and density independent models (Eqs. (1) 
and (2)) is that the slope in density dependent models is different from zero. Each of the four models was fit to 
each training set for each time series from each dataset.

Detailed descriptions of training sets and testing sets
To assess the predictive ability of the population models, the time series data were partitioned into training and 
testing sets.

Step 1: We selected the last nine years as the test set and the first N-9 years as the training set. Because the 
number of years in time series ranged from 20 to 30 years among the datasets, this means that not all training 
sets across datasets had the same number of years although within each dataset the number of years in each 
training set was constant.

(1)log

(

nt+1

nt

)

= b+m(nt), b, m = 0

(2)log

(

nt+1

nt

)

= b+m(nt), b �= 0, m = 0

(3)log

(

nt+1

nt

)

= b+m(nt), b �= 0, m �= 0

(4)log

(

nt+1

nt

)

= b+m(ln(nt)), b �= 0, m �= 0
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Step 2: Because we wanted to assess the optimum number of years to include in a training set, we subset the 
‘complete’ training set into a series of training sets containing 1, 3, 5…. N-9 years. For example, for a dataset 
containing time series that were 30 years long, the ‘complete’ training set would include the first 21 years. The 
‘complete’ training set would then be subset into training sets of 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, and 21 years 
(Fig. 3). Subsets would be created by excluding early years. Thus, if a training subset was to only include three 
years of data, they would be the years 19–21. Data were fit to each of the four models using each of the subsets 
with the exception of models that could not be fit using a single year (i.e., both density dependent models and 
the trend model) or year interval (i.e., both density dependent models). In the example for a dataset with 30 
years of data, this implies that there would be 10 or 11 sub models (i.e., one for each of the training subsets) for 
each of the four models.

Step 3: All models were used to predict the year immediately after the last year in the training subset. So, 
for all subsets of a ‘complete’ training set that included year 21, year 22 would be the predicted population size.

Step 4: “Rolling window”: To maximize the number of predictions available for assessing predictive ability, the 
training and testing sets were chosen from the time series in a ‘rolling window’ method (Fig. 4). This allowed us 
to compare 5 times as many predicted values to the observed values but still ensures that the model predictions 
were tested on data that were not used to train the models. The ‘complete’ training set for each database was 
shifted one year forward in each database and Steps 2–4 was repeated. For example, for a database with a 30-year 
time series that has used years 1–21 for the initial ‘complete’ training set, the training set would be shifted on 
year forward to include year’s 2–22. This implies that the test set will shrink to eight years in length because there 
would only be eight years remaining to include in the test set. Now, instead of using models trained on years 
1–21 to predict years 22, we used models trained on years 2–22 to predict year 23.

Note that prediction errors within the rolling window may not be independent because the training sets used 
to estimate model parameters will have many data points in common and the ‘test’ data will all be within a 5-year 
window. However, we use means of the five data points in the ‘rolling window’ in all of our analyses and aren’t 
making any statistical inferences based on variability among those 5 data points.

Step 5: We repeated the shift of the ‘complete’ training set forward one year three more times until the available 
tests set only includes the last five years in the time series. This allowed us to make five replicate predictions for 
each model/training set combination for each time series in each dataset. For example, for a dataset containing 
30 years of data, there were five replicate predictions for the Gompertz model using the 21-year training set to 
fit a model and predict one year out because we used years 1–21 to predict year 22, years 2–22 to predict year 23, 
years 3–23 to predict year 24, years 4–24 to predict year 25, and years 5–25 to predict year 26.

Mean prediction error
Absolute
We calculated absolute prediction error for a single prediction as |Observed-Predicted|. Mean prediction error 
was calculated separately for each model/training set size combination. For example, a dataset containing time 
series of 30-year duration, would calculate a different mean for the Gompertz 21-year training set, the Gompertz 
19-year training, the Gompertz 17-year training set and so on. The mean is calculated across all times series and 
all 5 replicate predictions for each time series.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Training test Testing test

Figure 3.  The following grid shows the sliding window to get training sets of varying lengths.
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Where N = number of time series in a dataset (e.g., 968 for Aleutian Island Fish dataset), n = number of 
replicates for each model (training set combination = 5), and the prediction error is the difference between the 
observed and predicted values for a specified replicate of a particular model times series—training set combina-
tion. For example, the Aleutian Island Fish dataset has 968 time series and there would be 5 replicate predictions 
for each model—time series combination for a total of 968 × 5 = 4840 predictions for each model—training set 
combination. That is, the Gompertz model fits with 19 years in the training set would have 4840 predictions and 
therefore 4840 prediction errors.

Statistical analyses
Model effects
To test for differences in predictive ability among models (i.e., Gompertz, Logistic, Mean and Trend), we used 
a linear mixed model with a fixed effect for the model term and random effects for the site and species. For 
statistical comparisons we always compared predictive ability among the four models using the training set size 
that had the lowest mean prediction error a particular model. For example, the statistical comparison of the 
four models for the Aleutian Islands Fish dataset used 17 years of training data for each of the ‘Trend’, ‘Logistic’, 
and ‘Gompertz’ models and 5 years for the ‘Mean’ model. This was done separately for each of the 14 datasets.

Binomial and Chi-square test for density dependent and independent models
The statistical test in model effects tests for differences in mean prediction error among models but we also tested 
for statistically significant differences in the frequency that each model was ‘best’ (i.e., made the smallest predic-
tion error). We used a binomial test to test whether the frequency that density dependent models were best was 
significantly different than the frequency that density independent models were best. Moreover, we used a Chi-
square test to test for a difference in frequency among the four models (Gompertz, Logistic, Mean and Trend).

Data availability
All data analysed during this study are included in the supplementary information files.
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