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Decision‑making processes 
in perceptual learning depend 
on effectors
Vladyslav Ivanov 1,6,7, Giorgio L. Manenti 1,2,3,4,7, Sandrin S. Plewe 1,2,3, Igor Kagan 3,5 & 
Caspar M. Schwiedrzik 1,2,3*

Visual perceptual learning is traditionally thought to arise in visual cortex. However, typical perceptual 
learning tasks also involve systematic mapping of visual information onto motor actions. Because the 
motor system contains both effector‑specific and effector‑unspecific representations, the question 
arises whether visual perceptual learning is effector‑specific itself, or not. Here, we study this question 
in an orientation discrimination task. Subjects learn to indicate their choices either with joystick 
movements or with manual reaches. After training, we challenge them to perform the same task 
with eye movements. We dissect the decision‑making process using the drift diffusion model. We 
find that learning effects on the rate of evidence accumulation depend on effectors, albeit not fully. 
This suggests that during perceptual learning, visual information is mapped onto effector‑specific 
integrators. Overlap of the populations of neurons encoding motor plans for these effectors may 
explain partial generalization. Taken together, visual perceptual learning is not limited to visual 
cortex, but also affects sensorimotor mapping at the interface of visual processing and decision 
making.

Keywords Visual perceptual learning, Effector specificity, Orientation, Sensorimotor mapping

A core characteristic of the brain is its ability to learn. Learning is not limited to acquiring new motor skills or 
a foreign language—visual perception is also highly plastic. Training enables us to improve our visual abilities 
well into the hyperacuity  range1 and to learn to see what is initially  invisible2. Such training effects are known 
as visual perceptual learning (VPL). VPL occurs not only during critical periods of development, but also in 
adult brains. This has profound implications for how we think about brain organization and function, yet little 
is known about the principles and neural mechanisms underlying adult VPL.

Classical theories suggest that VPL occurs in visual  cortex3–5. This idea rests upon the striking correspondence 
between the known selectivities of neurons in early visual areas and the selectivity of behavioral learning effects 
that are often found in VPL studies. For example, VPL has been found to be specific to the orientation,  location6, 
 polarity7, and even eye of  origin8 of the training material, resembling the tuning properties of V1 neurons. 
Accordingly, many classical theories argue that VPL increases the selectivity of neurons in early sensory areas.

While VPL-induced increased selectivity of neurons in early visual cortex has indeed been observed through 
single cell recordings in monkeys [reviewed  in9], results are somewhat inconsistent across  studies10, the observed 
changes in selectivity are too small to explain the behavioral  benefits11, and modelling points to limitations on 
how much information can be gained by sharpening tuning  curves12. These results suggest that sharpening of 
neural tuning in visual cortex is only one of the possible mechanisms of VPL.

More recent studies have started to investigate a previously neglected aspect of VPL, sensorimotor mapping. 
In a typical VPL task, two stimulus alternatives, e.g., clockwise or counterclockwise orientation of lines, have 
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to be mapped onto two specific motor actions, e.g., a leftward or rightward saccade. This implies that visual 
information needs to be brought together with motor plans that correspond to the trainee’s choice. This suggests 
selective strengthening of connections between visual and motor neurons as another candidate mechanism of 
VPL. Indeed, a groundbreaking study found that VPL changes the activity of neurons in the lateral intrapari-
etal area (LIP), an area in posterior parietal cortex that is involved in oculomotor decision-making and where 
sensorimotor mappings can take  place13. This resonates with theories that frame VPL as a change in the readout 
of visual information by decision-making  areas14. A role of motor areas in VPL is further suggested by several 
behavioral findings, e.g., that motor tasks improve VPL  consolidation15, and, reversely, that VPL can improve 
oculomotor  performance16.

If VPL affects sensory-motor mapping between visual cortex and the motor system, this would suggest 
another form of specificity in VPL, namely effector specificity. This is because the motor system contains neurons 
that code motor plans for specific effectors. These are highly prevalent in the primary motor cortex, but also in 
parietal cortex: many neurons in the so-called parietal reach region (PRR) code for arm movements, while many 
neurons in LIP are saccade  specific17–20. During VPL, connections between stimulus-specific visual neurons and 
effector-specific motor neurons could thus be strengthened, resulting in stimulus- and effector-specific behavioral 

Figure 1.  Possible models for effector specificity in visual perceptual learning. Classical model: learning 
occurs in visual cortex and results in stimulus- but not effector-specific learning effects. Changing the effector 
after training results in full transfer of learning effects to the new effector. Specific stimulus–response mapping 
model: visual information is mapped onto effector-specific motor neurons. This would result in stimulus- and 
effector-specific learning effects. Decision rule model: stimulus–response mapping takes place between visual 
neurons and effector-independent neurons involved in decision making and movement planning. This results 
in stimulus-specific learning effects that generalize across effectors. Effector-specific decision rule model: 
Sensorimotor mapping occurs between visual neurons and effector-specific integrators. Overlap between 
effectors at the integration stage results in partial transfer between the trained and untrained effectors.
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learning effects. However, areas like LIP also encode components that are effector-independent18,21–24. This raises 
the possibility that VPL is effector-independent, too, even if sensorimotor mapping is involved.

A number of studies have started to investigate effector-specificity of VPL, but results are mixed, leaving open 
several possible models on how sensory and/or motor circuits are affected by training (Fig. 1): in the above-men-
tioned classical model of VPL, learning occurs in visual cortex and results in stimulus- but not effector-specific 
learning effects. Hence, changing the effector after training would result in full transfer of learning effects to the 
new effector. Studies that report effector-independent VPL effects can be interpreted this  way25. In the specific 
stimulus–response mapping model, visual information is mapped onto effector-specific motor neurons in motor 
 cortex26, parietal  cortex18,19, or subcortical  structures27. This would result in stimulus- and effector-specific learn-
ing effects. Evidence for high effector-specificity VPL has been reported in some  studies28,29. However, these 
experiments often also involved a change in the task (e.g., binary categorization versus continuous adjustment), 
which possibly requires different readout weights. Hence, these results could also be interpreted to reflect the 
well-known task-specificity of  VPL30 instead of effector-specificity. Most recently, a decision rule model has been 
put  forward25. Here, stimulus–response mapping takes place between visual neurons and effector-independent 
neurons involved in abstract movement planning and decision making in parietal cortex or subcortical structures 
like the  pulvinar31. This would result in stimulus-specific learning effects that generalize well across effectors. 
This has indeed been  reported25.

The studies investigating effector-specificity in VPL have so far exclusively focused on accuracy as a measure 
of learning and transfer. However, this only considers the end result of a decision-making process and disre-
gards subcomponents involved in the full sensorimotor processing arc. Here, we use a model-based approach, 
the well-established drift diffusion model (DDM) of decision  making32, to dissociate different aspects of this arc 
and learning effects upon them. The DDM relates accuracy to reaction times and allows investigation of the rate 
of evidence accumulation (the drift rate parameter), the decision bound (i.e., when a decision is reached), non-
decision time (related to encoding of sensory information and execution of motor actions), and decision bias 
for one or the other stimulus alternative. This approach has previously been shown to reveal subcomponents of 
 VPL33–36, but has so far not been applied to the question of effector-specificity in VPL.

We train subjects in an orientation discrimination task. We focus on orientation VPL since stimulus-specific 
VPL effects are well documented for this  feature6. Subjects practice for several days to discriminate orientations 
and to indicate their choice with a joystick movement (Experiment 1). After the last training session, we require 
them to carry out the same task but to indicate their choice with an eye movement. Our transfer task thus dif-
fers from training only in the effectors, allowing us to dissociate the above-mentioned models. In Experiment 
2, we train subjects to indicate their choice with a pointing movement instead that closely matches the spatial 
transformations required for directing saccades during the transfer task. This allows us to further differentiate 
whether any possible specificities are due to differences in spatial transformations or the effectors themselves.

To preview, across the two experiments, we find that VPL depends on the effector. The DDM taking reac-
tion times into account shows that the specificity arises in the rate of sensory evidence accumulation (i.e., the 
drift rate), an integral component of decision-making. This is most compatible with a new model, where visual 
information is mapped onto effector-specific integrators.

Methods
Participants
A total of 44 healthy human volunteers (28 female, 1 left-handed, mean age 25.61 yrs, SD 6.94 yrs) participated 
in this study. All subjects had normal or corrected-to-normal vision, reported no history of neurological or psy-
chiatric disease, and gave written informed consent before participation. No sample size estimate was performed, 
but sample size was selected based on previous studies. Because most comparisons were within subjects, we used 
convenience sampling. 22 subjects (12 female, 1 left-handed, mean age 23.5 yrs, SD 2.32 yrs) participated in 
Experiment 1 involving joystick and eye movements. 2 subjects had to be excluded from data analysis because of 
lack of significant learning and another one due to sickness on the transfer session day (final n = 19, 12 female, 
1 left-handed, mean age 23.68 yrs, SD 2.4 yrs). 12 subjects participated in Experiment 2 involving reaches on a 
touchscreen and eye movements (n = 12, 10 female, mean age 26.8 yrs, SD 11.78 yrs). 2 subjects were excluded 
from data analysis because lack of significant learning (final n = 10, 9 female, mean age 25.8 yrs, SD 1.86 yrs). 10 
subjects participated in a control experiment for baseline differences between joystick and eye movements (n = 10, 
6 female, mean age 27.3 yrs, SD 6.21 yrs). All procedures were in accordance with the Declaration of Helsinki 
and approved by the Ethics Committee of the University Medical Center Göttingen (protocol number 29/8/17).

Stimuli and procedure
In all experiments, subjects were trained on an orientation discrimination task. Training took place over four to 
six consecutive days with one training session per day. On the day after the last training session, subjects were 
instructed to perform the same task, but with a different effector (see below). Stimuli were presented on a gamma-
corrected LCD monitor (ViewPixx EEG, refresh rate 120 Hz, resolution 1920 × 1080 pixel, viewing distance 65 
cm) in a darkened, sound-attenuating booth (Desone Modular Acoustics). Stimulus delivery and response col-
lection were controlled using  Psychtoolbox37 running in Matlab (The Mathworks, Inc.) on Windows 10. During 
all experiments, we continuously acquired pupil and gaze measurements using a high-speed, video-based eye 
tracker (SR Research Eyelink 1000 +). Data were sampled at 1000 Hz from both eyes. Subjects in Experiments 1 
and 2 were paid €8 per hour. To assure constant motivation over the training sessions, subjects received a bonus 
of €2 if they improved by 10% from the previous training session. Subjects in the control experiment were paid 
12€ per hour to assure a similarly high level of motivation as in Experiments 1 and 2.
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Experiment 1
In Experiment 1, subjects were trained in orientation discrimination and responded with a joystick move-
ment during training, while they had to respond with a saccade in the transfer session. Subjects had to decide 
whether a Gabor grating (size 2.4 dva, spatial frequency 3.3 cpd, luminance 43.4 cd/m2) was tilted clockwise 
or counterclockwise with respect to the reference stimulus. The reference stimulus was a Gabor grating with 
identical parameters tilted 20° counterclockwise from the vertical meridian presented at the center of gaze. The 
task stimuli were presented in six logarithmically spaced difficulty levels (± Δ = [0°, 0.31°, 0.56°, 1°, 1.77°, 3.16°]) 
with 20 trials for each of the orientations, respectively. The stimuli were presented in pseudo-random order at 
8.65° eccentricity in the lower right quadrant against a grey background (39.5 cd/m2).

Each trial started with a fixation phase of 2–3 s duration (Fig. 2). Then, placeholders for the saccade version 
of the task appeared for 1.5 s at 8° eccentricity (distance from task stimulus 6.7 and 14.5 dva, respectively), fol-
lowed by the presentation of the Gabor grating for 250 ms. Subjects then had 1 s to respond. The start of the 
response period was indicated by the disappearance of the Gabor grating. Feedback on accuracy was presented 
by changing the color of the fixation dot to red (incorrect) or green (correct) for 0.5 s. The next trial started 
1.5 s later. If subjects did not respond within 1 s, a message "too late" appeared on the screen and the trial was 
repeated later during the block. Similarly, if subjects broke fixation throughout the trial, the trial was aborted 
and repeated at the end of the block.

Each training session included 220 trials evenly distributed among four blocks. Subjects were free to take 
short breaks between blocks. There were additional breaks in the middle of each block to display feedback about 
performance and reaction times. The reference was shown for 2 s in the center of the screen before and in the 
middle of each block (in total 8 times per session).

Figure 2.  Design of Experiment 1. (A) Each trial started with a fixation phase (2–3 s). Then, placeholders for 
the saccade version of the task appeared (1.5 s), followed by the presentation of the Gabor grating (0.25 s). Once 
the Gabor grating disappeared, subjects had 1 s to indicate their choice (with a joystick movement during the 
training phase or with a saccade during the transfer session). Feedback on accuracy was presented by changing 
the color of the fixation dot to red or green (0.5 s). (B) The reference grating was shown for 2 s in the center of 
the screen before and in the middle of each block (in total 8 times per session).
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Subjects were instructed to respond as accurately as possible, however, they also had to consider the time 
limitation. To respond, subjects had to tilt a joystick (Logitech Extreme 3D Pro, either in standard configura-
tion or in a customized configuration for left-handed subjects) with their dominant hand to the left if a stimulus 
was counterclockwise rotated and to the right if clockwise (while maintaining fixation). Hand dominance was 
assessed at the beginning of the experiment with the Edinburgh Handedness  Inventory38. In the transfer session, 
subjects were instructed to instead direct their gaze to the left or right placeholder, respectively. Subjects thus had 
to learn an arbitrary mapping of a visual stimulus to a response alternative, and potentially remap this associa-
tion to a new effector in the transfer session. Previous research has shown that effectors do not affect accuracy 
pre  training39–41. We focus on effector-specificity since stimulus-specificity does not differentiate the different 
models for sensorimotor mapping in VPL.

Participant had to reach at least 75% correct responses before we transitioned to the transfer session. All but 
two subjects reached this performance level within four days; two subjects required five and six days of training, 
respectively.

Experiment 2
In Experiment 2, subjects were trained on orientation discrimination and responded with a finger movement 
during training, while they had to respond with a saccade in the transfer session. We recorded finger movements 
by means of a transparent touch screen (Magic Touch, Tyco Touch Inc.), modelled after Pilacinsky and  Lindner42, 
which was mounted in front of the screen. Subjects were provided with an arm support (ErgoRest) and a finger 
stylus (TrueTip) to ensure ease of use.

As in Experiment 1, subjects had to decide whether a Gabor grating (size 2.4 dva, spatial frequency 3.3 cpd, 
luminance 10.9 cd/m2) was tilted clockwise or counterclockwise with respect to the reference stimulus. The 
reference stimulus was a Gabor grating with identical parameters tilted 20° counterclockwise from the vertical 
meridian. The task stimuli were presented in six logarithmically spaced difficulty levels (± Δ = [0°, 0.31°, 0.56°, 
1°, 1.77°, 3.16°]) with 20 trials for each of the orientations, respectively. The stimuli were presented in a pseudo-
random order at 8.65° eccentricity in the lower right quadrant against a dark grey background (6.4 cd/m2).

Each trial started with a finger and eye fixation phase of 1 to 2 s duration (Fig. 3). Subjects had to maintain 
central fixation with their gaze and simultaneously touched a finger fixation dot between the two target locations 
on the screen. Then, black placeholders appeared for 1 to 2 s at 11° eccentricity (distance from task stimulus 
5 and 11.4 dva, respectively), followed by the presentation of the Gabor grating for 350 ms, a delay of 2 to 3 s 
during which the placeholders’ color switched from to blue and yellow, respectively. Subjects had 1 s to respond. 
The start of the response period was indicated by change of fixation dot. The next trial started 0.5 to 2 s later. 
If subjects did not respond within 1 s, the trial was repeated later during the block. Similarly, if subjects broke 
fixation throughout the trial, the trial was aborted and repeated at the end of the block. Feedback about correct 
and incorrect responses was provided with a blue or white dot, respectively, at fixation.

Each training session included 220 trials evenly distributed among four blocks. Subjects were free to take 
short breaks between blocks. The reference was shown for 2 s in the center of the screen before and in the middle 
of each block (in total 8 times per session).

Subjects were instructed to respond as accurately as possible. To respond, subjects had to move their finger 
from the finger fixation spot between the two targets to the blue target if the stimulus was tilted clockwise or to the 
yellow target if the stimulus was tilted counterclockwise (while maintaining central fixation). Hand dominance 
was assessed at the beginning of the experiment with the Edinburgh Handedness  Inventory38. In the transfer 
session, subjects were instructed to instead direct their gaze to the blue or yellow placeholder, respectively. For 
all subjects, training lasted four days.

Control experiment for differences between effectors
To determine whether any differences between effectors were the result of training or already existed before 
training began, we conducted a control experiment comparing orientation discrimination performance between 
effectors. This was done in a separate group of subjects (n = 10, 6 female, mean age 27.3 yrs, SD 6.21 yrs) to avoid 
possible effects of pretesting on generalization performance. The task was identical to Experiment 1, and subjects 
were asked to complete 220 trials with one effector and, after a break, 220 trials with the other effector. The order 
of effectors was counterbalanced across subjects.

Analyses
The Signal Detection Theory parameter d′43 was computed per subject and session using the loglinear  correction44. 
d’ were entered into repeated measures analyses of variance (rmANOVA) with factors session (4 levels for training 
session effects, or 2 levels for last training session to transfer effects), difficulty (5 levels), and their interaction. 
Reaction times were entered into a rmANOVA with factors session and correctness (levels correct, incorrect). 
Two subjects required more than four days of training (5 and 6) in Experiment 1; therefore, we restrict our analy-
ses to the last four training sessions. Due to technical issues, we lost the data from the third training session for 
one subject in Experiment 1. Thus, to be able to compute rmANOVA across training sessions (1–4), we excluded 
the subject (total n = 18) from these analyses, but we included the subject in the transfer test (last training versus 
transfer, total n = 19). For t-tests and rmANOVAs, we compute Hedges’ g and partial η2, respectively, as effect 
sizes, using the Measures of Effect Size  Toolbox45. In addition, to quantify transfer performance, a Specificity 
 Index33 was calculated, as follows:



6

Vol:.(1234567890)

Scientific Reports |         (2024) 14:5644  | https://doi.org/10.1038/s41598-024-55508-5

www.nature.com/scientificreports/

The index reflects the training session used to compute the median d’.

Drift diffusion model
Sequential sampling models like the DDM assume that decision making is a stochastic process of evidence accu-
mulation about a stimulus in  time32. Decisions are made when the accumulation process reaches an evidence 
threshold (decision criterion) for one of the alternatives. The rate of accumulation and the decision criteria 
determine the reaction time (RT), and fluctuations in the process are the reason for errors and the distribution of 
RTs. The DDM can account for effects of different experimental conditions from accuracy, mean RT for correct 
and error responses, and the shape of RT distributions for correct and error responses. The full DDM includes 
seven parameters: drift rate (v) and its trial-by-trial variability (η), non-decision time (Ter) and its trial by-trial 
variability (st), boundary separation (a), the starting point of the decision process (z) and its trial-by-trial vari-
ability (sz). v is the key component of the model, as it describes the rate of evidence accumulation and positively 
correlates with the accuracy level of subjects. a is the distance between decision criteria for both alternatives, 
and the bigger the distance is, the longer it takes to make a decision. The evidence accumulation starts from z, 
which lies between 0 and a. z can be positioned closer to one of the alternatives, which biases the decision process 
toward it. Ter accounts for the non-decision phases: stimulus encoding and response output. The DDM states that 
v and Ter are independent, and hence, that manipulations of the effector only affect Ter 46. This assumption has 
been previously empirically  validated46, and it is thus common in the field to compare DDM parameters directly 
between effectors [e.g.,47]. Here, we follow the same logic.

(1)SI =
d′lasttraining − d′transfer

d′lasttraining − d′firsttraining

Figure 3.  Design of Experiment 2. (A) In the touchscreen version of the task, each trial started with a finger 
and eye fixation phase of (1–2 s). Subjects had to maintain central fixation with their gaze and simultaneously 
touched a finger fixation dot between the two target locations on the screen. Then, black placeholders appeared 
(1–2 s), followed by the presentation of the Gabor grating (0.35 s). A delay phase (2–3 s) started with a switch 
of the placeholders’ color to blue and yellow. Subjects had to respond within 1 s once the finger fixation dot 
disappeared. Feedback on accuracy was presented by changing the color of the fixation dot to blue or white 
(0.5 s). (B) The trial structure of the saccade version of the task was identical to the touchscreen version, with 
the exception that the finger fixation dot was not shown. Instead, the disappearance of the central fixation dot 
indicated the start of the response period.
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We use the Hierarchical Drift Diffusion Model (HDDM 0.8.0)48, available as a toolbox in Python, to fit the 
model parameters to our data of Experiment 1. The HDDM employs Bayesian inference to recover the model 
parameters. First, the HDDM estimates the parameter values for a population (pgroup), and then it uses the popu-
lation fit to constrain the parameter values for individual subjects (psubj). The hierarchical Bayesian approach 
performs significantly better than using χ2 as the optimization criterion when data per subject is  limited49.

To identify the combination of model parameters which best explains our data, we fit several models built on 
theoretically meaningful parameter combinations (see Results) and compare them on the basis of the Deviance 
Information Criterion [DIC,50].

In the best performing model, we estimate parameters for all sessions jointly while allowing v to vary across 
the sessions and the difficulty levels. The stimuli are encoded by their orientation (clockwise/counterclockwise), 
and v is estimated for both orientations together. We allow a, Ter and z to vary only between sessions because 
a priori, decision boundaries, encoding, muscle response time, and the orientation bias should be the same 
across difficulty levels when the latter are randomly intermixed. However, it has been argued that subjects can 
learn to adjust their decision bounds to difficulty  levels51,52. We thus also explored a model in which decision 
bounds could vary across sessions and difficulty levels, which we report in the supplementary material. We did 
not include noise parameters capturing inter-trial variability in the drift-rate, the non-decision time and the 
starting point into any our models; for proper estimation of these parameters, the HDDM requires noticeably 
more samples per condition than we have available. We run the fitting algorithm four times with 30,000 Markow-
Chain-Monte-Carlo samples, 10,000 samples burn-in, and discarding every 5th sample.

We utilize two formal diagnostics to assess the convergence of the model: the Gelman-Rubin and Geweke 
method, respectively. The Gelman-Rubin method compares between-chain and within-chain variances for each 
model  parameter53. Significant differences (diagnostics value > 1.2 or 1.1 under strict conditions) between these 
variances indicate non-convergence54. We compute the diagnostic with the help of the kabuki (0.6.3) Python 
library. The Geweke method evaluates only within-chain  fluctuation55. It calculates z-scores of the difference 
between the initial and subsequent segments of the chain. If the chain has converged, most points should be 
within two standard deviations of zero (z-score ∈ [−2, 2]). We chose the first 10% of the chain as the initial seg-
ment, and the last 50% divided into 20 segments. To compute the Geweke diagnostic, we use the PyMC (2.3.8) 
Python library.

To compare model parameters between conditions within subjects, we assess the overlap of the respective 
posterior distribution. To assess differences between groups, we compare the distribution of differences between 
conditions between groups and report the probability of one group having a higher estimated difference in 
parameter value than the other  group56.

Results
Learning and transfer effects on accuracy and reaction time
We find that across all five difficulty levels, subjects in Experiment 1 significantly improve their performance 
(d’) as function of training, with increases ranging between 0.60 and 1.93 (Fig. 4A, mean increase between 
first and last training session 1.25, t(18) = −11.78, p < 0.001, g = 3.04; rmANOVA main effect of session, F(3, 

Figure 4.  Accuracy and reaction times for Experiment 1. (A) Mean accuracy (in units of d’) increases with 
learning from the first to the last training session (mean difference 1.25, t(18) = −11.78, p < 0.001, g = 3.04, two-
sided) and drops from the level reached in the last training session when the effector is changed from a manual 
joystick response to a saccadic response (mean difference 0.32, t(18) = 6.41, p < 0.001, g = 0.98, two-sided). (B) 
Mean reaction times for correct and incorrect responses do not differ from each other throughout the sessions 
and do not change significantly as a function of learning (all p > 0.29, all η2p < 0.11). When the effector is 
changed, reaction times become uniformly shorter (main effect of session, F(1,18) = 91.56, p < 0.001, η2p = 0.83 , 
no main effect of correctness or interaction, all p > 0.09, all η2p < 0.14 ). (C) Learning depends on the effector, as 
evidenced by a median Specificity Index of 0.30, which is significantly bigger than 0 (p < 0.001, sign test, one-
sided). Dots reflect individual subjects’ Specificity Indices. 17 out of 19 subjects have Specificity Indices > 0. In 
panels A and B, error bars reflect the SEM, corrected for between-subject  variability80,81. In panel C, error bars 
reflect the standard error of the  median82. *** stand for p < 0.001, ** for p < 0.01, and * for p < 0.05.
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51) = 138.94, p < 0.001, η2p = 0.519 ). Subjects learn more on easy than on difficult orientation differences (Fig. S1, 
main effect of difficulty, F(4, 68) = 96.18, p < 0.001, η2p = 0.647 , interaction session × difficulty F(12, 204) = 13.18, 
p < 0.001, η2p = 0.145 ). When the effector is changed from a manual joystick response to a saccadic response in 
the transfer session, we find a significant decrease in performance relative to the last session across all difficulty 
levels (mean decrease 0.32, t(18) = 6.41, p < 0.001, g = 0.98; rmANOVA main effect of session, F(1,18) = 21.48, 
p < 0.001, η2p = 0.54 main effect of difficulty, F(4,72) = 290.68, p < 0.001, η2p = 0.94 , interaction session × difficulty 
F(4,72) = 0.487, p = 0.745, η2p = 0.02 ). This is also evident when we calculate the SI, which has a median of 0.30 
(Fig. 4C, p < 0.001, sign test, one-sided). In contrast, there are no differences in d’ when the task is carried out 
with joystick or saccades in the control group in the absence of training (mean difference in d’ 0.14, t(9) = 1.10, 
p = 0.653, g = 0.21). Accordingly, the difference in d’ between effectors in the trained group is significantly larger 
than the difference in the control group (mixed ANOVA, main effect of experimental group, F(1,27) = 8.593, 
p = 0.007, η2p = 0.241 , no main effect of difficulty, F(4,108) = 1.126, p = 0.348, η2p = 0.04 , no interaction experi-
ment × difficulty F(4,108) = 0.96, p = 0.432, η2p = 0.03 ). This suggests that the drop in d’ we find in Experiment 1 
when effectors change is learning-induced and cannot be explained by preexisting differences.

Mean reaction times for correct and incorrect responses do not differ from each other throughout the ses-
sions and do not change significantly as a function of learning (all p > 0.29, all η2p < 0.11 ). When the effector is 
changed, reaction times become uniformly shorter (Fig. 4B and Fig. S1, mean difference 0.143 s, main effect 
of session, F(1,18) = 91.56, p < 0.001, η2p = 0.83 ). As there was no significant main effect of correctness or any 
significant interaction (all p > 0.09, all η2p < 0.14 ) in reaction times, this is unlikely to constitute a learning effect 
and can be attributed to generally shorter latencies of saccades as compared to hand  movements40 that we also 
find in our control group (mean difference 0.12 s, rmANOVA main effect of effector, F(1,9) = 6.731, p = 0.029, 
η2p = 0.428 , all other effects p > 0.84)).

We find very similar results in Experiment 2, where subjects perform the same task with a precise reach on a 
touch screen. In this smaller sample (n = 10), d’ also improves with training over sessions (Fig. 5A, mean increase 
between first and last training session 0.82, t(9) = 7.76, p < 0.001, g = 1.65; rmANOVA main effect of session, 
F(3,27) = 24.46, p < 0.001, η2p = 0.20 ), with larger improvements for easier orientation differences than for dif-
ficult orientation differences (Fig. S1, main effect of difficulty, F(4,36) = 106.65, p < 0.001, η2p = 0.71 , interaction 
session × difficulty F(12,108) = 4.88, p < 0.001, η2p = 0.12 ). When we change the motor component of the task 
from reaches to saccades in the transfer session, we again find a drop in discrimination across difficulty levels, 
albeit not statistically significant (mean decrease 0.12, t(9) = 0.99 p = 0.347, g = 0.2; rmANOVA main effect of 
session, F(1,9) = 0.98, p = 0.347, η2p = 0.01 , main effect of difficulty, F(4,36) = 66.24, p < 0.001, η2p = 0.69 , interac-
tion session × difficulty F(4,36) = 1.97, p = 0.119, η2p = 0.03 ). Specificity Indices nevertheless show that training 
is specific to the effector in 7 out of 10 subjects (Specificity Index > 0); expressed in median SI across all subjects, 
this is 0.49 (Fig. 5C, p = 0.035, sign test, one-sided).

Average reaction times decrease over sessions (Fig. 5B and Fig. S1, mean decrease 0.09 s, t(9) = 3.83, p = 0.004, 
g = −0.97; rmANOVA main effect of session, F(3,27) = 10.94, p < 0.001, η2p = 0.170 , main effect of correctness, 
F(1,9) = 1.20, p = 0.301, η2p =< 0.001 , interaction session × correctness F(3,27) = 0.89, p = 0.45, η2p<0.001) and 
further drop significantly when the effector is changed (mean decrease 0.19 s, t(9) = −6.14, p < 0.001; g = −2.63; 
rmANOVA main effect of session, F(1,9) = 37.74, p < 0.001, η2p = 0.673 , main effect of correctness, F(1,9) = 0.315, 
p = 0.588, η2p<0.001, interaction session × correctness F(1,9) = 1.80, p = 0.213, η2p = 0.001 ). The latter can again be 

Figure 5.  Accuracy and reaction times for Experiment 2. (A) Mean accuracy (in units of d’) increases with 
learning from the first to the last training session (mean difference 0.82, t(9) = 7.76, p < 0.001, g = 1.65, two-
sided). There is a numerical, but no statistically significant drop in accuracy when the effector is changed from 
a manual joystick response to a saccadic response (mean difference 0.12, t(9) = 0.99, p = 0.345, g = 0.2, two-
sided). (B) Mean reaction times decrease over sessions (mean decrease 0.09 s, t(9) = 3.83, p = 0.004, g = −0.97) 
and further drop significantly when the effector is changed (mean decrease 0.19 s, t(9) = −64.1497, p < 0.001; 
g = −2.6325). (C) Training is specific to the effector in 7 out of 10 subjects (Specificity Index > 0), with a median 
Specificity Index of 0.49, which is statistically significantly bigger than 0 (p = 0.035, sign test, one-sided). Dots 
reflect individual subjects’ Specificity Indices. In panels A and B, error bars reflect the SEM, corrected for 
between-subject  variability80,81. In panel C, error bars reflect the standard error of the  median82. *** stand for 
p < 0.001, ** for p < 0.01, and * for p < 0.05.
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attributed to generally shorter reaction times for saccades than for reaches. Together, the SIs from Experiments 
1 and 2 show that learning effects on accuracy in orientation discrimination depend on the effector without any 
change in the stimulus material or the task (median SI across both experiments = 0.30, SE 0.13, p < 0.001, sign 
test, one-sided).

Learning on and specificity of components of the decision‑making process
To dissociate different aspects of the decision-making process and learning effects upon them, we use Hierar-
chical Drift Diffusion Models (HDDM) to relate accuracy to reaction times. To this end, we consider the data 
from Experiment 1 (joystick–saccade) in which the task was performed under time pressure (by means of a 
fixed response time window of 1 s) and without a delay phase; the DDM is most appropriate for such speeded 
reaction  times57. We consider the parameters drift rate, decision boundary, bias, and non-decision time. To find 
the combination of model parameters which best explains our data, we fit several models and compare their 
DIC values (Fig. 6). The model which allows drift rate to vary across sessions and difficulty levels and decision 
boundary, non-decision time and bias to vary only across sessions provides the best fit to our data (model a). 
This model outperforms the closest model (b), which does not account for bias, by a difference in DIC > 100, 
which is considered definitive evidence for the better model. According to Gelman-Rubin method, all parameters 
of model (a) converged with a value < 1.016 and there is no difference in convergence quality between sessions 
(Fig. S2). The Geweke method indicates that all group parameters (n = 40) have an average z-score ∈ [−1.5, 1], 
and at worst, 70% of the values are within two standard deviations of zero (Fig. S3). All subject parameters 
(n = 796) have an average z-score =  ± 2, which is within acceptable bounds. Only few parameters have 40–70% 
of the values within two standard deviations of zero. Also, the fit quality is not different across sessions in each 
of the four independent runs (Fig. S4). Together, this shows that our HDDMs converged well. Additionally, we 
verify the model through a posterior predictive comparison (Table S1), which demonstrates that the predicted 
accuracy and reaction time distributions match the empirical data.

Drift rate
Both when assessed on the group and on the subject level, we find that drift rate increases between the first and 
the last training session across difficulty levels (Fig. 7A, psubj(vlast_training > vfirst_training) = [0.95, 0.99, 0.99, 0.99, 0.99], 
see Table S2 for SD of subject values, pgroup(vlast_training > vfirst_transfer) = [1.0, 1.0, 1.0, 1.0, 1.0] for ± Δorientation = [0.31°, 
0.56°, 1°, 1.77°, 3.16°], respectively). This is in keeping with previous reports that show that VPL increases the 
drift rate in various tasks [e.g.,33,34]. When we change the effector in the transfer session, drift rates drop, which 
is evident in the single subject and, especially, group fit of the HDDM (psubj(vlast_training > vtransfer) = [0.79, 0.66, 0.85, 
0.77, 0.86], see Table S2 for SD of subject values, pgroup(vlast_training > vtransfer) = [0.98, 0.85, 0.99, 0.95, 0.99]). We do 
not find this difference in drift rate between effectors in the untrained control group (pgroup(vhand > veyes) = [0.45, 
0.23, 0.56, 0.26, 0.35], pgroup(ΔvExp1 > ΔvControl) = [0.85, 0.86, 0.81, 0.90, 0.92]). We note that statistical power of 
the between-groups comparison may be affected by higher variance in the drift estimation (see Fig. S5). In the 
control group, drift was conditioned on effectors and not sessions, which may lead to an increase in the variance 
of the MCMC samples. Nevertheless, the results overall suggest that learning effects on the rate of evidence 
accumulation depend on the effector.

Figure 6.  Model comparison. Description of the models (v = drift, a = decision boundary, t = non-decision time, 
z = bias; conditions: ses = session, diff = difficulty, const = constant across conditions): (a) v(ses*diff)_a(ses)_t(se
s)_z(ses), (b) v(ses*diff)_a(ses)_t(ses), (c) v(ses*diff)_a(const)_t(ses)_z(ses), (d) v(ses)_a(ses)_t(ses)_z(ses), (e) 
v(ses*diff)_a(ses)_t(const)_z(ses). The best performing model is marked with a red dot. Model a has the lowest 
DIC value and outperforms the closest model by ΔDIC > 100.
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Decision boundaries
We find that the separation between decision boundaries corresponding to clockwise and counterclockwise 
choices does not change significantly between sessions (Fig. 7B, psubj(alast_training > afirst_training) = 0.58 ± 0.35SD, 
pgroup(alast_training > afirst_training) = 0.73, psubj(alast_training > atransfer) = 0.59 ± 0.38SD, pgroup(alast_training > atransfer) = 0.81). 
There is also no difference in decision boundaries between effectors in the untrained control group and the 
trained group (Fig. S6, pgroup(ΔaExp1 > ΔaControl) = 0.53).

Non‑decision time
Non-decision time increases between the first training session and the last training session, as is clearly evi-
dent on the group level (Fig. 8A, pgroup(tlast_training > tfirst_training) = 0.99), but less consistently on the subject level 
(psubj(tlast_training > tfirst_training) = 0.78 ± 0.39SD, see Table S2 for SD of subject values). Previous studies have also 
reported increases in non-decision time with learning [e.g.,35]. It is well established that non-decision time can 
be adjusted strategically, e.g., under different speed-accuracy trade-off  instructions58–60. Hence, it is possible 
that subjects adjusted their motor execution time to stay within the response time window, i.e., to avoid too 
fast responses while their drift rate increases. Non-decision time decreases massively in the transfer session 
(psubj(tlast_training > ttransfer) = 1.0 ± 0.00SD, pgroup(tlast_training > ttransfer) = 1.0, psubj(tfirst_training > ttransfer) = 0.87 ± 0.30SD, 
pgroup(tfirst_training > ttransfer) = 1.0, without three extremely fast subjects psubj(tfirst_training > ttransfer) = 1.0 ± 0.00SD). The 
non-decision time in the untrained control group is also significantly smaller for eyes (pgroup(thand > teyes) = 0.99) 
and the difference between the control and trained group is negligible (Fig. S7, pgroup(ΔtExp1 > ΔtControl) = 0.57). 
This effect can likely be attributed to generally shorter latencies of saccades as compared to hand  movements40,46.

Figure 7.  Hierarchical Drift Diffusion Model fit of drift rates and decision boundaries in Experiment 1. (A) 
Drift rate (v) increases between the first and the last training session across orientations. When the effector 
changes in the transfer session, the learning-induced gains in drift rate drop. (B) The separation between 
decision boundaries (a) does not change between the first, last training and transfer session. Squares signify the 
mean individual fits, errors bars ± 2 standard deviations; crosses indicate the group fits. The discrepancy along 
the abscissa between sessions in A is intentional to increase visibility of error bars.

Figure 8.  Hierarchical Drift Diffusion Model fit of non-decision times and biases in Experiment 1. (A) Non-
decision time (t) increases between the first and the last training session, and then decreases in the transfer 
session. (B) Subjects had a slight bias (z) in the clockwise direction during the first training session, which 
disappeared with the last training and remained low for the transfer session. Squares signify the mean individual 
fits, errors bars ± 2 standard deviations; crosses indicate the group fits.
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Bias
We find a slight bias in clockwise orientation (Fig. 8B, zsubj = 0.471, zgroup = 0.471) during the first training session, 
which disappears with the last training (zsubj = 0.505, zgroup = 0.505; psubj(zlast_training > zfirst_training) = 0.77 ± 0.29SD, 
pgroup(zlast_training > zfirst_training) = 0.99). Hence, subjects seem to optimally adjust their response bias in accordance 
with the task demands. During the transfer session, the bias is almost eliminated (zsubj = 0.493, zgroup = 0.493; 
psubj(zlast_training > ztransfer) = 0.59 ± 0.26SD, pgroup(zlast_training > ztransfer) = 0.79).

Discussion
We find that VPL of orientation discrimination depends on the effector with which the task is trained. Analyses 
with the HDDM reveal that this dependency arises from effector specificity of a subcomponent of the decision-
making process, namely the rate of evidence accumulation. Our results thus confirm that sensorimotor mapping 
is affected by VPL but suggests a new model on how and where this mapping may take place.

Previous models of VPL suggest either full or (little to) no transfer between effectors. Full transfer would 
arise if learning took place entirely in visual  cortex3–5, as originally conceived, or if sensorimotor mapping 
occurs between visual and decision making neurons, e.g., in parietal cortex, in the form of learning an abstract 
“rule”25. In the most drastic case, no transfer between effectors would be predicted if sensorimotor mapping 
would take place between visual and extremely effector-specific neurons in motor or parietal  cortex28 (but see 
below). In theory, learning abstract rules leads to excellent generalization capacity, which has for example been 
suggested to be the basis of visual training from action video  games61. On the other hand, decomposing tasks into 
effector-specific components greatly simplifies reinforcement learning and effector-specific reward prediction 
errors supporting such learning have been found in humans using  fMRI62. Effector specificity has been found in 
several other forms of learning involving sensorimotor mapping [e.g.,63], but generalization across effectors is 
also not uncommon [reviewed  in64]. Our results can be interpreted as an effector‑specific decision rule (although 
neurophysiological data would of course be necessary to further support this interpretation). Here, sensorimotor 
mapping would occur between visual neurons and effector-specific integrators, e.g., in parietal cortex, similar to 
the specific stimulus–response mapping model.

However, the degree of specificity we find falls between the two previously reported extremes, as transfer is 
neither full nor none. Given the co-localization of saccade-specific, reach-specific, and effector-invariant motor 
neurons in parietal  cortex65,66, it is possible that there is overlap of the populations of neurons encoding motor 
plans for these two effectors. The degree of overlap would then determine the degree of transfer between the 
trained and untrained effectors in the transfer session. A possible reason for the colocalization of saccade- and 
reach-selective neurons in parietal cortex is the need for eye-hand coordination in many real-world tasks. Sac-
cades may always be planned along limb movements for visual guidance, but not executed if fixation is required 
by the  task67. Such consistent coactivation could also account for partial transfer results, as saccades would be 
trained along hand movements in an implicit fashion, perhaps through Hebbian plasticity.

In Experiment 2, we used a spatially-localized visually-guided pointing movement, as compared to the sim-
ple left/right joystick tilt response in Experiment 1, to match as well as possible the spatial contingencies of the 
saccade task. This was done to ensure that the finding of partial transfer in the first experiment was not due 
to very different spatial transformation between joystick movements and saccades but indeed dependent on 
the effector: there are considerable differences in parietal and occipital cortex activity associated with simple 
non-visual actions such as joystick tilt or a button press, compared to visually-guided actions where the effector 
(the hand, or a joystick cursor) is visible and needs to be directed to a spatial target [e.g.,68,69]. In line with this, 
lesions of parietal cortex influence spatially-contingent reach-and-point responses but do not affect arbitrary 
stimulus to simple non-spatial motor response  transformations70. At the same, index finger pointing and saccades 
activate largely overlapping areas in parietal and prefrontal  cortex71, making the learning transfer question very 
relevant. Since we find significant SIs in both experiments as well as when we pool data across experiments, this 
indicates that VPL is indeed effector-specific to some degree; however, given that only Experiment 2 included 
a delay phase and that there was only a numerical but not a statistically significant drop in accuracy when the 
effector was changed suggests that further research is required to illuminate the role of spatial mapping in this 
form of specificity.

Classical VPL models in which learning takes place only in visual cortex predict full transfer and cannot easily 
explain partial specificity of learning effects to effectors. However, visual cortex activity has been shown to be 
differentially modulated by saccades versus reaches in humans using  fMRI67,72. In rodents, there is evidence that 
motor effects in visual cortex increase information about the orientation of visual stimuli [reviewed  in73]. This 
suggests that interactions between visual and motor components of VPL could hypothetically already arise in 
early visual areas but still points to sensorimotor interactions as a relevant contributor to VPL.

Because neurons in parietal cortex have been shown to integrate visual information towards a decision bound, 
the parameters of the DDM are often interpreted to arise in parietal cortex as  well74. This would fit with the 
known existence of effector-specific integrators and their colocalization in areas like LIP that form the basis of 
the newly suggested effector-specific but overlapping integrators model. An increased drift rate is usually inter-
preted as better sensory input to decision-making  process33,75. However, this interpretation cannot fully account 
for the effector specificity of the drift rate parameter that we found, because the sensory input does not change 
when the effector changes. Rather, our results suggest that the drift rate (also) reflects the integration process 
itself, i.e., the action of the integrator. For example, it is possible that integrators in parietal cortex increase their 
sensitivity to sensory information, which could further contribute to a fast integration of information towards 
the decision bound.

Our results are in partial conflict with previous reports on full  transfer25 and no transfer between  effectors28,29. 
As mentioned in the introduction, the latter results can conceivably be explained by the task-specificity of VPL 
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(but we also note that they were obtained with a different experimental design than ours). Several possibilities 
could account for the discrepancy with the study by Awada and colleagues: the study by Awada and colleagues 
tested a much smaller sample of subjects (6 and 4 subjects in their Experiment 1 and 2, respectively), which may 
have been insufficient to reveal partial transfer effects. In fact, the results from Awada and colleagues’ Experiment 
1 show a small trend towards partial transfer that did not reach statistical significance. However, it is also possible 
that differences in the stimuli and task account for the divergent results. In contrast to our study on orientation 
discrimination, Awada and colleagues investigated motion direction discrimination VPL. Motion direction is 
processed in dorsal stream areas, which are anatomically closer to parietal decision-making areas than neurons 
encoding orientation, which primarily reside in the ventral stream. Furthermore, parietal areas such as LIP 
contain intrinsically motion direction sensitive (i.e., sensory)  neurons76. Both these factors could ease sensorimo-
tor mapping to multiple colocalized effectors. Further studies with high statistical power explicitly comparing 
motion direction and orientation discrimination tasks will be able to resolve these alternative interpretations.

In addition to the effector-specific learning effects discussed above, there may have been concurrent, stimulus-
unspecific motor learning. Yet, reaction times, which would be a straightforward marker of such effects, did not 
significantly decrease with training in Experiment 1, only Experiment 2 in our study. This difference between 
the two experiments is very likely due to the fact that the required movements in Experiment 1 were very simple 
and stereotyped, whereas the movements in Experiment 2, especially during the training phase with the touch 
screen, required more learning. General improvements in motor execution times would factor into the non-
decision time parameter of the HDDM. To what extend general improvements in motor execution contribute 
to the effector-specific effects reported here is difficult to determine because the change in effector also entails a 
change in motor execution time. However, given that there was no difference between the experimental group 
undergoing training and the control group undergoing no training, it seems unlikely that there were such effects 
at play in Experiment 1, which may be due to the very simple and stereotypical movement that needed to be 
executed which is likely to be already highly overtrained. An additional form of learning that may factor into our 
results is general task learning irrespective of the stimulus and/or the effector. Task learning could be revealed 
by changing the task, not the effector, and previous studies indeed suggest that such learning takes place [e.g.,29]. 
It is possible that general task learning reduced the degree of effector specificity in our study. Dissociating the 
different components of plasticity involved in and/or concurrently occurring with VPL remains an important 
target for future experiments [e.g.,30]. 

Taken together, we find that VPL is not as specific, but also not as generalizable as previously thought. Tak-
ing into account different components of the sensorimotor arc revealed additional aspects of VPL beyond the 
traditional focus on (early) visual areas. Our results also suggest an expanded interpretation of the drift rate as 
reflecting not only the amount of accumulable information, but also the sensitivity of the integrator itself. Finally, 
in terms of application of  VPL77, where generalization is key, it may be beneficial to counteract overtraining by 
varying effectors. Given the new effector-specific learning rule model we propose, more effector variability dur-
ing training may enable more generalization of training outcomes [also  see78,79].

Data availability
The datasets generated and/or analyzed during the current study are available in the Figshare repository, https:// 
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