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Development of a deep learning 
model that predicts critical events 
of pediatric patients admitted 
to general wards
Yonghyuk Jeon 1,4, You Sun Kim 2,4, Wonjin Jang 1, June Dong Park 1 & Bongjin Lee 1,3*

Early detection of deteriorating patients is important to prevent life-threatening events and improve 
clinical outcomes. Efforts have been made to detect or prevent major events such as cardiopulmonary 
resuscitation, but previously developed tools are often complicated and time-consuming, 
rendering them impractical. To overcome this problem, we designed this study to create a deep 
learning prediction model that predicts critical events with simplified variables. This retrospective 
observational study included patients under the age of 18 who were admitted to the general ward of 
a tertiary children’s hospital between 2020 and 2022. A critical event was defined as cardiopulmonary 
resuscitation, unplanned transfer to the intensive care unit, or mortality. The vital signs measured 
during hospitalization, their measurement intervals, sex, and age were used to train a critical event 
prediction model. Age-specific z-scores were used to normalize the variability of the normal range 
by age. The entire dataset was classified into a training dataset and a test dataset at an 8:2 ratio, 
and model learning and testing were performed on each dataset. The predictive performance of the 
developed model showed excellent results, with an area under the receiver operating characteristics 
curve of 0.986 and an area under the precision-recall curve of 0.896. We developed a deep learning 
model with outstanding predictive power using simplified variables to effectively predict critical 
events while reducing the workload of medical staff. Nevertheless, because this was a single-center 
trial, no external validation was carried out, prompting further investigation.

Early detection of deteriorating patients is crucial in order to provide timely intervention before critical events, 
such as cardiopulmonary resuscitation (CPR), take place. Cardiac arrest due to respiratory failure is known to 
be more common in children compared to adults, whereas cardiac arrest of cardiac origin is relatively rare in 
 children1–3. For this reason, pediatric patients may have a higher chance of receiving intervention before cardiac 
arrest occurs. The pediatric early warning score (PEWS) is one of the means that has been developed in an effort 
to recognize deteriorating patients as early as  possible4–6.

PEWS determines a patient’s risk level by measuring and scoring several vital sign values, such as blood pres-
sure (BP) and heart rate (HR) by age. A few examples of PEWS include the Bedside PEWS, the Brighton PEWS, 
the Melbourne Activation Criteria, and the Bristol  PEWS5–11. In initial studies, these methods demonstrated very 
high predictive performance, with an area under the receiver operating characteristic curve (AUROC) of around 
0.94,6. However, numerous validation studies on different types of PEWS carried out by multiple institutions were 
unable to replicate the same outcomes and showed relatively low performance (AUROC 0.62–0.86)9,10,12–14. In 
addition, the process of obtaining necessary parameters and calculating these scores demands considerable time 
and effort from medical staff, and the qualitative data required in scoring PEWS, such as capillary refill time 
and respiratory effort, are often not readily available in contrast to easily obtainable values such as BP, HR, and 
respiratory rate (RR)4,6.

As a way to compensate for these shortcomings, the application of machine learning, particularly deep 
learning, in constructing predictive models has been drawing attention in the research field. Most studies were 
conducted on adults, and only a few examined pediatric models. One retrospective study assessed a model that 
used 29 variables to predict the likelihood of transmission to the intensive care units (ICU) within 24 h, and the 
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AUROC was 0.912 (95% confidence interval [CI] 0.905–0.919). Although the accuracy of the predictions was 
excellent, it might be impractical to collect and analyze 29  variables15. In another retrospective study of pediatric 
subjects, a long short-term memory (LSTM) model with a promising AUROC of 0.923 was developed using 
fewer parameters. The LSTM model, however, could only be used when there are more than 20 consecutive time-
stamped vital sign data points. Consequently, initial prediction in general wards can be challenging because vital 
signs are not typically recorded frequently, unlike in  ICU16.

Therefore, the authors designed this study to create a deep learning model that can anticipate crucial events 
utilizing simplified variables without long-term continuous measurement values.

Methods
Study setting and data source
This retrospective cross-sectional observational study was conducted at a tertiary children’s hospital with about 
350 beds. The subjects were patients under the age of 18 who had been admitted to the general ward of the 
children’s hospital between January 2020 and December 2022. The pseudonymized data used for analysis were 
collected from the clinical data warehouse of the hospital information system. The measurements of Systolic 
BP (SBP), diastolic BP (DBP), HR, RR, body temperature (BT), and the oxygen saturation measured with pulse 
oximetry  (SpO2) were recorded in the general ward. Measurements from the emergency department or ICU 
were excluded. Recorded time, sex, age (in months), admission date, discharge date, and pseudonymized study-
specific identification code were collected.

This study was approved for exemption from review by the Institutional Review Board of Seoul National 
University Hospital because it used only pseudonymized information and did not collect personally identifiable 
information (H-2209-001-1032). Since only information that could not identify the research subjects was used, 
the above committee confirmed that it was impossible to obtain consent from specific subjects. Moreover, the 
study was conducted in accordance with the principles of the Declaration of Helsinki.

Data preprocessing
The pseudonymized identification code and hospitalization date were combined to create a unique classifica-
tion code according to each individual hospitalization date, which was defined as the individual hospitalization 
identification code (IHID). The collected data were classified according to IHID, sorted in ascending order of 
vital sign measurement time, and missing values among SBP, DBP, HR, RR, BT, and  SpO2 were replaced with the 
immediately preceding values. In addition, the interval of vital sign measurement time was calculated within the 
same IHID (each vital sign measurement time—previous measurement time, in minutes), and this was defined 
as the measurement interval. Since the normal ranges of BP, HR, and RR in children differ according to age, 
z-scores for each age were calculated and used for analysis. Centile charts of vital signs for each age developed 
in a previous study were used for z-score  conversion17.

Critical events were defined as cases where CPR occurred in the general ward, unexpected transfers to the 
ICU, and cases of mortality (results of CPR or discontinuation of life-sustaining treatment)18,19. Critical records 
were defined as the data measured from 6 h before the occurrence of the critical event to the time of occurrence 
in the case of unexpected ICU transfer or mortality, and in the case of CPR, it was defined as the data measured 
from 6 h before the occurrence to 30 min after the occurrence (from 6 h before CPR until death in the case of 
mortality after CPR). In order to perform deep learning on critical records, the total records were divided into 
two groups: critical group and non-critical group. Since the records of individuals who experienced a critical 
event will have a mixture of critical records and non-critical records, IHID’s non-critical records with critical 
events were excluded from the non-critical group. In addition, since it is expected to be an imbalanced dataset in 
which the size of the non-critical group is substantially larger than the sample size of the critical group, only the 
last records for each IHID among the non-critical groups were used for deep learning. In general, it is common 
sense that vital sign records measured during hospitalization for each IHID are not limited to just one occurrence 
but rather numerous. Therefore, we anticipated that retaining only the last record per IHID among the vital sign 
records in the non-critical group, and utilizing all records in the critical group, would relatively alleviate the 
imbalance between the two groups. R version 4.3.1 (R Foundation for statistical computing, Vienna, Austria; 
https:// www.r- proje ct. org) was used for data preprocessing, and open packages such as the generalized additive 
models for location scale and shape and sitar were used in this  process20–22.

Deep learning and data analysis
The preprocessed dataset was divided into a training set and a test set at a ratio of 8:2, and each was used for 
model training and testing. A simple artificial neural network (ANN) algorithm based on the multilayer percep-
tron was used for deep learning. Nine parameters used for learning were age, sex, z-score of SBP, z-score of DBP, 
z-score of HR, z-score of RR, BT,  SpO2, and the measurement interval. The above features were normalized to a 
value between 0 and 1. The ANN model was composed of 3 hidden layers (each with node counts of 128, 128, and 
64, respectively), and a 30% dropout was applied after each layer. The Adam optimizer and rectified linear unit 
activator were used in the  process23. It was trained for 10,000 epochs with a learning rate of 0.0001 using Python 
version 3.8.10 (Python Software Foundation, Beaverton, OR, USA; https:// www. python. org). Scikit-learn library 
was used for  normalization24, PyTorch was used for model training and  test25, and matplotlib and Shapley additive 
explanation (SHAP) library were used for  visualization26. Since the measurement interval value of the first record 
for each IHID cannot be calculated (missing value), the average value of all measurement intervals was imputed. 
Continuous variables were described as median (interquartile range) and categorical variables as number (%).

https://www.r-project.org
https://www.python.org
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Outcomes
The primary outcome of this study was the overall predictive performance of the developed model. Accuracy, 
AUROC, and area under the precision-recall curve (AUPRC) were used to evaluate the predictive performance 
of the model. The secondary outcomes included subdividing critical events into CPR occurrence, unexpected 
ICU transfer, and mortality, respectively, and evaluating the performance of the developed model for each. 
Additionally, based on the time elapsed before a critical incident occurred, measurements were divided into six 
subgroups: 0–1 h, 1–2 h, 2–3 h, 3–4 h, 4–5 h, and 5–6 h. For each subgroup, the predictive performance of the 
model was included. It also included an assessment of the importance of the prediction process for each feature 
used in learning and the correlation between features.

Results
Baseline characteristics
During the study period, 13,787 patients were hospitalized a total of 22,184 times, and 1,039,070 vital sign records 
were analyzed. When analyzed by IHID, the age at admission was 69.0 (23.0–135.0) months, and 9,485 (42.8%) 
were girls. The duration of hospitalization was 3.0 (2.0–7.0) days.

Of the total records of vital signs, 632 (0.1%) cases were critical records, and the median measurement interval 
was 161.0 min. Detailed descriptions of SBP, DBP, HR, RR, BT, and  SpO2 are summarized in Table 1. There were 
14,227 records remaining after data preprocessing; the age was 74.0 (22.0–139.0) months, and 6,041 (42.5%) 
were girls. The critical group included 632 (4.4%) of the patients, and among the critical records, 261 instances 
involved CPR, 238 cases involved unplanned ICU transfers, and 141 cases involved fatalities. There were 8 records 
of patients who died as a result of CPR. Additional information is described in greater depth in Table 2. The 
calculated mean value for imputing missing data in the first measurement interval for each IHID was 276.17.

Main outcomes
The accuracy of the developed model was 0.988, AUROC (95% CI) was 0.986 (0.972–0.995), and AUPRC (95% 
CI) was 0.896 (0.848–0.938) (Fig. 1). In the performance evaluation for each detailed item of the critical events, 
the detailed item, AUROC (95% CI), AUPRC (95% CI) are respectively as follows: CPR occurrence, 0.967 
(0.928–0.988), 0.451 (0.322–0.585) (Supplementary Fig. S1); unexpected ICU transfer, 0.964 (0.951–0.975), 0.203 
(0.139–0.276) (Supplementary Fig. S2); and mortality, 0.995 (0.993–0.997), 0.683 (0.551–0.809) (Supplementary 
Fig. S3). In subgroup evaluation by time interval, the time interval, AUROC, and AUPRC of each time subgroup 
are as follows: 0–1 h, 0.998, 0.982; 1–2 h, 0.997, 0.963; 2–3 h, 0.996, 0.966; 3–4 h, 0.990, 0.949; 4–5 h, 0.997, 0.976; 
and 5–6 h, 0.997, 0.971. The respective 95% Cis and graphical illustrations are shown in Fig. 2.

Among the features used to predict the outcomes, measurement interval had the highest impact, followed 
by  SpO2 and a z-score of RR (Fig. 3). How the model prediction impact changes according to the high and low 
values of each feature is shown in Fig. 4. The lower the measurement interval (blue), the higher the impact on the 
model output, and the higher the measurement interval (red), the lower the impact.  SpO2 also showed the same 
pattern as the measurement interval. On the other hand, greater z-scores for RR and HR had a greater impact 
on outcomes, while lower z-scores for RR and HR had a lesser effect on outcomes (Fig. 4).

The correlation between the features was studied to further characterize the model. The SHAP value (the 
impact of the model output) increased with a smaller measurement interval, as in the prior results, but this time 
around, the z-score of HR had no discernible impact on the value (Supplementary Fig. S4). Regardless of whether 

Table 1.  Baseline characteristics of all vital sign records. Values are presented as median (interquartile range) 
or number (%). *The centile chart developed in the previous paper was used to calculate the z-score by age.

Variables
Vital sign records
(n = 1,039,070)

Critical records 632 (0.1)

Measurement intervals (minutes) 161.0 (43.0–245.0)

Systolic blood pressure

 Measured value (mmHg) 104.0 (95.0–115.0)

 Z-score by age* − 0.3 (− 0.7 to 0.1)

Diastolic blood pressure

 Measured value (mmHg) 64.0 (55.0–73.0)

 Z-score by age* 0.1 (− 0.3 to 0.6)

Heart rate

 Measured value (beats/minute) 108.0 (91.0–126.0)

 Z-score by age* − 0.9 (− 1.4 to − 0.3)

Respiratory rate

 Measured value (breaths/minute) 24.0 (20.0–30.0)

 Z-score by age* − 0.4 (− 0.6 to − 0.1)

Body temperature (℃) 36.8 (36.5–37.2)

Oxygen saturation (%) 99.0 (97.0–100.0)
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the measurement interval was high or low,  SpO2 and SHAP values consistently had an inverse correlation, and 
this tendency was more pronounced when the measurement interval was smaller (Supplementary Fig. S5). The 
supplementary figures provide a summary of the inter-feature influence of parameters that are not mentioned 
above (z-score of RR, Supplementary Fig. S6; z-score of HR, Supplementary Fig. S7; sex, Supplementary Fig. S8; 
age, Supplementary Fig. S9; z-score of SBP, Supplementary Fig. S10; z-score of DBP, Supplementary Fig. S11; 
and body temperature, Supplementary Fig. S12).

Discussion
Through this study, we created a deep learning model that uses simplified variables, including vital signs, age, 
sex, and measurement interval, to predict the need for intervention in pediatric patients who are deteriorating. 
Our approach, in contrast to earlier studies, predicts the probability of transfer to the ICU using only a handful 

Table 2.  Characteristics of datasets used to develop deep learning models. Values are presented as median 
(interquartile range) or number (%). VS, vital sign; CPR, cardiopulmonary resuscitation; ICU, intensive care 
unit. *The centile chart developed in the previous paper was used to calculate the z-score by age.

Variables
Total
(n = 14,227)

Non-critical group
(n = 13,595)

Critical group
(n = 632)

Age (months) 74.0 (22.0–139.0) 75.0 (23.0–140.0) 64.0 (10.5–124.5)

Female 6041 (42.5) 5766 (42.4) 275 (43.5)

VS measurement intervals (minutes) 240.0 (162.0–480.0) 240.0 (177.0–480.0) 7.0 (2.0–45.0)

Systolic blood pressure

 Measured value (mmHg) 104.0 (95.0–113.0) 104.0 (96.0–113.0) 101.0 (89.0–116.5)

 Z-score by age*  − 0.4 (− 0.7 to 0.0)  − 0.4 (− 0.7 to 0.0)  − 0.4 (− 0.9 to 0.2)

Diastolic blood pressure (mmHg)

 Measured value (mmHg) 63.0 (55.0–71.0) 63.0 (55.0–70.0) 61.0 (50.0–72.5)

 Z-score by age* 0.1 (− 0.3 to 0.5) 0.1 (− 0.3 to 0.5) 0.1 (− 0.5 to 0.7)

Heart rate

 Measured value (beats/minute) 103.0 (88.0–123.0) 103.0 (88.0–121.0) 126.0 (80.0–160.0)

 Z-score by age*  − 1.0 (− 1.4 to − 0.5)  − 1.0 (− 1.4 to − 0.5)  − 0.3 (− 1.7 to 0.8)

Respiratory rate

 Measured value (breaths/minute) 24.0 (20.0–28.0) 24.0 (20.0–28.0) 33.0 (21.0–44.0)

 Z-score by age*  − 0.5 (− 0.6 to − 0.3)  − 0.5 (− 0.6 to − 0.3) 0.1 (–0.6 to 0.9)

Body temperature (℃) 36.7 (36.5–37.0) 36.7 (36.5–37.0) 36.9 (36.5–37.6)

Oxygen saturation (%) 99.0 (98.0–100.0) 99.0 (98.0–100.0) 88.0 (61.0–98.0)

Critical event

 CPR 261 (1.8) 0 (0.0) 261 (41.3)

 ICU transfer 238 (1.7) 0 (0.0) 238 (37.7)

 Mortality 141 (1.0) 0 (0.0) 141 (22.3)

Figure 1.  Receiver operating characteristic curve and precision-recall curve. AUROC = area under the receiver 
operating characteristic curve, AUPRC = area under the precision-recall curve.



5

Vol.:(0123456789)

Scientific Reports |         (2024) 14:4707  | https://doi.org/10.1038/s41598-024-55528-1

www.nature.com/scientificreports/

of variables without the need for accumulated measurements. Furthermore, the model demonstrated an AUROC 
of 0.986 and an AUPRC of 0.896, which were significantly better than those of earlier  studies15,16.

Numerous studies on previously developed PEWS have reported outstanding AUROC values of around 
0.9, but the process of collecting and calculating the parameters for the scoring system is complex and time-
consuming, which can significantly increase the workload of the medical staff. Even when the efficacy of the 
prediction model is high, its impracticality can become an obstacle in clinical settings. It is important to evaluate 
the workload of medical staff, especially in an environment with limited medical  resources27–29. The prediction 
model created in this study can decrease such workload for the medical staff because it utilizes vital signs, sex, 
and age as parameters that are expressed in plain values and are easy to access because they are collected in the 
hospital electronic medical record system. Moreover, predictions with a deep learning model can be generated 

A

B

C F

D

Figure 2.  Performance of the developed model according to the time interval before a critical event occurs. 
AUROC, AUPRC (A) 0–1 h, (B) 1–2 h, (C) 2–3 h, (D) 3–4 h, (E) 4–5 h, and (F) 5–6 h before a critical event 
occurs. AUROC = area under the receiver operating characteristic curve, AUPRC = area under the precision-
recall curve.

Figure 3.  Impact on the output of each variable used in the model. The higher the mean SHAP value (the 
longer the blue bar to the right), the greater the impact on the predictive model.  SpO2 = oxygen saturation, 
RR = respiratory rate, HR = heart rate, SBP = systolic blood pressure, DBP = diastolic blood pressure, 
SHAP = shapley additive explanations.
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automatically without manually entering values into a computer, which can eliminate the workload of the medi-
cal staff entirely.

In this investigation, the measurement interval was used as a learning parameter as opposed to the LSTM 
model study, which needs consecutive measurement results. Vital signs are typically not monitored as regularly 
in general wards as they are in ICUs, but the frequency increases if a patient’s condition deteriorates. We were 
able to create a prediction model without the necessity of 20 consecutive observations because our prediction 
model was built to reflect this idea. As a result, predictions can be made before a collection of subsequent meas-
urements is complete.

In the detailed analysis of critical events, AUROC consistently exceeded 0.96 for all CPR occurrences, ICU 
transfers, and deaths, mirroring the performance in predicting overall critical events. However, AUPRC exhib-
ited a notable decline, possibly stemming from the model’s lack of specialized training for individual events. 
Subsequent subgroup analysis by time interval yielded unexpected results. Contrary to expectations, proximity 
to critical events did not necessarily enhance prediction performance. Remarkably, the model demonstrated 
superior results across all time periods compared to the overall critical events prediction. The black box nature of 
deep learning made it challenging for the authors to provide a definitive explanation for these results. Yet, upon 
reflection, it was noted that the model was developed without the intention of making predictions based on a 
series of continuous measurements; instead, it analyzed only measurements from a single timestamp. Another 
crucial point to consider was that the parameters used for learning did not incorporate information capable of 
estimating the time from measurement to event occurrence, which was deemed a significant explanatory factor.

The persisting question surrounded the superior results observed in the time-specific subgroups compared to 
the overall performance. It was hypothesized that as measurements corresponding to critical events were divided 
into subgroups, the imbalance between the non-critical group and critical subgroups increased, thus maintaining 
an excellent AUROC. Additionally, to explain the enhanced AUPRC, the authors considered the homogeneity of 
the data. The non-critical group in the study comprised the last vital sign measurements taken before discharge 
from patients without a critical event, making it a relatively stable and homogeneous group. Conversely, the criti-
cal group, subject to medical interventions, naturally exhibited diversity in collected measurement values. It was 
reasoned that the longer the collection time, the greater the diversity, and narrowing the collection time window 
would decrease this diversity. Therefore, as the time window for measurement value collection narrowed, the 
homogeneity of the collected measurement values increased. Even if measurements at 5–6 h were relatively stable 
compared to those at 0–1 h, the existence of characteristics clearly distinguishable from the non-critical group 
just before discharge could contribute to elevated AUROC and AUPRC levels. Still, it is crucial to acknowledge 
that this explanation is rooted in assumptions and hypotheses, lacking concrete, objective evidence. Therefore, 
the interpretation and judgment of these findings are ultimately left to the readers.

This study has several limitations. The first is that no external validation was done, as the study was only 
conducted at one center. During the early stages of development, the PEWS performed outstandingly, but vali-
dation tests conducted in diverse settings had mixed results. Although the AUROC and AUPRC of our predic-
tive model were high, we cannot ensure that the performance can be duplicated in other hospitals or in other 
target populations, as in the case of PEWS. Although overfitting was minimized by applying a 30% dropout to 
each layer, the possibility of overfitting the dataset in this study cannot be ruled out. Therefore, it is necessary 
to conduct follow-up studies for external validation in collaboration with other hospitals. Another limitation 
is that in the first measurement for each IHID, the measurement interval is inevitably missing, and in this case, 
the average value of the entire measurement interval was replaced. Considering that the factor with the most 
influence on our predictive model is the measurement interval (Fig. 3), it may be difficult to guarantee its per-
formance for predictive power with only the first measurement. However, the total measurement interval was 

Figure 4.  SHAP values for each feature used in the model. Shows the change in the impact value for the 
model output depending on whether the value of each feature is high (red) or low (blue). For example, when 
the measurement interval is low (blue), the SHAP value is higher than when the measurement interval is high 
(red), thus it can be interpreted that a short measurement interval is important in predicting the patient’s 
deterioration.  SpO2 = oxygen saturation, RR = respiratory rate, HR = heart rate, SBP = systolic blood pressure, 
DBP = diastolic blood pressure, SHAP = shapley additive explanations.
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240 (162.0–480.0) minutes (Table 2), and the SHAP value changed rapidly when the measurement interval was 
low (Fig. 4). Therefore, the possibility of significantly changing the risk can be considered sufficiently low even 
if the average value of the interval was used for the first measurement taken in the general ward. In addition, an 
essential aspect to address in this study is that, even though deep learning models exhibit proficiency in predicting 
critical events, it is imperative to closely monitor a patient’s organ function preceding major occurrences such 
as CPR or mortality. Despite the strong predictive capabilities of these models, the meticulous monitoring of a 
patient’s organ function by medical staff remains indispensable for gaining insights into the patient’s dynamic 
health status, allowing timely interventions and personalized care. We believe that the synergistic use of predic-
tive models and continuous monitoring can ensure a comprehensive and proactive approach to patient care in 
critical situations.

Conclusion
Herein, we developed a deep learning model that predicts critical events using simplified variables. The per-
formance of the model was excellent and worked without consequential serial measurements. A well-designed 
follow-up multicenter study is needed for external validation.

Data availability
The datasets generated during and/or analyzed during the current study are available from the corresponding 
author on reasonable request.
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