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Jewelry rock discrimination 
as interpretable data using 
laser‑induced breakdown 
spectroscopy and a convolutional 
LSTM deep learning algorithm
Pouriya Khalilian 1, Fatemeh Rezaei 1*, Nazli Darkhal 2, Parvin Karimi 3, Ali Safi 4, 
Vincenzo Palleschi 5, Noureddine Melikechi 4 & Seyed Hassan Tavassoli 6

In this study, the deep learning algorithm of Convolutional Neural Network long short-term memory 
(CNN–LSTM) is used to classify various jewelry rocks such as agate, turquoise, calcites, and azure from 
various historical periods and styles related to Shahr-e Sokhteh. Here, the CNN–LSTM architecture 
includes utilizing CNN layers for the extraction of features from input data mixed with LSTMs for 
supporting sequence forecasting. It should be mentioned that interpretable deep learning-assisted 
laser induced breakdown spectroscopy helped achieve excellent performance. For the first time, this 
paper interprets the Convolutional LSTM effectiveness layer by layer in self-adaptively obtaining 
LIBS features and the quantitative data of major chemical elements in jewelry rocks. Moreover, Lasso 
method is applied on data as a factor for investigation of interoperability. The results demonstrated 
that LIBS can be essentially combined with a deep learning algorithm for the classification of different 
jewelry songs. The proposed methodology yielded high accuracy, confirming the effectiveness and 
suitability of the approach in the discrimination process.
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Laser induced breakdown spectroscopy (LIBS) is an analytical technique that provides multi-elemental qualita-
tive and quantitative information with relatively high sensitivity and spatial resolution1–4. In LIBS technique, a 
pulsed laser, typically a Q-switched Nd:YAG laser, is used to vaporize a small amount of material, creating a hot 
plasma that emits characteristic radiation. This plasma radiation reveals the elemental composition of the sample 
by its unique spectral signature5. The increasing interest in LIBS has prompted researchers to explore various 
methodologies aimed at enhancing the analytical capabilities of this technique6–9. LIBS has been used in many 
fields. These range from space, industry, pollution, medical, to cultural studies10–15. In the field of archaeologi-
cal science and geology, in particular, several of LIBS features are of great significance. Its ease of use, speed of 
analysis, and the lack of sample preparation requirements make it possible to perform in-situ analysis. Applica-
tions of LIBS in various areas of archeology have been recently reviewed16,17.

Recent advances in artificial intelligence offer further potential to enhance the capabilities of LIBS in various 
applications. Deep learning methodology, which illustrates a broad category of machine learning algorithms 
based mainly on Artificial Neural Networks, has become the most studied in the artificial intelligence field18. 
Convolutional Neural Network (CNN) is a deep learning technique used in data fitting and feature learning, 
and most notably in spectral analysis19. Several research groups have applied convolutional deep learning algo-
rithms to LIBS data acquired on various types of samples. In the cultural sphere, Pierdicca et al.20 applied a deep 
learning framework for segmentation of Point Cloud. They used the dynamic graph of the Convolutional Neural 
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Network algorithm by considering features like color and normal. Llama et al.21 classified the images obtained 
during the measurement of an architectural asset through Convolutional Neural Networks. They showed that 
this method can be applied employed in the digital documentation of architectural heritage. In addition, Chen 
et al.22 combined the deep Convolutional Neural Network with the fast multi-element compositional imaging 
capability of LIBS and obtained a 100% classification accuracy of the rock lithology of shale, gneiss, and granite.

Shahr-e Sokhteh (The Burnt City) is one of the symbols of the great civilization of Sistan plain in Iran. It is 
the name of a hill or a series of interconnected wide hills that are located about 56 km from the Zabol-Zahedan 
road and southeast of Zabol city. The location of Iran between two advanced centers of civilization in the third 
millennium BC, namely Mesopotamia, the Elamite, and Sumerian government in the west, Hindu Harappa, and 
the Indus Valley in the east, demanded that the people of this region be connected to other cultures and civiliza-
tions, particularly Asian cultures in East and West Asia, but most of these connections were provided through 
trade highways in the form of trade in goods23.

The results of studies and experiments performed on cultural materials obtained from this city revealed four 
cultural-settlement periods for this city24,25. The beginning of the first historical period is attributed to 3200 
BC, which is the oldest known settlement date in the Shahr-e-Sokhteh and Sistan plains. These hills were first 
identified by Stein in 1916 and excavated by Italian archaeologists from the Iziao Institute during 1968–197824,25. 
Excavations in the eastern residential area were carried out by Maurizio Tuzi, who was also in charge of the 
excavations25. Excavations in the central part were carried out by Massimo Vidal and Sandro Salvatori24. The 
second period of excavations in this area has been excavated by a group of Iranian archaeologists led by Dr. Seyed 
Mansour Seyed Sajjadi since 199726.

It should be noted that Shahr-e Sokhteh is one of the most significant and key Bronze Age sites in the archeol-
ogy of southeastern Iran27–30. The excavations of these sites performed over the years, revealed the presence of 
a large number of semi-precious stones and jewels. It should be mentioned that some of the excavated healthy 
beads were in the form of necklaces, bracelets, and bindings, and some others were in the form of semi-finished 
beads, raw stones, as well as unworked blocks31. These jewels are azure, agate (blue, red, yellow, smoky, solid, 
and colorless agate), chlorite, turquoise (blue and green), limestone, flint, jasper, marble (calcite and aragonite), 
quartz, green tuff, and chert stone.

In this research, a LIBS experiment is performed for the discrimination of jewelry rock, including agates, 
turquoises, calcites, and azures, that belong to the historical place of Shahr-e Sukhteh in Iran. Furthermore, 
LSTM method is combined with Convolutional Neural Network to discriminate various gemstones. Generally, 
LSTM method manage.

the memory information of the data, comprising time series problems. Here, LSTM method as a deformation 
structure of a recurrent neural network (RNN) inserted memory cells into the hidden layer by several program-
mable gates of forget gate, input gate, and output gate to transmit information among multiple hidden layer cells.

Materials and methods
Figure 1 depicts a clear image of Shahr-e Sokhteh, including various hills. The people of Shahr-e Sokhteh, like 
other communities, have paid attention to the beauty of the exterior and interior of their bodies. One of the 
tasks of the bead makers of the Shahr-e Sokhteh was to prepare and make all kinds of beads from materials such 
as wood, bone, mud, pottery, stone, and metal for use in funeral ceremonies. The same artisans obtained other 
materials, such as precious and semi-precious stones, by burning them in different parts of the city, especially 
in the city cemetery. The presence of stones and semi-finished beads, as well as beadwork tools on the surface, 
and the remains of industrial and masonry workshops, as well as those of other workshops, including pottery, 
all contribute to this impression. Manufacture and metalwork in the Shahr-e Sokhteh’s industrial area have 
demonstrated the construction and payment of objects in that location.

Semi-precious stones in Shahr-e Sokhteh were made from a variety of sources, and in various workshops they 
were constructed into different objects. Apart from the azure and turquoise stones, almost all the raw materials 
used in the city were supplied from the heights besieged by Sistan. For instance, the agate was obtained from 
the riverbed, and the rest of these raw materials were supplied from the Chagai area, located at the southern end 
of the old delta. In this paper, different gemstones from Shahr-e Sokhteh, including 12 agates, 3 turquoises, 2 
calcites, and 2 azures, were collected for analysis, as shown in Fig. 2.

Figure 1.   A picture of Shahr-e Sokhteh in Iran. Reprinted from Persian touring site, with permission from32.
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Experimental set‑up (LIBS spectroscopy)
A schematic diagram of a LIBS experimental set-up for spectrum acquisition is presented in Fig. 3. A Q-switched 
Nd:YAG laser pulse (Continuum, Surelite III) at 532 nm wavelength, with a repetition rate of 5 Hz, and pulse 
duration of 10 ns is irradiated on different gemstones33,34. The samples are 12 agates, 3 turquoises, 2 calcites, and 
2 azures jewelry rocks placed on a motorized micrometric XYZ stage. Generally, a gemstone or jewelry rock is 
a piece of mineral crystal that can be cut or polished for use in jewelry applications or other adornments. Here, 
a lens with a focal length of 80 mm concentrates the irradiation on the targets. The plasma emission is collected 
by employing a quartz lens and is directed into an optical fiber coupled into an Echelle spectrometer (Kestrel, 
SE200). The spectral range of this system is 190 to 950 nm. The temporal analysis of the recorded spectra is 
investigated by changing the gate and delay time of the ICCD camera (Andor, iStar DH734). During the LIBS 
experiments, the delay time and gate width are adjusted for 1 μs by using a digital delay generator (model Stan-
ford DSG 535), and the laser energy is considered to be 80 mJ after optimization to enhance the signal-to-noise 
ratio (SNR)35–38.

It should be noted that each spectrum is an accumulation of 10 laser pulses. In this paper, normalization is 
performed in the pre-processing of LIBS spectra data due to the fluctuation of matrix characteristics and laser 
energy. It should be mentioned that there is complexity in the matrix composition of rocks, and the emitted 
spectral frequency and intensity are various for different species of LIBS plasma.

The various peaks of the LIBS spectral intensities related to the different elements are used as features for 
classification. Moreover, the type of stone corresponding to each entry is selected as a label. To change the learn-
ing data as into interpretable information and, on the other hand, contain the necessary dynamics for modeling 
with the LSTM method, a trick of combining the spectra of each element for the tensor input is applied. As a 
result of this combination, the number of data has reached 43,315 combined spectra. Consequently, the spectra 
are used for the determination of the type of rock through the LIBS spectrum, which makes the data interpret-
able for modeling.

Figure 2.   Different jewelry songs related to Shahr-e Sokhteh for deep learning analysis.

Figure 3.   A schematic of the experimental set-up of the LIBS method for the analysis of jewelry rocks.
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CNN–LSTM algorithm
Due to the success of deep learning in chemometrics analysis, many researchers have been attracted to deep 
learning. Convolutional neural network (CNN) and long short-term memory (LSTM) networks are widely used 
techniques in deep learning algorithms39. The main goal of applying these methods to time-series data is that 
the LSTM model has the capability of capturing the sequence pattern data, while the CNN method is beneficial 
in extracting precious features that may filter the noise related to the input data. The main difference between 
LSTM networks and CNNs is that LSTM networks work on temporal correlations and use only the attributes 
provided in the training set, whereas CNNs are utilized for obtaining patterns of local trend, and as well as 
similar patterns emerging in various regions of time-series data that are not typically adjusted for long temporal 
dependencies. Consequently, the combination of the advantages of both deep learning models will enrich the 
forecasting accuracy. In this study, the deep learning methodology of CNN–LSTM assisted to the analysis of the 
complex phenomena such as the optical emission of the laser-induced plasmas. Here, CNN–LSTM is developed 
for application to a discrimination problem related to the LIBS technique.

CNN network
Convolutional Neural Network is a feedforward neural network with a deep configuration, that is frequently 
applied to image processing problems39,40. The typical structure of CNN network is presented in Fig. 4. This 
figure shows that CNN contains four different layers of data matrix input, pooling, convolution, and a fully 
connected layer41.

The core structure of a typical CNN network is the convolution operation. It should be noted that its differ-
ence from the fully connected structure is that the convolution operation comprises the entire advantage of the 
information related to the neighborhood regions of the data matrix. Sparse connections and sharing weights 
significantly reduce the size of the parameter matrix42. In addition, the pooling layer generates its unique feature 
map during the acquisition of the average or maximum data, which obtains feature compression and prevents 
overfitting up to a certain value. It should be noted that multi-layer convolution and pooling operations can 
be built into CNN networks. A higher level of abstraction of features can be obtained in a deeper layer of the 
neural network’s structure. A fully connected layer combines the extracted abstract features, and the regression 
and classification problems are solved using a softmax or sigmoid activation function43. In this paper, the one-
dimensional CNN network is applied to extract the spatial feature of the trajectory data.

LSTM model
Long short-term memory (LSTM)44,45 is a deformation structure of Recurrent Neural Network (RNN) that 
adds memory cells into the hidden layer to manage the memory information of the data, including time series 
problems. Information is transmitted among various hidden layer cell by using different controllable gates (forget 
gate, input gate, and output gate), as shown in Fig. 546. The memory cell’s state is controlled by two gates: forget 
and input. The forget gate determines how much "memory" of the previous cell can be stored. In addition, the 
input gate indicates how much input from the present moment can be saved to the cell state, and controls the 
contribution of fusion of the ‘‘historical’’ information and ‘‘recent’’ stimulus. The output gate of LSTM controls 
how much information is output for cell status. The essential improvement of LSTM in comparison to traditional 
RNN is the presentation of different gating mechanisms that control the memory and forget previous and current 
information. Furthermore, LSTM comprises the long-term memory function compared to a standard RNN, and 
the problem of its gradient disappearance is also prevented.

The input and output of the LSTM network structure are expressed in Eqs. (1)–(8)35:

(1)Input gate : F(t) = σ
(

Wf · [Ht−1,Xt]+ bf
)

⊕

(2)Forget gate : I(t) = σ(Wi · [Ht−1,Xt]+ bi)

(3)Memory cell : C̃(t) = tanh (Wc · [Ht−1,Xt]+ bc)

Figure 4.   General structure of a CNN neural network41.
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here Wf, Wi, Wc and W0 are input weights. bf, bi, bc and b0 are bias weights. Moreover, t and t−1 are the present 
and previous time states, respectively. Xt indicates input, Ht shows output, and Ct represents the cell status at 
time t. σ represents a sigmoid activation function with output values between 0 and 1, where 0 indicates “let 
nothing pass”, and 1 means “allow everything pass”. In Eq. (8), the hyperbolic tangent function is inserted to 
overcome the gradient disappearance’s difficulties. Furthermore, ft presents the forget gate, and It is the input 
gate. It should be mentioned that in the above equations, at each moment, the duty of the forget gate is to control 
the extent of memory forgotten at the last moment, and the input gate manages the extent of new memory C̃t 
written to the long-term memory. Ot indicates the output gate that controls the influence of long-term memory 
on short-term memory.

LASSO method
Least absolute shrinkage and selection operator, known as LASSO regression analysis technique in machine 
learning and statistics combine variable selection and regularization to enhance the predictability and under-
standability of the generated statistical models. LASSO calculates a vector of regression coefficients by minimizing 
the residual sum of squares, while being constrained by the l1-norm of the coefficient vector. If the sum of the 
absolute values of the coefficients is less than a constant, LASSO optimizes the residual sum of squares when 
selecting variables.

More specifically47:

Assuming that 
∑p

j=1

∣

∣

∣
β̂L
j

∣

∣

∣
≤ c(Constant) . Here, α is the constant coefficient, and βj is the coefficient vector.

This issue can be stated as bellows47:

(4)C(t) = ft ∗ Ct−1 + It ∗ C̃t

(5)Output gate : O(t) = σ(W0 · [Ht−1,Xt]+ b0)

(6)H(t) = Ot ∗ tanh(Ct)

(7)sigmoid(x) =
1

1+ e−x

(8)tanh (x) =
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Figure 5.   Long short-term memory method46.
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here, λ > 0 is chosen so that 
∑p

j=1

∣

∣

∣
β̂L
j

∣

∣

∣
= c(Constant) , and each λ is turning factor which equal to a various Lasso 

parameter c48. When the LASSO value is small enough, some regression coefficients reach zero. Because of this, 
the LASSO algorithm only selects a subset of the regression coefficients for each LASSO algorithm. The LASSO 
parameter c > 0 determines how much shrinkage is applied to the estimation.

Data features and designing an interpretable dataset
In this paper, 43 spectra of agate, 20 spectra of calcite, 59 spectra of turquoise, and 46 spectra of lapis lazuli are 
employed for statistical analysis. Each spectrum, which is an accumulation of 10 laser pulses, is taken from 
each gemstone, and the intensity peak of each normalized spectrum is considered as a feature. Accordingly, 
the problem of data normalization is that the peak of each spectrum is the same for different elements, which 
causes the data to be uninterpretable for modeling. The algorithm, on the other hand, uses a Convolutional 
LSTM Neural Network for modeling to determine the examined memory. Furthermore, the data related to 
each gemstone has been combined so that instead of one input spectrum, two input spectra are employed for 
classification. The advantage of the present study is that it makes the input data of the network interpretable and 
produces a significant increase in the input data for modeling, which causes better learning of the Recurrent 
Neural Network model.

It should be mentioned that after combining the data related to each gemstone, the results of number of spec-
tra before combining and number of features after combining will be obtained, which are shown in Table 1. As 
it is clearly seen in this table, after combining, 7678 interpretable preprocessed data are prepared for modeling. 
Here, 10 different intensities are obtained from measuring the spectrum and 1 feature is related to the identified 
element by LIBS method.

Network topology and hyper parameter selection in CNN–LSTM
After designing the dataset in an interpretable manner, the CNN–LSTM architecture is employed as the topol-
ogy for classification. Table 2 represents the topology of CNN–LSTM for modeling, including the different 
layers’ features. In this research, the Kernel hyperparameter is equal to 3 for the convolutional layer, 6142 data 
are considered as training data, and 1536 data are employed as the test data. Furthermore, the Adam optimiza-
tion function with a learning rate of 0.0005 has been used as an optimization hyperparameter. Moreover, the 
categorical cross-entropy cost function is employed to calculate loss. In this case, the epoch’s value is 100, the 
batch size is 128 and the importance of the validation split is 0.25. In addition, the first layer is the convolutional 
layer with Relu activation function. The second layer is a dynamic layer that utilizes the LSTM architecture with 
the tanh activation function. It should be noted that these two layers are responsible for feature extraction. The 
next layers for classification are three perceptron layers. The perceptron ocher layer has four outputs, and the 
probability of the input data is assigned to each gemstone. Due to the continuous definition of the output as a 
probability, the interpretability of the output results can be observed.
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Table 1.   Data characteristics related to different gemstones for statistical modeling in two cases of before and 
after combining.

Stone Agate Calcite Turquoise Lapis lazuli

Number of spectra before combining 43 20 59 46

Number of features after combining 1806 380 3422 2070

Table 2.   Topology of the CNN–LSTM architecture for data classification.

Layers Neurons Activation function Computational parameters

Input layer (None, 22, 1) – 0

Conv1D (None, 20, 128) Relu 512

LSTM (None, 256) tanh 394,240

Dense (None, 512) tanh 131,584

Dense (None, 256) tanh 131,328

Dense (None, 4) SoftMax 1028

Total params: 658,692

Trainable params: 658,692

Non-trainable params: 0
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Results and discussion
We have analyzed our data by first averaging and normalizing the LIBS spectra of different gemstones is depicted. 
Different elements in these spectra are identified using the NIST atomic line database. Figure 6 illustrates the 
scatter plots of the normalized line intensities related to different elements of various jewelry stones, including 
agate (a), calcite (b), turquoise (c), and lapis lazuli (d). Figure 6 shows that there are common elements among 
different jewelry stones such as Mg, Ca, Si, Fe, and Al. As it is clearly seen in these figures, the main elements of 

Figure 6.   Intensity distribution for different gemstones of (a) agate, (b) calcite, (c) turquoise, and (d) lapis lazuli 
as a function of the constructed elements.
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agate in Shahr-e Sokhteh are Si, and Ca. Furthermore, Ca is the most abundant element in calcite stone, as are 
Mn and Mg in turquoise stone. In addition, lapis lazuli has some fundamental elements of Al, and Ca. Generally, 
these gemstones are frequently easily recognizable by people since they have distinctive aesthetic characteristics, 
but in some cases, due to complex structures and colors, they can’t readily be distinguished. The visual variability 
of these gemstones may be reflected in the lower prediction results for other stone compositions.

This section summarizes the findings from the experiments carried out utilizing our suggested methodol-
ogy. The 1D CNN–LSTM network model using the Python Neural Networks library and Keras running on the 
TensorFlow 2.0 Python development environment were used to train the data. The results of the accuracy and 
loss calculations related to the training and test data modeling are shown in Table 3. It should be noted that in 
the classification problems, accuracy is the evaluation criterion. According to this table, the discrimination accu-
racy of the present model on the training set is 89.8%, but the discrimination accuracy on the test set is 96.4%.

In this study, by changing the network’s hyper-parameters, such as the optimization method, learning rate, and 
number of epochs, the accuracy is improved. Additionally, by utilizing various methods like data augmentation49 
and generative adversarial networks50 which assist in expanding the amount of training data, the classification 
accuracy may also be enhanced.

Figures 7 and 8 represent the variations of the losses and accuracies versus epochs for the train and test 
data, respectively. According to these figures, it can be clearly seen that the model does not have an overfitting 
problem. Moreover, the accuracy and loss in training and validation data are in the same range for each epoch.

Table 3.   Result of the accuracy and loss of the test and training data related to the CNN–LSTM network 
modeling.

Data Accuracy (%) Loss

Train 89.8 0.344

Test 96.4 0.092

Figure 7.   The evolution of losses versus epochs for both the training and test data.

Figure 8.   The variation of accuracy for the test and training data versus epochs.
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According to the obtained results, it can be concluded that the interpretability of data before modeling is a 
very important factor due to the transparency of the model in classification. Consequently, expensive jewelries are 
modeled and classified with the help of the LIBS technique and CNN–LSTM network with high accuracy. As it is 
seen in Fig. 9, the CNN–LSTM model for higher epochs yielded a satisfactory result, with accuracies above 98%.

The current study’s findings demonstrated that jewelry stones can be discriminated based on spectral analy-
sis using a combination of LIBS and CNN–LSTM deep learning algorithms. On the other hand, gemstones 
with similar appearances, but different compositions can be completely distinguished. Generally, the classified 
version of gemstones with exact quantitative compositions is employed in different fields, such as the jewelry 
industry. Therefore, classification can improve the utilization performance. The main advantage of this analysis 
is that no complex pre-treatment like grinding, crushing, or cutting was applied to them; just a few micrograms 
of gemstones were ablated. Furthermore, fast real-time detection is another point that influenced the choice of 
this technology.

The interpretation of effectiveness in feature learning
To check the interpretability of results, the most important part of the experiment, i.e. the elements discovered 
from expensive stones with the help of LIBS technique, which is one of the features of modeling is discussed. 
Here, about 39 different elements are discovered with the aid of LIBS method in this experiment. It can be 
understood according to Fig. 9 that various gemstones have common elements. This can be one of the reasons 
that modeling with the help of deep learning cannot perform well in classification.

Figures 10 and 11 investigate the effective value of the feature element discovered by LIBS technique with 
the help of LASSO method employing different values of the adjustment coefficient. As it is clearly seen in these 

Figure 9.   Study on common elements discovered by LIBS technique in different gemstones.

Figure 10.   Evolution of the effective values of each feature for modeling with different values of adjustment 
coefficient.
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figures, by increasing of the adjustment coefficient, the effective coefficient of the influence of the feature element 
is decreasing linearly. This indicates the high importance of this feature in classification.

In following, all the input data related to the different gemstones have been combined. This means that for 
classification, instead of one input spectrum and one identified element, two input spectra have been used with 
two elements identified using LIBS method. Then, with the help of LASSO algorithm, the effect of the features 
of input element 1 and input element 2 with different adjustment coefficients has been checked. Figure 12 shows 
the distribution of the different adjustment coefficients including line intensities and elements between 0.1 and 
0.9. As it is seen in this figure, adjustment coefficients represent some peaks at similar intensities in all of alpha 
magnitudes, except at 0.1. In addition, by decreasing alpha values, the adjustment coefficients enhance so that 
when alpha equals to 0.1, the greatest magnitude for adjustment coefficient happen. Furthermore, Fig. 13 presents 
the evolution of the first and second element coefficient versus alpha. As it is clearly observed in this figure, by 
increasing the alpha parameter, both of first and second element coefficients decrease.

Generally, the Figs. 12 and 13 check the weight value of the linear model of each feature with different value 
of alpha. Lasso is used to make the model regulated, so that if it is zero, it has no effect, and if it is equal to 1, the 
coefficients of linear weight of all features are zero. These diagrams show that the feature of the element discov-
ered by LIBS has an effective weight factor in the model and a very important and effective feature in modeling 
is the ratio of intensities. At the same time, the importance of none of these elements has not decreased with the 
combination process.

Figure 11.   The evolution of the rate of the effective value of the element feature discovered by LIBS based on 
the different values of the adjustment coefficient.

Figure 12.   Results of the different adjustment coefficients between 0.1 and 0.9.
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Validity of results and making comparisons
To demonstrate how effective this method is in data analysis, its performance is compared to the results reported 
in various published literatures51–56. In almost all of the research51–53, digital images are utilized to accurately 
detect the composition of gemstones and discriminate between those using deep Convolutional Neural Networks. 
For instance, Ref.51 employed machine learning algorithms with respect to the image processing for the classifica-
tion of different jewelry stones. They compared 82 state-of-the-art machine learning techniques’ algorithms for 
this purpose. Their accuracies were variable, ranging from 0.4 (for protoclass and oblique tree algorithms) up 
to 1 (for the KNN method). Furthermore, in Ref.52, the efficiency of a computer-vision-based method is com-
pared against that of trained gemmologists for the classification of various images for about 68 classes of jewelry 
stones. They examined 9 algorithms: Random Forest, Logistic Regression, Support Vector Machine, ResNet50, 
Naive Bayes, ResNet18, Linear Discriminant Analysis, K-Nearest Neighbor, and Decision Tree, and reported the 
accuracies between 42.6 and 66.9%. In addition, in the LIBS technique, gemstones have been mostly classified by 
the principal component analysis (PCA) algorithm54–56. Therefore, by making a comparison, it can be concluded 
that the Convolutional Neural Networks assisted LIBS technique can considerably improve the discrimination 
process with accuracies approximately higher than 90 percent and that the methodology of CNN–LSTM can be 
replaced by other traditional algorithms in LIBS. Additionally, the interpretable dynamical trends of data helped 
the accuracies of analysis.

The maximum accuracy reported for jewelry stone classification in previous literature was not as high as the 
present paper. Consequently, if there were several numbers of unknown samples with the same compositions, 
LIBS spectrum data alone may take a longer time to differentiate, but with the aid of the deep learning analysis 
of the LIB spectral analysis, the classification can be done rapidly. On the other hand, any kind of unknown 
jewelry stone can be quickly and simply identified using CNN–LSTM of the LIB spectral data if a library of 
known gemstone samples is available. Finally, as an excellent representative of deep learning, the Convolutional 
Neural Network (CNN) is a superior method in feature learning and data fitting. Recently, it has incrementally 
introduced itself in spectral analysis.

Figure 13.   The variation of the (a) first, and (b) second element coefficient versus alpha.
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Conclusion
With the potential for extension of real-time chemical analysis in the field for several geological, environmental, 
archaeological, and forensic applications, laser-induced breakdown spectroscopy (LIBS) has been proposed as 
a chemical sensor technology. In this study, we show that LIBS can be a useful tool for gemstone identification 
and discrimination through a “gemstone fingerprinting” approach. Here, different jewelry stones including 
agates, turquoises, calcites, and azures related to Shahr-e Sukhteh (the Burnt City) in Iran, are classified by a 
combined LIBS and convolutional LSTM algorithm. Lasso method was applied on spectral data as a factor for 
investigation of interoperability.

Numerous experiments were performed to confirm the effectiveness of the suggested model. We have shown 
that, compared to other common discrimination methods, the constructed convolutional LSTM method out-
performs other techniques.

In addition, the results demonstrated that CNN–LSTM accuracy was very high for different gemstones of 
agate, turquoise, calcite, and azure. The findings also showed that the machine learning assisted LIBS technique 
can play a crucial role in ensuring rapid, precise, and excellent classification. We have shown that LIBS technol-
ogy combined with machine learning, can quickly and accurately classify jewelry rocks which may be further 
developed to applied in the jewelry industry.

Data availability
The datasets used and analyzed during the current study available from the corresponding author on reasonable 
request.
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