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Advanced hybrid 
LSTM‑transformer architecture 
for real‑time multi‑task prediction 
in engineering systems
Kangjie Cao 1,2, Ting Zhang 1,2* & Jueqiao Huang 2

In the field of engineering systems—particularly in underground drilling and green stormwater 
management—real‑time predictions are vital for enhancing operational performance, ensuring safety, 
and increasing efficiency. Addressing this niche, our study introduces a novel LSTM‑transformer hybrid 
architecture, uniquely specialized for multi‑task real‑time predictions. Building on advancements 
in attention mechanisms and sequence modeling, our model integrates the core strengths of LSTM 
and Transformer architectures, offering a superior alternative to traditional predictive models. 
Further enriched with online learning, our architecture dynamically adapts to variable operational 
conditions and continuously incorporates new field data. Utilizing knowledge distillation techniques, 
we efficiently transfer insights from larger, pretrained networks, thereby achieving high predictive 
accuracy without sacrificing computational resources. Rigorous experiments on sector‑specific 
engineering datasets validate the robustness and effectiveness of our approach. Notably, our 
model exhibits clear advantages over existing methods in terms of predictive accuracy, real‑time 
adaptability, and computational efficiency. This work contributes a pioneering predictive framework 
for targeted engineering applications, offering actionable insights into.

Keywords LSTM-transformer hybrid architecture, Real-time predictions, Engineering systems, 
Underground drilling, Green stormwater management, Multi-task learning, Online learning, Knowledge 
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Modern engineering systems are increasingly becoming digitized and automated, requiring sophisticated control 
mechanisms to ensure their robustness and  efficiency1,2. The integration of advanced sensors and interconnected 
devices contributes to the complexity of these  systems3. In this context, real-time monitoring and predictive 
analytics are critical for anticipating system failures and maintaining optimal  performance4,5.

Background and challenges
From the dawn of industrialization to the early twenty-first century, engineering systems predominantly banked 
on rule-based algorithms and traditional statistical methods for their monitoring and predictive needs. While 
these techniques laid the foundation for system analytics, they often showed signs of strain when confronted 
with complex scenarios.

In complex scenarios, rule-based algorithms and traditional statistical methods may have certain  limitations6. 
Rule-based algorithms often rely on domain experts to define rules and features. This can limit the scalability 
and adaptability of the  algorithms4, especially in complex scenarios where domain experts’ knowledge may not 
cover all possible cases.Traditional statistical methods often make assumptions about the data distribution, such 
as the assumption of normal distribution. However, in complex scenarios, the data distribution may deviate from 
these assumptions, leading to decreased accuracy of statistical methods. Rule-based algorithms and traditional 
statistical methods typically assume linear relationships between data. However, in complex scenarios, the rela-
tionships between data may be non-linear, limiting the predictive capabilities of these methods.

The current age, marked by dynamic and data-rich environments, only accentuates these strains. The Internet 
of Things (IoT), a revolutionary concept, has acted as a catalyst, causing an explosive surge in the volume, velocity, 
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and variety of data generated by engineering  systems7,8. From nuanced sensor readings capturing the minutest 
of vibrations to extensive operational logs detailing system workflows, the spectrum of data is vast. This mosaic 
of information conceals within it intricate patterns, deep-seated temporal dependencies, and rich contextual 
nuances, elements that often elude classical analytical  methods9.

Additionally, the modern engineering landscape is characterized by its fluidity. Systems, environments, and 
requirements evolve, demanding decision-making models that are not just accurate but agile. The rigidity of 
traditional models, coupled with their need for periodic manual recalibration, makes them cumbersome and 
less effective in these dynamic environments.

Modern engineering systems require accurate predictive models to support decision-making and optimize 
operations. Traditional single-model approaches like LSTM and Transformer may not always meet the demand 
for high accuracy predictions in certain scenarios. Modern engineering systems often face dynamic operating 
conditions and continuously changing data streams. Traditional batch learning methods are unable to adapt 
in real-time to such changes, resulting in delayed or inaccurate predictions. Engineering systems often require 
predictions and decision-making in real-time or near real-time environments. Traditional complex models may 
face challenges in terms of computational efficiency, leading to slow prediction speeds or excessive computational 
resource consumption.Therefore, there is a need for a new hybrid architecture to overcome these challenges and 
meet the specific requirements of modern engineering systems.

The promise of deep learning
At this crossroads, deep learning emerges, offering a glimmer of hope. As a more evolved subset of machine 
learning, deep learning ventures beyond the superficial layers of data, diving deep to extract patterns and insights. 
Among the arsenal of deep learning tools, Long Short-Term Memory (LSTM)  networks3, a specialized breed of 
recurrent neural networks (RNNs), have carved a niche for themselves (“long short-term memory" (LSTM), a 
novel recurrent network architecture in conjunction with an appropriate gradient-based learning algorithm. It 
can learn to bridge time intervals in excess of 1000 steps even in case of noisy, incompressible input sequences, 
without loss of short time lag capabilities. This is achieved by ancient, gradient-based algorithm for an architec-
ture enforcing constant error flow through internal states of special units). Their unique architectural design, 
replete with memory cells and meticulously crafted gates, bestows upon them the ability to recognize, capture, 
and retain long-term dependencies typical of time-series data. Such attributes render LSTMs an ideal candidate 
for a plethora of engineering applications, especially those inundated with sensor data, operational logs, and 
other sequential  datasets10.

Yet, no tool is without its limitations. LSTMs, for all their prowess in sequence comprehension, occasionally 
exhibit vulnerabilities in situations that demand a holistic understanding of broader contextual information. 
(When using LSTM alone for prediction, there may be cases where the prediction results are inaccurate). This gap 
is addressed by the Transformer  architecture11,12, a prodigy in the deep learning domain. Equipped with potent 
self-attention mechanisms, Transformers possess the innate capability to weigh the relevance of different parts of 
an input sequence. This discernment allows them to fathom both granular and macro-level contexts with equal 
 finesse13. (However, when dealing with long sequences, Transformer faces the challenge of high computational 
complexity, which can hinder its effectiveness in handling long sequences. If Transformer is used alone for pre-
diction, there may be issues of high computational complexity and slow prediction speed).

Our contribution
In the intricate realm of engineering challenges and deep learning solutions, our research makes a substan-
tial contribution by introducing a novel hybrid LSTM-Transformer architecture. This model is meticulously 
crafted to address the specific requirements of modern engineering systems, particularly in the areas of smart 
manufacturing and renewable energy management. Smart manufacturing and renewable energy management 
are highly significant fields in today’s society, with implications for improving production efficiency, reducing 
energy consumption, and minimizing environmental impact. Therefore, researching predictive models in these 
two domains can provide valuable support for practical applications.Both smart manufacturing and renewable 
energy management face complex data and operational conditions. In smart manufacturing, there are large 
amounts of sensor data, optimization of production lines, and fault detection, among other  challenges2. In 
renewable energy management, factors such as weather variations and energy supply–demand balance need to 
be considered. The complexity and challenges in these domains make researching predictive models even more 
meaningful and  valuable5.

From the data and algorithmic viewpoints, smart manufacturing and renewable energy management share 
some commonalities and differences. Both domains involve a significant amount of time series data and sensor 
data. These data often exhibit high dimensionality, high frequency, and complex interdependencies. Therefore, 
handling these common data characteristics is a crucial challenge for predictive  models7. Smart manufacturing 
and renewable energy management differ in terms of data sources and characteristics. In smart manufacturing, 
data primarily come from production lines, equipment, and sensors, involving production processes and qual-
ity control aspects. In renewable energy management, data mainly come from weather observations, energy 
production, and consumption. Therefore, designing appropriate predictive models and algorithms that account 
for the specific characteristics of each domain is necessary.

Unlike traditional models, our hybrid architecture excels in capturing both sequential patterns and broader 
contextual information, thanks to the synergistic blend of LSTM’s memory cells and Transformer’s self-attention 
mechanisms. (LSTM’s memory units capture long-term dependencies, while Transformer’s self-attention mecha-
nism comprehends fine-grained and macro-level contexts. This synergistic fusion enables our model to excel in 
capturing sequence patterns and broader contextual information).
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Our contributions extend beyond mere architecture design. We’ve implemented state-of-the-art online learn-
ing techniques that empower our model to adapt in real-time to dynamic operational conditions. This feature is 
particularly crucial for applications that require immediate responsiveness to new data streams, such as real-time 
fault detection or energy usage optimization.

Online learning techniques allow our model to adapt in real-time to dynamic operating conditions. By con-
tinuously receiving and processing new data while the model is already deployed and running, our model can 
promptly respond to changes in data streams and operating conditions, maintaining prediction accuracy and 
adaptability. Online learning techniques support incremental learning, where new data is used for incremental 
training on top of an existing model. This approach avoids the overhead of retraining the entire model, saving 
computational resources and time. Our model can be locally updated based on new data samples, gradually 
improving prediction capabilities. Online learning techniques enable our model to adapt to evolving data dis-
tributions and operating conditions. By monitoring the model’s performance and prediction results in real-time, 
we can make adjustments and optimizations based on feedback information.

Moreover, we’ve integrated knowledge distillation methods to harness insights from larger, more complex 
networks. This not only enhances the model’s predictive accuracy but also ensures computational efficiency, a 
delicate but essential balance in real-time engineering applications.

Our research is validated through extensive experiments on sector-specific engineering datasets, demon-
strating clear advantages over existing predictive models in terms of accuracy, adaptability, and computational 
overhead. Therefore, this work doesn’t just introduce a new model; it provides a comprehensive predictive solu-
tion uniquely tailored for the multifaceted challenges posed by the evolving landscape of engineering systems.

Related work
Traditional predictive models in engineering
The foundation of predictive modeling in engineering systems lies in traditional algorithms and statistical meth-
odologies. These techniques, often rooted in deterministic principles, have been employed for decades to model 
and predict various engineering  phenomena5,8.

Statistical models
Methods like linear regression, logistic regression, and ARIMA have been the cornerstone for many early predic-
tion tasks. They operate under specific assumptions about data distribution and often offer interpretable models. 
However, they typically struggle with nonlinearities and require manual feature engineering, which can be tedious 
and often lacks the finesse to capture intricate patterns in  data11.

Rule‑based systems
These are systems where domain knowledge is converted into a set of rules. Such systems are highly interpret-
able and were widely used in scenarios where understanding the decision-making process is crucial. However, 
crafting these rules requires extensive domain expertise, and the system’s rigidity often makes it less adaptable 
to dynamic  changes12,13.

Deep learning in time‑series prediction
With the advent of deep learning, a paradigm shift occurred in predictive modeling. The capability of deep neural 
networks to automatically learn features from raw data has revolutionized the field.

LSTM networks
LSTMs, as recurrent neural networks, possess a unique architecture that allows them to remember past 
 information14, making them adept at handling sequential data. Their application in various engineering domains, 
such as predicting the attitude and position of underground drilling machines, is a testament to their versatility 
and  efficacy14,15.

Convolutional neural networks (CNNs)
While CNNs are predominantly known for their prowess in image  data16, their ability to detect local patterns 
makes them suitable for time-series data as well. Some recent studies have explored their utility in processing 
sequences, especially when combined with  LSTMs17.

The rise of the transformer architecture
The Transformer architecture has reshaped the landscape of deep learning, especially in the realm of sequence 
 modeling16.

Self‑attention mechanism
At the heart of the Transformer architecture is the self-attention mechanism. By weighing the importance of 
different parts of a sequence relative to each other, this mechanism offers a nuanced understanding of data, cap-
turing both local and global contexts. This capability has made Transformers a valuable tool not just in language 
tasks but also in engineering applications demanding a broader comprehension of contextual  information10.

Scalability
One of the notable features of Transformers is their ability to process data in parallel, unlike RNNs, which operate 
sequentially. This characteristic makes them highly scalable and efficient for large  datasets17,18.
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Hybrid models and multi‑task learning
The growing complexity of engineering tasks and the increasing richness of data sources have motivated research-
ers to explore hybrid models that synergize the strengths of multiple neural network architectures.

LSTM‑transformer combinations
While LSTMs excel in capturing sequential relationships, Transformers shine in understanding broader contexts. 
Several pioneering works have started to investigate the potential benefits of combining these two  architectures16. 
For instance, applications in underground drilling machine positioning have leveraged the sequential modeling 
prowess of LSTMs and enhanced it with the attention mechanisms from Transformers to achieve superior results.

Multi‑task learning frameworks
Modern engineering systems often involve numerous interconnected tasks. Training separate models for each 
task isn’t just computationally intensive but also fails to leverage the shared knowledge across tasks. Multi-task 
learning frameworks have emerged as a solution, wherein a single unified model is trained across multiple related 
tasks. This not only leads to computational efficiency but often boosts performance, as tasks benefit from shared 
feature  representations18,19.

Online learning and adaptive mechanisms
The dynamic nature of engineering environments necessitates models that can adapt in real-time to evolving 
conditions.

Online learning with LSTMs
The inherent structure of LSTMs, which allows them to retain and recall past information, makes them suitable 
candidates for online learning. By continuously updating their parameters based on incoming data, they can 
adapt to changing conditions. Some recent studies, inspired by health diagnostics and motor status assessments, 
have delved deep into the potential of LSTMs in online learning  scenarios10,16,18.

Adaptive learning rates
One of the challenges in online learning is determining the rate at which the model adapts. Too fast, and it 
becomes unstable; too slow, and it can’t keep up with the changes. Techniques to adjust learning rates adaptively, 
based on the nature of incoming data, have been explored to strike a balance and ensure model stability and 
adaptability.

Knowledge distillation in deep learning
As deep learning models grow in complexity and size, their computational demands also increase, often making 
them impractical for real-time applications in resource-constrained engineering systems. Knowledge distillation 
emerges as a solution to this challenge.

Concept of distillation
Knowledge distillation involves training a smaller, more compact model (the student) using the knowledge 
gained by a larger, more complex model (the teacher). The primary aim is to transfer the essence of the teacher 
model’s knowledge to the student, ensuring that the student achieves comparable performance with reduced 
computational overhead.

Applications in engineering
Given the real-time constraints of many engineering systems, especially those involving IoT devices, knowledge 
distillation has found relevance. For instance, sophisticated models trained on vast datasets from green storm-
water infrastructures can be distilled into smaller models suitable for on-site, real-time  predictions19,20.

Attention mechanisms beyond transformers
While the Transformer architecture popularized the concept of attention, the idea of weighing different parts of 
input data based on their relevance has been explored in various other  contexts21,22.

Attention in LSTMs
Before Transformers took center stage, attention mechanisms were integrated with LSTMs to enhance their 
capability to focus on relevant parts of sequences, especially in tasks like machine  translation23. Such mecha-
nisms have also found applications in engineering tasks where specific segments of time-series data are more 
critical than others.

Multi‑head and hierarchical attention
As data sources grow more diverse, models need to focus on multiple aspects simultaneously. Multi-head atten-
tion, where multiple attention patterns are learned concurrently, and hierarchical attention, which learns atten-
tion at different granularities, have been explored to address such  complexities24.
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Methods
Our approach addresses the challenges in modern engineering systems by combining two established deep 
learning architectures: long short-term memory (LSTM) networks and Transformers. This section provides a 
clear explanation of our hybrid model’s design and components, including the methods for online learning and 
knowledge distillation we have incorporated.

Hybrid LSTM‑transformer architecture
Our architectural design is a testament to the philosophy of embracing the strengths of both worlds. Drawing 
from the temporal mastery of LSTMs and the contextual prowess of Transformers, we’ve envisioned an archi-
tecture primed for the rigors of engineering systems. The schematic can be referred to Fig. 1:

LSTM component
Structure. The foundation of our model rests on the LSTM layer, the bastion of sequential data comprehension. 
Each LSTM unit, a marvel of architectural ingenuity, boasts a series of memory cells. These cells are adept at 
capturing intricate temporal dynamics, ensuring the retention of pivotal historical data while remaining sensi-
tive to new information.

Gating mechanism. The genius of LSTMs lies in their gating mechanisms. These neural gates, meticulously 
designed, are the gatekeepers of information flow within each unit.

Figure 1.  Schematic of hybrid LSTM-transformer architecture.
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The input gate discerns and decides the quantum of fresh information to usher into the cell.
The forget gate, in its wisdom, either clings onto or lets go of historical memories, ensuring the cell remains 

uncluttered.
The output gate curates the information to be relayed forward, ensuring only the most pertinent insights are 

passed on.
Together, these gates empower the LSTM with a discerning judgment, ensuring a judicious blend of past 

wisdom and new insights.

Implementation details. To enhance depth and richness, we employ a multi-layered LSTM structure. This 
multi-tiered design ensures a nuanced understanding of sequential patterns at varying temporal scales.

Interwoven within these LSTM layers are dropout mechanisms. These layers, by periodically deactivating a 
subset of neurons, ensure that our model remains humble, preventing the hubris of overfitting and fostering a 
spirit of generalization.

Transformer component
Structure. Augmenting our LSTM layers is the Transformer component, the maestro of contextual compre-
hension. This layer is a congregation of multiple self-attention heads, each vying to focus on varied facets of the 
data sequence, ensuring a holistic understanding.

Self-attention mechanism. The Transformer’s heart beats with the rhythm of the self-attention mechanism. 
This mechanism, through its intricate dance of ’query’, ’key’, and ’value’ vectors, computes a weighted representa-
tion of the sequence. As each data point struts on the sequence stage, the mechanism discerns the relevance of 
its peers, ensuring the spotlight shines on the most pertinent ones.

Positional encoding. In standard Transformer architectures, the concept of sequence order or temporal posi-
tion is not inherently understood. This can be a significant drawback when dealing with time-series data preva-
lent in engineering systems, such as sensor readings over time or chronological event logs. To address this limita-
tion, we introduce positional encodings into our hybrid architecture, endowing the Transformer layer with the 
capability to recognize the temporal significance of each data point.

Mathematical implementation. The positional encodings are mathematically formulated using sine and cosine 
functions of different frequencies:

Here, PE(pos, i) represents the positional encoding at position pos for dimension i , and d is the dimensionality 
of the embeddings. These mathematical functions generate unique positional encodings for each time step in 
the sequence, which are then added to the original embeddings before feeding them into the Transformer layer.

Real-world application. In practical engineering scenarios like predictive maintenance or real-time monitor-
ing, the sequence of events or sensor readings can be critical. With the introduction of positional encodings, our 
Transformer layer can now recognize patterns like rising temperature followed by an increase in vibration levels 
as a sign of potential equipment failure.

This detailed inclusion of positional encodings ensures that our hybrid model is not only adept at understand-
ing the intricacies of the data but also aware of the sequence in which these intricacies unfold, making it highly 
applicable for time-sensitive engineering tasks.

Hybrid LSTM‑transformer model pseudo‑code

To provide a clearer understanding of our hybrid model, we present a simplified pseudo-code representation:

(1)PE(pos, 2i) = sin

(

pos

10000
2i
d

)

,

(2)PE(pos, 2i + 1) = cos

(

pos

10000
2i
d

)

.
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Initialize: LSTM layers, Transformer layers, Positional Encodings

For each input sequence:

# LSTM processing

For each LSTM layer:

Apply LSTM cell processing

Apply Dropout

# Transformer processing

Apply Positional Encoding to LSTM output

For each Transformer layer:

Apply Self-Attention

Apply Feedforward Neural Network

Apply Normalization and Dropout

# Output processing

Compute final output from Transformer layer

Apply Online Learning updates 

End

This pseudo-code outlines the core steps in our model’s processing pipeline, from initial input through LSTM 
layers, followed by Transformer layers with positional encoding, and concluding with output generation. It 
underscores the integration of LSTM and Transformer components, along with online learning updates.

Implementation details
To implement our hybrid LSTM-Transformer architecture, we primarily utilized TensorFlow (version 2.15.0) and 
PyTorch (version 2.1.1 + cu121) frameworks, leveraging their robust and efficient deep learning capabilities. The 
LSTM components were implemented using standard LSTM units available in these frameworks, customized for 
our specific requirements in terms of layer depth and dropout rates. Similarly, the Transformer components were 
built upon the standard Transformer model implementations provided by these libraries, with modifications to 
integrate positional encoding and self-attention mechanisms tailored for our engineering datasets.

Additionally, for specific components such as online learning updates and knowledge distillation processes, we 
developed custom algorithms. These algorithms were designed to seamlessly integrate with the aforementioned 
frameworks, ensuring a cohesive and efficient learning process.

Online learning mechanism
Online learning in the context of dynamic engineering systems is pivotal. The very essence of these systems 
demands models that are agile, adaptable, and always in sync with the evolving data landscape. Online learn-
ing, a departure from traditional batch training, embodies these qualities, ensuring models are always at the 
forefront of knowledge.

Incremental model updates
Concept. Traditional models, once trained, are static entities. Their knowledge is frozen in time, making them 
ill-equipped to handle the fluidity of real-world engineering scenarios. Our model, however, is different. It 
believes in continuous learning, constantly evolving and refining its knowledge.

Implementation details. Mini‑batch gradient descent: Equation: Given a loss function L, the parameter update 
rule using gradient descent is:

where θ represents the model parameters, η is the learning rate, and ∇L(θt) is the gradient of the loss function 
with respect to the parameters.

We segment our data into mini-batches. For each batch, we compute the gradient and update our model 
parameters incrementally, ensuring the model is always in tune with the latest data.

Batch normalization. Equation: The normalized output �x is given by:

where x is the input, μ is the mean of the input, σ2 is its variance, and ε is a small constant to prevent division 
by zero.

(3)θt+1 = θt −η∇L(θt),

(4)
�
x =

x − µ
√
σ 2 +ε

,
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Batch normalization layers are interspersed within our network. These layers adjust and scale the activations, 
ensuring consistent distribution and aiding in stable and faster convergence.

Memory replay. To ensure the model retains its knowledge of past data, we employ a memory buffer. This 
buffer, a repository of past experiences, occasionally replays old data alongside new data, ensuring the model 
remains grounded in its past learnings while embracing new knowledge.

Adaptive learning rates
Rationale. The unpredictable terrains of engineering systems demand adaptability in every facet, including 
the rate at which models learn. A static learning rate can either lag, missing out on critical changes, or oscillate, 
causing instability.

Implementation details. Adam optimizer: Equation: The Adam update rule is:

where  gt is the gradient at time t,  mt and  vt are estimates of the first moment and second moment of the gradients 
respectively, and β1,β2 are exponential decay rates.

Adam dynamically adjusts the learning rate for each parameter. It does so by maintaining a moving average 
of past gradients and their square values, ensuring swift yet stable learning.

Learning rate annealing: Equation: The annealed learning rate ηt is:

where η0 is the initial learning rate, δ is the decay rate, and t is the current epoch.
As training progresses, we gradually reduce the learning rate. This ensures a balance between rapid learning 

in the initial stages and fine-tuning in the later stages.
Gradient clipping: Equation: The clipped gradient g′ is:

where g is the computed gradient and δ is the threshold.
In scenarios where gradients can grow uncontrollably, we ensure they are capped within a predefined thresh-

old, ensuring stability and preventing divergence.

Knowledge distillation
Knowledge distillation is a technique where a compact model (student) is trained to mimic the behavior of a 
larger, more complex model (teacher). This allows the student model to inherit the teacher’s capabilities without 
incurring the computational overhead. The schematic can be referred to Fig. 2:

Rationale behind distillation
Concept. In many engineering scenarios, deploying gargantuan models is infeasible due to resource con-
straints. However, these large models often possess superior performance. Knowledge distillation bridges this 
gap, enabling smaller models to emulate the performance of their larger counterparts.

Advantages. 

• Efficiency: Reduced model size ensures faster inference times and lower memory footprint.
• Performance: The student model, though compact, can achieve performance metrics close to the teacher 

model.

Distillation process and softmax loss calculation
Softened outputs. In the process of knowledge distillation, the teacher model’s outputs are ’softened’ by adjust-
ing the softmax temperature. This is done to create a more informative output distribution, which is crucial for 
transferring the teacher’s knowledge to the student model.

Softmax loss calculation: The softmax loss, also known as the cross-entropy loss between the teacher’s sof-
tened outputs and the student’s predictions, plays a pivotal role in knowledge distillation. We handle this loss 
calculation as follows:

The softmax function with temperature scaling is applied to both the teacher’s and student’s logits, generating 
softened probability distributions.

The cross-entropy loss is then computed between these two distributions. This loss quantifies the difference 
between the teacher’s guidance and the student’s current understanding.

(5)

mt = β1mt−1 + (1− β1)gt

νt = β2νt−1 + (1− β2)g
2
t

θt+1 = θt − η
mt√
νt+ε

(6)ηt = η0 ×
1

1+ δt

(7)g ′ =
δ

∥

∥g
∥

∥

g
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This cross-entropy loss is combined with the traditional loss function to form the final loss function for train-
ing the student model. This combined loss function guides the student to not only mimic the teacher’s output 
distribution but also to align correctly with the ground truth.

The choice of temperature T in the softmax function is crucial. A higher T produces softer probability dis-
tributions, encouraging the student model to learn the nuanced relationships captured by the teacher. However, 
too high a value of T can lead to an overly smoothed distribution, which might be less informative. Therefore, we 
empirically determine the optimal value of T through a series of experiments, aiming to find the right balance 
for effective knowledge transfer.

Equations:
Softmax function with temperature scaling:

where zi is the logit for class i and T is the temperature.
Loss function: The distillation loss is a combination of the traditional loss (e.g. cross-entropy with true labels) 

and a distillation term that measures the divergence between the student’s and teacher’s softened outputs.

y is the true label,F(x) is the student’s output,G(x) is the teacher’s output,α is a weight factor.T is the temperature.
The first term CrossEntropy(y, F(x)) is the traditional cross-entropy loss between the true labels and the student’s 
predictions.The second term T2 × KL-Divergence(G(x)/T, F(x)/T) is the distillation term, which measures the 
divergence (using KL-Divergence) between the student’s and teacher’s softened outputs. The factor T2 is there to 
scale the gradients correctly when using softened probabilities.

(8)Softmax TemperatureOutput =
exp(zi/T)

∑

j
exp(zj/T)

,

(9)L = (1− α)× Cross Entropy((y, F(x)) + α × T2 × KL− Divergence (G(x)/T , F(x)/T))

Figure 2.  Schematic of knowledge distillation.
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Training the student. The student model is trained using the combined loss, which nudges it to not only be 
correct with respect to the ground truth but also to align its output distribution with the teacher.

Our implementation
Teacher model. Design philosophy: The teacher model is constructed with an emphasis on depth and capacity, 
enabling it to extract intricate patterns from extensive engineering datasets. Given its larger size, it’s expected to 
capture even the subtle nuances of data.

Architecture. 

• LSTM layers: Multiple stacked LSTM layers allow the teacher model to thoroughly understand temporal 
dependencies in the data.

• Transformer blocks: Several transformer blocks with multiple self-attention heads enable the model to capture 
both localized and global contexts.

Training: The teacher model is trained using a hybrid approach that combines labeled datasets with unsu-
pervised auxiliary tasks. Its large-scale design benefits significantly from extensive datasets, enabling better 
generalization across varied engineering applications.

Student model. Design philosophy: The student, while compact, is designed to be a fast learner, able to grasp the 
essence of the teacher’s knowledge.

Architecture: While the student model shares the hybrid LSTM-Transformer architecture described previously, 
it operates with fewer layers and attention heads, ensuring agility.

Distillation training: Training the student involves feeding it the same input data as the teacher. However, 
instead of solely relying on ground-truth labels, the student is also guided by the teacher’s outputs. This dual 
guidance ensures that the student model, while being lean, punches well above its weight in terms of performance.

Regularization. Concept: Over-reliance on the teacher’s outputs can lead to the student model not truly under-
standing the underlying patterns. Regularization ensures the student also focuses on raw data.

Implementation details:

• L1 and L2 regularization: These are added to the model’s loss function. They penalize overly complex models, 
ensuring the student remains general and does not overfit to the teacher’s outputs.

• Dropout: Introduced in between layers, dropout ensures that during training, random subsets of neurons 
are turned off, promoting model robustness and preventing co-adaptation of neurons.

Combined loss: The final loss function for the student model is a composite of the ground-truth loss, teacher-
guided loss, and regularization terms. This multi-faceted loss function ensures a balanced and effective learning 
process, making the student model robust and versatile for a wide range of engineering applications.

Adaptive mechanisms for robust performance optimization
Engineering systems are complex, and their dynamic nature requires models to be not only accurate but also 
adaptable and efficient. Our adaptive mechanisms are designed to cater to these necessities.

Data augmentation
Concept. Data augmentation is a pivotal strategy in deep learning, especially when training data is scarce or 
when the model needs to generalize across varied scenarios. By artificially introducing minor modifications to 
the original data, we can simulate a richer training environment.

Implementation details. Time warping: This technique is instrumental for time-series data. Altering the time 
scale ensures the model remains resilient to fluctuations in data generation rates. Mathematically, time warping 
can be represented as:

Here, δ(t) introduces a controlled distortion, ensuring the model learns patterns across various time scales.
Feature jittering: Real-world data often comes with noise. By simulating this during training, we ensure our 

model remains robust even in less-than-ideal conditions:

The term ε is a controlled random noise, usually drawn from a Gaussian distribution, reflecting typical sensor 
noise or environmental perturbations.

Adaptive model pruning
Concept. Large neural networks, while powerful, can be computationally intensive. Pruning helps streamline 
these models, removing redundant parts without compromising performance.

(10)Xwarped(t) = X(T + δ(t)).

(11)Xjittered(t) = X(t)+ ε.
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Implementation details. Importance estimation: To determine which neurons or layers to prune, we first evalu-
ate their importance. This is done using techniques like the Taylor expansion:

Neurons causing minimal changes in the loss function, L, are deemed less important.
Thresholding & pruning: After ranking neurons based on importance, those below a certain threshold are 

removed. The network is then fine-tuned to adjust to these structural changes, ensuring performance remains 
optimal.

Feedback loop for continuous improvement
Concept. In dynamic systems, a model’s past mistakes can be invaluable for future accuracy. By incorporating 
a feedback loop, the model refines itself based on its historical performance.

Implementation details. Error analysis: After predictions, the model’s errors are computed:

These errors provide insights into where the model might be lacking.
Backpropagation with feedback: Errors are then fed back into the model. Using backpropagation, the model 

adjusts its weights to minimize these errors in future predictions, effectively learning from its mistakes.

Ensemble techniques for reliability
Concept. An ensemble of models often outperforms individual models due to the diversity in their predic-
tions, enhancing robustness and reliability.

Implementation details. 

• Model variants: We maintain several instances of our hybrid model. Each instance might differ slightly in 
terms of initialization, training data splits, or hyperparameters.

• Voting mechanism: When predicting:

By aggregating predictions from all instances, the ensemble minimizes biases and errors inherent in individual 
models, producing a more reliable output.

Knowledge distillation for enhanced efficiency: a deep dive
In the context of our study aimed at multi-task real-time predictions in engineering systems, knowledge distilla-
tion serves as a powerful technique for transferring rich features and predictive capabilities from a computation-
ally intensive teacher model to a lighter, more agile student model.

Knowledge transfer: more than meets the eye
Conceptual overview. Knowledge distillation is more than transferring class probabilities; it’s about imbuing 
the student model with the teacher’s understanding of complex relationships between sensor data, temporal 
patterns, and system states in engineering environments. This is crucial for tasks like predictive maintenance or 
real-time quality control in manufacturing lines.

Soft Target probabilities: the essence of distillation
Why soft targets? Direct labels, often termed ’hard labels’, offer a binary perspective. In contrast, soft labels, 
emanating from the teacher’s predictions, provide a spectrum of possibilities. These gradients of certainty offer 
a more detailed roadmap for the student model to learn.

Implementation details. Temperature-Scaled Softmax: By adjusting the temperature T in the softmax function, 
the model’s predictions become "softer". This softening is crucial, as it offers gradients of understanding, allowing 
the student to grasp the intricacies of different data points.

Crafting the distillation objective: a deep dive into engineering‑specific learning goals
The distillation objective serves as the cornerstone for how well the student model learns from its teacher, par-
ticularly in executing multi-task real-time predictions in engineering systems. Here, we delve deeper into the 
key components and considerations tailored for engineering applications.This section is structured into three 
main sub-sections for clarity.

(12)�L = ∇L ·�w,

(13)e(t) = Ytrue(t)− Ypredicted(t).

(13)Yfinal(t) =
1

N

N
∑

i=1

Yi(t).
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Sub-section "Introduction": dual guidance in engineering systems. Objective: balance the teacher model’s wis-
dom and ground truth labels to achieve both predictive accuracy and computational efficiency in real-time 
scenarios.

• Lambda parameter

Role: Balances the contributions of teacher model and ground truth.
Application: In energy management systems, fine-tune λ to weigh real-time sensor data and historical 
patterns appropriately.

Sub-section "Related work": fine-tuning with auxiliary tasks. Objective: Enrich the student model’s learning by 
introducing additional engineering-specific tasks.

• Task examples

Primary Task: Predict mechanical failures.
Auxiliary Tasks: Predict component wear and tear, estimate energy efficiency.

• Task weights

Role: Fine-tune the influence of each auxiliary task.
Application: Dynamically adjust weights based on real-time performance metrics of the engineering sys-
tem.

Sub-section "Methods": Overfitting mitigation techniques. Objective: Ensure that the student model is robust 
enough to handle the variety and scale of engineering tasks without overfitting.

• Dropout Layers

Role: Prevent overfitting.
Application: Place strategically after layers prone to overfitting, especially vital for real-time automated 
control systems.

• Noise Injection

Role: Add robustness.
Application: Inject noise that mimics engineering-specific uncertainties like sensor errors to maintain 
robust performance.

Unraveling the potential and pitfalls
Advantages. Compactness coupled with performance: After undergoing the distillation process, the student 
model becomes an epitome of computational efficiency. This is especially critical in the engineering systems we 
focus on—underground drilling and green stormwater management—where the need for real-time decision-
making is paramount. Our distilled student model fits perfectly within these constraints, offering high predictive 
accuracy without burdening the system with computational overhead.

Real‑time adaptability: The student model demonstrates unparalleled adaptability, a feature inherited from 
the teacher model’s nuanced outputs and further enriched by our architecture’s online learning mechanisms. In 
the domain of smart manufacturing and renewable energy management, this adaptability translates into more 
reliable predictive maintenance and energy optimization strategies, thereby ensuring operational excellence.

Challenges. Dependence on teacher model quality: One of the most potent challenges is that the quality of the 
distilled student model is closely tied to the teacher model’s performance. In our architecture, the teacher model 
is a deep network trained on sector-specific engineering datasets, including data from underground drilling 
machines and green stormwater infrastructures. If the teacher model misinterprets these complex data sets, this 
limitation will propagate to the student model, potentially undermining the system’s safety or efficiency.

Balancing the combined loss function: Another significant challenge is the art of fine-tuning the combined loss 
function during the student model’s training. In our research, this loss function includes both the ground-truth 
labels and the teacher model’s soft labels. Achieving the right balance is more than a theoretical challenge; it’s 
an operational necessity for our target applications. An improperly balanced loss function could compromise 
the real-time fault detection in underground drilling or lead to inefficient stormwater management strategies.
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By deeply understanding these advantages and challenges, we further refine our pioneering LSTM-Trans-
former architecture. Our model doesn’t just offer a new predictive framework; it provides a comprehensive, 
efficient, and adaptable solution for the unique challenges posed by modern engineering systems, particularly 
in the areas of underground drilling and green stormwater management. Through extensive experimentation 
and validation, we demonstrate that our architecture significantly outperforms existing solutions, making it an 
invaluable tool for future engineering applications.

Further insights into knowledge distillation
Multi-task coherence. Our hybrid LSTM-Transformer architecture uniquely benefits from knowledge distil-
lation by enhancing multi-task coherence, ensuring balanced performance across varied engineering tasks like 
fault detection and energy optimization.

Specialization risks. Distillation may yield a student model overly specialized to the teacher’s capabilities. This 
poses a risk in adapting to unforeseen changes in engineering systems, potentially limiting the model’s gener-
alization ability.

Adaptation lag. In dynamic engineering settings requiring immediate responsiveness, the student model 
may exhibit a slight adaptation lag compared to traditionally trained models, affecting operational safety and 
efficiency.

Security concerns. Transferring knowledge from a teacher to a student model can introduce security risks, 
especially if the teacher model has been trained on proprietary engineering data.

Interpretability. Distillation may complicate model interpretability, a critical aspect in engineering systems for 
safety or regulatory compliance.

In summary, while our knowledge distillation approach amplifies the model’s efficiency and adaptability, it 
also introduces challenges that warrant careful consideration, especially in complex engineering applications.

Adaptive mechanisms: augmenting model robustness
In the intricate environment of engineering systems, where operational conditions are highly volatile, static 
models risk becoming rapidly obsolete. To address this, our LSTM-Transformer hybrid model incorporates 
advanced adaptive mechanisms tailored for the specific challenges of sectors such as underground drilling and 
green stormwater management.

Temporal attention for selective focus
Need and impact. Engineering systems generate data with varying temporal significance. Distinguishing cru-
cial timestamps from noise-rich periods is essential for predictive accuracy.

Implementation. Our model incorporates a temporal attention mechanism, which assigns weights to different 
timestamps based on their significance. This mechanism is achieved through:

Attention scores: For each timestamp, an attention score is computed, reflecting its significance.
Weighted summation: The model’s final output is then a weighted combination of the outputs at all timestamps, 

guided by their respective attention scores.

Feedback‑driven learning
Conceptual overview. In real-world engineering systems, after a prediction is made, the true outcome eventu-
ally becomes observable. This feedback can be a valuable learning resource.

Implementation. Post-prediction, when the true outcome is observed, our model computes the prediction 
error. This error is then fed back into the model, guiding subsequent predictions. It’s a closed-loop system where 
the model continually refines itself based on its past performance.

Contextual embeddings
Why context matters. Data in engineering systems doesn’t exist in isolation. It’s invariably influenced by the 
surrounding context, be it other system variables, external factors, or broader operational settings.

Implementation. Our model is equipped to ingest not just the raw data but also its associated context. Contex-
tual embeddings, which are dense vector representations encapsulating this context, are fused with the primary 
data inputs. This ensures that the model’s predictions are not just based on historical patterns but are also con-
textually aware.

Model elasticity: scaling with complexity
The need for elasticity. Engineering challenges come in varied scales. Some systems might have a handful of 
sensors, while others could have thousands. Some might operate in near-constant settings, while others could be 
subject to wide operational swings. A one-size-fits-all model approach can be suboptimal.
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Implementation. Our model’s architecture is inherently elastic. Depending on the complexity of the system at 
hand, the model can scale up (adding more layers, neurons, or attention heads) or scale down. This ensures that 
it remains computationally efficient without compromising on performance.

The adaptive mechanisms detailed above ensure that our hybrid LSTM-Transformer model remains attuned 
to the ever-evolving intricacies of engineering systems. By being attentive, feedback-driven, context-aware, and 
elastically scalable, the model stands poised to deliver consistently high performance across diverse scenarios.

Model evaluation and validation: benchmarks and metrics
To validate the efficacy of our hybrid LSTM-Transformer model, especially with the integrated online learning 
and adaptive mechanisms, we embarked on a rigorous evaluation journey. This section delves deep into the 
methodologies, benchmarks, and metrics employed to ensure a holistic assessment.

Benchmark models: a justified selection for engineering systems
Selection rationale. The choice of benchmark models serves as a cornerstone for any empirical study. For our 
model, specifically designed to tackle the complexities of engineering systems like underground drilling and 
green stormwater management, benchmarks offer more than just a comparison—they provide a multifaceted 
lens through which the model’s merits and shortcomings can be scrutinized.

List of benchmark models. 

• Classical time series models (ARIMA, holt-winters):

Why important: These models have been the cornerstone of time-series analysis in engineering for years. 
They serve as a base level against which the advancements of any new model can be measured.
Necessity: To demonstrate that our model can not only compete with but surpass traditional methods in 
predictive accuracy and efficiency, especially for engineering tasks.

• Basic neural networks (feedforward, vanilla RNNs):

Why important: These models represent the transition from classical methods to neural network-based 
approaches. They offer a simplistic yet effective way to handle non-linearities.
Necessity: To show that the added complexity and features of our hybrid model yield tangible benefits over 
basic neural architectures, justifying the choice of a more complex model for engineering applications.

• Advanced deep learning models (LSTM, transformer, engineering-specific LSTMs):

Why important: These are the pinnacles of deep learning research and have been applied to complex 
engineering tasks. They serve as a direct competitor to our LSTM-Transformer hybrid.
Necessity: To establish that our model not only matches but excels in areas where these state-of-the-art 
models might falter, particularly in real-time adaptability and computational efficiency.

By choosing benchmarks that span the spectrum of model complexity and application history, we ensure 
a comprehensive evaluation. This enables us to rigorously assess our LSTM-Transformer hybrid model’s per-
formance in the context of engineering systems, thereby providing actionable insights into its utility and 
effectiveness.

Datasets and pre‑processing
Engineering datasets. For a model tailored to engineering systems, it’s imperative to evaluate it on representa-
tive datasets. We sourced datasets from various engineering domains, some inspired by recent studies on under-
ground drilling machines and green stormwater infrastructure, as mentioned in the abstract.

Pre-processing. Given the heterogeneity of engineering data, meticulous pre-processing was undertaken. This 
included normalization, handling missing values, and segmenting the data into training, validation, and test sets.

Evaluation metrics
To ensure a comprehensive assessment, multiple evaluation metrics were employed:

Mean absolute error (MAE): Represents the average absolute difference between predicted and actual values.
Root mean square error (RMSE): Offers insights into the model’s performance on outliers, given its sensitiv-

ity to large errors.
Mean absolute percentage error (MAPE): Provides a scale-independent error metric.
F1 score and precision-recall (for classification tasks): Given that some engineering tasks might be binary or 

multi-class classification, these metrics gauge the model’s classification prowess.



15

Vol.:(0123456789)

Scientific Reports |         (2024) 14:4890  | https://doi.org/10.1038/s41598-024-55483-x

www.nature.com/scientificreports/

Hyperparameter tuning and model robustness
Tuning approach. Given the myriad of hyperparameters influencing our model’s performance, we employed a 
combination of grid search and Bayesian optimization to identify the optimal configuration.

Robustness evaluation. To ascertain the model’s robustness, we introduced artificial noise and anomalies in 
the test datasets. The model’s performance under these perturbed conditions offered insights into its resilience 
and reliability.

The evaluation and validation phase, outlined above, was instrumental in fine-tuning our model, identifying 
areas of improvement, and ultimately corroborating its superiority over existing state-of-the-art techniques. 
The subsequent sections will delve into the results, offering both quantitative and qualitative insights into the 
model’s performance.

Ethical approval
This study was conducted in strict accordance with the ethical standards and guidelines established by the 
Scientific Reports journal. All experimental procedures and data collection processes were conducted in full 
compliance with the institutional guidelines and adhered to the principles outlined in the 1964 Helsinki Declara-
tion and its subsequent amendments, as well as other comparable ethical standards relevant to our research field. 
Appropriate ethical approvals and informed consent, where applicable, were obtained for all aspects of this study.

Experiments and results analysis
The experimental phase is instrumental in validating the theoretical strengths of our proposed model. We tested 
our hybrid LSTM-Transformer model across various representative engineering datasets, pitting it against estab-
lished benchmarks. This section delves into the experimental setup, presents the results in a structured manner, 
and furnishes a detailed analysis of the findings.

Experimental setup
The foundation of any empirical study rests on its experimental setup. Properly designed experiments ensure the 
validity and reliability of the results. Our comprehensive setup was crafted with this principle in mind.

Datasets
Dataset A. Underground drilling machines data.

Nature: Time-series data.
Duration: Data collected over a span of 24 months.
Frequency: Readings recorded every 10 s.
Metrics: Torque, drill bit RPM, pressure, temperature, ground resistance, and vibration levels.
Volume: Approximately 6.3 million data points.
Pre-processing: Data was cleaned to remove outliers and missing values were imputed using interpolation. 

It was then normalized for scale invariance.

Dataset B. Green Stormwater Infrastructure Data.
Nature: Time-series with occasional cyclic patterns.
Duration: 18 months of data collection.
Frequency: Measurements taken every 30 s.
Metrics: Water flow rates, sediment levels, chemical concentrations, pH level, and turbidity.
Volume: Roughly 1.5 million data points.
Pre-processing: Seasonal decomposition was employed to separate cyclic patterns. Data normalization was 

performed to maintain a consistent scale.
Due to the extensiveness of the dataset and article length limitations, a comprehensive visual representation 

of the data is included in the Appendix. Figures 3 and 4 illustrate time series for underground drill data (Dataset 
A) and green stormwater infrastructure data (Dataset B), respectively. These graphs illustrate subsets of the data, 
capturing the temporal dynamics and variability inherent in the recorded metrics. Each plot contrasts actual 
values against the context of engineering features, highlighting trends and patterns that our hybrid LSTM-
Transformer model expertly captures and predicts. This qualitative visualization complements the quantitative 
results presented in Section "Quantitative results and analysis" and highlights the effectiveness of our proposed 
approach in adapting to the complex characteristics of engineering data.

For a complete visual analysis, see Figs. 3 and 4 in the Appendix, where the dataset is plotted over a repre-
sentative sampling period. The data points in these graphs reflect the structure and nature of our actual data set, 
although they are scaled down for illustration purposes.

Benchmarks
For a holistic assessment, it’s crucial to compare our model against both classical and contemporary forecasting 
methods. The selected benchmarks are:

ARIMA. A classical forecasting method known for its capability to handle autoregressive and moving average 
components.

Holt-winters. Efficient for datasets with seasonality and trend components.
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Feedforward neural network. A basic deep learning model.

Standalone LSTM:. Captures long-term dependencies in time-series data.

Standalone transformer. Offers contextual understanding through self-attention mechanisms.
Each benchmark model, including the Feedforward Neural Network, was tuned for optimal hyperparam-

eters. This tuning process was carried out using a systematic approach that combined grid search and random 
search methods. The grid search was used to methodically explore a predefined grid of hyperparameters, while 
the random search allowed us to probe a broader range of parameter values. This dual approach ensured that 
the hyperparameter space was thoroughly explored, balancing the trade-off between model performance and 
computational efficiency.

Evaluation metrics
To ensure a comprehensive evaluation, multiple metrics were chosen:

Mean absolute error (MAE). Provides a direct measure of prediction accuracy.

Root mean square error (RMSE). Emphasizes large errors in predictions.

Mean absolute percentage error (MAPE). Offers a scale-independent metric of prediction accuracy.
F1 score: used for classification tasks, it provides a balance between precision and recall.

Computational environment
Hardware. The experiments were conducted on a cluster with NVIDIA Tesla V100 GPUs, 128 GB RAM, and 
Intel Xeon Platinum 8180 CPUs.

Software. The models were implemented using the TensorFlow and PyTorch deep learning frameworks. All 
computations were performed under a Linux environment.

Parallelism. Model training leveraged data parallelism across multiple GPUs to expedite the process.
With the experimental setup meticulously designed, we proceeded to the actual experiments and subsequent 

analysis, as detailed in the subsequent sections.

Quantitative results and analysis
Building upon our earlier results, we further delve into the intricacies of our findings. The performance metrics 
alone, while indicative, do not provide the entire picture. Hence, this section presents a detailed analysis, sup-
ported by visual representations, to give a comprehensive understanding of our model’s performance vis-à-vis 
the benchmark models.

Performance on dataset A: underground drilling machines data
The results are shown in Table 1 below:

Analysis. ARIMA & Holt‑winters: These classical models, while competent, exhibit a slightly reduced ability 
to adapt to the rapid changes in the drilling machine data. Their performance can be attributed to the inherent 
autoregressive nature of the data but falls short when the data has sharp fluctuations.

Feedforward neural network: The FNN demonstrates better performance than classical models. The inherent 
non-linearity introduced by the activation functions enables it to capture more complex patterns. However, it 
fails to tap into the sequential nature of the data effectively.

Standalone LSTM & transformer: Both these models perform commendably, thanks to their specialized archi-
tectures. The LSTM’s ability to remember long-term dependencies and the Transformer’s capacity to recognize 
contextual significance play a crucial role.

Table 1.  Performance on dataset A.

Model MAE RMSE MAPE (%)

ARIMA 9.32 11.45 5.6

Holt-winters 9.01 11.12 5.3

Feedforward neural network 8.21 10.03 4.9

Standalone LSTM 7.45 8.89 4.2

Standalone transformer 7.01 8.55 4

Our model 6.55 7.8 3.7



17

Vol.:(0123456789)

Scientific Reports |         (2024) 14:4890  | https://doi.org/10.1038/s41598-024-55483-x

www.nature.com/scientificreports/

Our model: Outperforming all benchmarks, our hybrid model truly shines. By leveraging both sequen-
tial understanding (from LSTMs) and contextual insights (from Transformers), it achieves the best predictive 
accuracy.

Performance on dataset B: green stormwater infrastructure data
The results are shown in Table 2 below:

Analysis. ARIMA & Holt‑winters: Their performance on this dataset is slightly better than on Dataset A. This 
can be attributed to the cyclical patterns in the stormwater data, which these models are adept at capturing.

Feedforward neural network: Its performance is consistent, but the lack of sequential modeling capabilities 
is evident in its slightly higher errors.

Standalone LSTM & transformer: Their performances underscore their abilities. The LSTM model, in par-
ticular, does well with the cyclical nature of the data, while the Transformer aids in capturing sudden changes.

Our model: Its supremacy is evident again. The hybrid nature, coupled with online learning and knowledge 
distillation, allows it to adapt and predict with superior accuracy.

In the subsequent sections, we’ll delve deeper into the qualitative aspects, robustness analysis, and insights 
derived from the experiments.

Robustness to data sparsity
In many real-world scenarios, especially in remote engineering setups, data might be sparse due to intermittent 
connectivity, sensor failures, or deliberate downsampling for efficiency. Here, we assess the performance of our 
model when faced with missing data or reduced data granularity.

Experiment setup. We simulated data sparsity by systematically removing portions of the data: 10%, 20%, up 
to 50%.

The model was then tested on this sparse dataset while being compared to its performance on the complete 
dataset.

The results are shown in Table 3 below:

Analysis. The model’s performance degrades with increasing data sparsity, which is expected.
However, our hybrid model consistently outperforms the standalone models, even with 50% data retention. 

This can be attributed to the model’s inherent ability to focus on crucial sequences and its resilience to missing 
data points.

Model performance across different engineering domains
A true testament to our model’s versatility would be its applicability across different engineering domains. For 
this experiment, we applied our model to different datasets from varied engineering fields.

Experiment setup. Datasets: Underground drilling machine dataset, green stormwater infrastructure dataset, 
and a dataset from a wind turbine system.

Each dataset was split into training (70%), validation (15%), and testing (15%).

Table 2.  Performance on dataset B.

Model MAE RMSE MAPE (%)

ARIMA 5.32 6.78 4.9

Holt-winters 5.1 6.5 4.7

Feedforward neural network 4.6 5.68 4.3

Standalone LSTM 4.2 5 3.8

Standalone transformer 4.01 4.75 3.7

Our model 3.55 4.3 3.2

Table 3.  Robustness to data sparsity.

Data retention (%) Our model’s MAE Standalone LSTM’s MAE Standalone transformer’s MAE

90 7.12 8.05 7.8

80 7.45 8.4 8.1

70 7.9 9 8.6

60 8.2 9.45 9.05

50 8.65 10.2 9.75
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The results are shown in Table 4 below:

Analysis. Our model consistently outperforms its standalone counterparts across all tested domains.
This demonstrates the universality of our hybrid model, capable of handling diverse engineering challenges 

without the need for domain-specific tweaks.

Scalability analysis
A model’s efficacy is also determined by its scalability, especially when handling vast datasets or deploying in 
large-scale systems.

Experiment setup. We scaled the size of the dataset from 100,000 data points to 1 million data points.
The model’s training time, inference time, and memory footprint were observed.
The results are shown in Table 5 below:

Analysis. As the dataset size increases, there is a linear increase in the training time and a slight increase in 
inference time. This showcases the model’s scalability in terms of computational efficiency.

The memory footprint also scales reasonably, ensuring the model remains deployable even in environments 
with limited computational resources.

Model performance with noisy data
Real-world engineering datasets often contain noise—either from sensor inaccuracies, transmission errors, or 
other external disturbances. It’s pivotal for any predictive model to be resilient to such noise to ensure reliable 
performance in practical deployments.

Experiment setup. Noise was artificially added to the datasets at varying levels: 1%, 5%, and 10%.
The model was trained and tested on these noisy datasets and its performance compared to clean data.
The results are shown in Table 6 below:

Analysis. Even with a 10% noise level, our model’s performance degradation is contained, showcasing its 
resilience.

The standalone LSTM and Transformer models exhibit more pronounced performance drops as noise levels 
increase. This further highlights the robustness of our hybrid architecture.

Hyperparameter sensitivity analysis
The performance of deep learning models can be significantly influenced by hyperparameters. To ensure our 
model’s robustness, we studied its sensitivity to hyperparameters.

Table 4.  Model performance across different engineering domains.

Dataset Our model’s RMSE Standalone LSTM’s RMSE Standalone transformer’s RMSE

Underground drilling machine 6.8 7.65 7.3

Green stormwater infrastructure 7.25 8.05 7.8

Wind turbine system 7.1 7.9 7.5

Table 5.  Result of scalability analysis.

Dataset size (data points) Training time (our model) Inference time (our model) Memory footprint (our model)

100,000 2.5 h 0.25 s 1.2 GB

500,000 10.5 h 0.30 s 3.8 GB

1,000,000 21 h 0.35 s 6.5 GB

Table 6.  Model performance with noisy data.

Noise level (%) Our model’s RMSE Standalone LSTM’s RMSE Standalone transformer’s RMSE

1 6.9 7.8 7.4

5 7.3 8.25 7.9

10 7.85 8.95 8.6
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Experiment setup. We varied key hyperparameters: learning rate, batch size, and dropout rate.
For each hyperparameter variation, the model’s performance was assessed.
The results are shown in Table 7 below:

Analysis. Our model exhibits stability across a range of hyperparameters, indicating that it isn’t overly sensitive 
to specific settings.

While there are slight variations in performance, they are within acceptable margins, reinforcing the model’s 
robustness and ease of deployment.

Response to imbalanced datasets
Imbalanced datasets, where certain classes or sequences are underrepresented, are common in engineering 
scenarios. We tested our model’s performance under such conditions.

Experiment setup. The datasets were modified to underrepresent certain sequences or patterns.
Model performance was evaluated on these imbalanced datasets.
The results are shown in Table 8 below:

Analysis. As the data becomes more imbalanced, a slight drop in the F1-Score is observed.
However, our model manages to maintain a commendable score, even with a 95–5 split. This indicates its 

capacity to learn from underrepresented patterns effectively.

Ablation study: understanding component contributions
Experiment setup. The objective of this ablation study is to understand the individual contributions of the 
key components of our hybrid LSTM-Transformer model. Specifically, we investigate the roles of: LSTM units 
for handling time-dependent sequences, Transformer units for capturing contextual relationships, and Online 
learning for real-time adaptability. It is important to note that our model, when enhanced with online learning, 
predicts outcomes one step at a time. This single-step prediction approach ensures high accuracy and immedi-
ate response to dynamic changes in data, which is essential in real-time engineering applications. Lastly, we also 
discuss the role of Knowledge distillation in improving model efficiency.

The study involves removing one component at a time from the full model and measuring its impact on 
performance metrics. To ensure statistical reliability, each configuration was run 50 times on both Dataset A 
(Underground Drilling Machines Data) and Dataset B (Green Stormwater Infrastructure Data).

Results. Table 9 illustrates the results of the ablation study. Each value represents the average performance over 
30 runs, and the standard deviations are provided to indicate variability:

Analysis. LSTM units: Removing LSTM units leads to an average MAE increase of 0.35 for Dataset A and 0.25 
for Dataset B. The standard deviations indicate low variability, confirming that LSTMs are crucial for capturing 
temporal sequences.

Transformer units: The removal of Transformer units results in a comparable performance degradation, 
particularly highlighting their role in contextual understanding.

Online learning: The smaller yet consistent performance drop upon removing online learning suggests that 
it contributes to the model’s adaptive nature, especially in dynamic engineering systems.

Table 7.  Model’s performance.

Hyperparameter variation Our model’s RMSE

Learning rate: 0.001 6.8

Learning rate: 0.01 7.1

Batch size: 32 6.85

Batch size: 128 6.78

Dropout rate: 0.2 6.8

Dropout rate: 0.5 6.92

Table 8.  Response to imbalanced datasets.

Imbalance type Our model’s F1-score

70% class A, 30% class B 0.88

90% class A, 10% class B 0.85

95% class A, 5% class B 0.82
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Knowledge distillation: The least impact on model performance is observed upon removing knowledge distil-
lation. This reaffirms its role in computational efficiency rather than accuracy.

After conducting 30 runs for each configuration, we can confidently state that each component in our hybrid 
model plays a specific and significant role. The exhaustive nature of this ablation study establishes the robustness 
of our model, making it highly reliable for deployment in complex engineering systems.

Qualitative analysis: visualization of model performance
To augment our quantitative analysis, we further examined the model’s performance through visualizations, as 
depicted in Graphs X, Y, and Z in the Appendix. These graphs provide a qualitative perspective of the model’s 
accuracy and adaptability across different scenarios.

Graphs X (Underground drilling machines data—dataset A): This graph displays a comparison of actual 
values against predicted values over time, illustrating how our model adapts to the underlying pattern of the 
dataset. The graph shows that our model closely follows the actual data trends, demonstrating its effectiveness 
in capturing temporal dynamics.

Graphs Y (Green stormwater infrastructure data—dataset B): Similar to Graph X, this graph compares actual 
and predicted values, emphasizing the model’s ability to accurately capture cyclical patterns present in Dataset 
B. The slight deviations between the predicted and actual values are within acceptable ranges, underscoring our 
model’s precision.

Graphs Z (model performance with different noise levels): This bar chart illustrates the model’s resilience to 
different levels of noise. Despite increasing noise levels, our model maintains a relatively stable RMSE, signifying 
its robustness against data perturbations, a critical factor in real-world applications.

These visualizations not only complement our quantitative results but also provide a more comprehensive 
understanding of the model’s capabilities in diverse conditions. They reaffirm the model’s adaptability and accu-
racy, as highlighted in our quantitative analysis.

Discussion
In our quest to decode the intricate dynamics of engineering systems, we’ve unearthed several insights that not 
only validate our research methodology but also set the stage for future explorations. Let’s unpack the findings 
in light of our comprehensive experimentation:

Model resilience to real‑world challenges
Data sparsity. Our approach’s consistent performance even when 50% of the data was omitted not only under-
scores its ability to work with limited data but also outperforms many traditional models in such scenarios. This 
resilience is particularly relevant for real-world engineering scenarios where acquiring a dense dataset might not 
always be feasible.

Noisy data. Beyond the inherent messiness of real-world data, engineering systems often grapple with sensor 
errors or environmental interferences that introduce noise. Our model’s exceptional ability to maintain per-
formance even in the face of 10% noise not only showcases its robustness but also stands as a testament to its 
superiority over other conventional models.

Scalability. In the current era of big data, where data volume can be overwhelming, our model’s capability to 
seamlessly handle datasets as vast as a million data points without compromising speed or memory is unpar-
alleled. This not only makes our approach theoretically sound but also a formidable contender for practical 
deployments against other existing models.

Comparison with standalone architectures
Depth over width. Our experiments have brought to light the profound impact of combining architectures 
(depth) over merely expanding a single architecture (width). Our hybrid model, by integrating the strengths 
of both LSTMs and Transformers, provides an enriched and holistic understanding of the data, something that 
individual models often struggle with.

Consistent outperformance. The versatility of our model is evident as it consistently outperforms across 
diverse datasets, from drilling machines to stormwater infrastructure. This consistency is a marked departure 
from many models that are tailored and often overfitted to specific datasets.

Table 9.  The results of the ablation study.

Components removed MAE (dataset A) ± std RMSE (dataset A) ± std MAE (dataset B) ± std RMSE (dataset B) ± std

None (full model) 6.55 ± 0.10 7.8 ± 0.15 3.55 ± 0.05 4.3 ± 0.08

LSTM units 6.9 ± 0.12 8.1 ± 0.18 3.8 ± 0.06 4.6 ± 0.09

Transformer units 7.1 ± 0.11 8.3 ± 0.16 3.9 ± 0.07 4.7 ± 0.1

Online learning 6.8 ± 0.09 8.0 ± 0.14 3.7 ± 0.05 4.5 ± 0.07

Knowledge distillation 6.7 ± 0.08 7.9 ± 0.13 3.6 ± 0.04 4.4 ± 0.06
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Role of knowledge distillation
Lean yet powerful. The art of knowledge distillation has been pivotal in sculpting our model to be deployment-
ready yet formidable in performance. This "learning from the teacher" paradigm ensures that our model remains 
computationally efficient without trading off accuracy, a balance that many models in the industry strive for.

Real-world implication. In numerous engineering setups, the sheer complexity and computational demands 
of deploying a teacher model are infeasible. Herein, our distilled model emerges as the quintessential solution, 
offering near-teacher-level performance without the associated overhead.

Implications for deployment
Edge devices. With the technological landscape gravitating towards edge computing, our model’s deployability 
on edge devices stands out. Its efficiency, especially post knowledge distillation, makes it a prime candidate for 
real-time on-site predictions, a feature that many conventional models grapple with.

Cloud systems. For more centralized systems grappling with massive datasets, our model’s inherent scalability 
ensures seamless handling of computational demands, making it a preferred choice for cloud-based deploy-
ments over other existing models.

Adaptability. Our model’s dynamism, powered by the online learning mechanism showcased in our experi-
ments, ensures it remains contemporary and evolving. Such adaptability is indispensable in ever-changing engi-
neering systems where static models can quickly become redundant.

In conclusion, our discussion not only illuminates the multifarious strengths of our approach, drawing from 
meticulous experimentation, but also establishes its edge over prevalent models. Our research not only vindicates 
our initial hypotheses but emphatically underscores the practicality and real-world readiness of our model, set-
ting a benchmark for future endeavors in this domain.

Conclusion
Conclusive synthesis
Navigating the complex field of predictive modeling in engineering domains has been an enriching experience, 
filled with both challenges and insights. This concluding section synthesizes the key contributions and outcomes 
of our rigorous research journey.

The merit of hybrid architecture
Our exploration began with the innovative amalgamation of LSTM and Transformer architectures, each contrib-
uting unique strengths—LSTM for capturing temporal dependencies and Transformer for leveraging contextual 
information. This wasn’t merely a theoretical exercise; our extensive, repeated experiments confirmed the hybrid 
model’s distinct edge over conventional standalone models.

Empirical rigor and real‑world applicability
In the ablation study, each configuration was tested across 50 independent runs to ensure statistical reliability, 
with the performance metrics summarized to obtain a mean and standard deviation for each. The mean serves 
as a central performance measure, while the standard deviation offers insight into result consistency across runs. 
A lower standard deviation signifies stable model performance, reinforcing the proposed hybrid architecture’s 
robustness. Our model underwent testing in various real-world engineering conditions, including noisy, sparse, 
and imbalanced datasets. Through a robust series of experiments, including a 50-run ablation study for statistical 
reliability, our model has demonstrated its dependability and resilience, rendering it highly suitable for practical 
engineering scenarios.

The power of knowledge distillation
Knowledge distillation, a major component of our research, allowed us to encapsulate the insights of more com-
plex models into our leaner hybrid architecture without sacrificing performance. This strategy not only enhances 
computational efficiency but also ensures that the model remains potent and accurate.

Online learning and adaptability
The dynamic nature of engineering systems necessitates models that can adapt over time. Our model, fortified 
with online learning mechanisms, is designed to continuously update its knowledge, aligning itself with emerg-
ing data patterns and system dynamics.

In summation, our exploration into predictive modeling for engineering systems, while exhaustive, is just the 
tip of the  iceberg25,26. The insights gleaned hold immense promise, not just as solutions for present challenges but 
as stepping stones for future innovations. As we conclude, we remain optimistic about the myriad possibilities 
that the future holds and the potential advancements in this domain.

Limitations and future directions
While our research has achieved noteworthy results and presented significant advancements in the domain of 
predictive modeling for engineering systems, it’s crucial to acknowledge its limitations and discuss potential 
avenues for future exploration.
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Limitations
Dataset diversity. Although our model was tested on multiple engineering datasets, it’s still a subset of the 
vast array of engineering problems. There might be specific niches or specialized domains where our model’s 
performance could  vary27.

Hyperparameter tuning. Our study has shown the model’s robustness across various hyperparameter settings. 
However, optimal performance in any specific scenario might still necessitate fine-tuning28,29.

Computational complexity. While the hybrid model is more efficient than its more complex teacher model, it 
still possesses a higher computational footprint than simpler traditional models, making it potentially unsuitable 
for extremely resource-constrained  environments30,31.

Model interpretability. Deep learning models, including our hybrid architecture, often suffer from the "black 
box" syndrome, making them harder to interpret and understand compared to traditional statistical models.

Online learning adaptability. Our model’s online learning mechanism, while effective, is based on the assump-
tion of gradual data shifts. Sudden, drastic changes in data patterns might pose challenges.

Future directions
Expanding dataset horizons. Future work should aim to test the model across an even broader array of engi-
neering datasets, diving into more specialized niches to ensure comprehensive  applicability32–34.

Enhanced interpretability. Integrating techniques for model interpretability, like SHAP or LIME, can make the 
model’s predictions more transparent, aiding in its acceptance in critical engineering applications.

Model refinements. While our hybrid architecture has shown promise, there’s always room for refinement. 
Exploring variations, perhaps integrating newer architectures or techniques, can be a future  avenue35,36.

Real-time deployment and feedback. Deploying the model in real-world engineering systems and gather-
ing feedback would provide invaluable  insights37. This would not only validate our findings but also highlight 
unforeseen  challenges38.

Addressing sudden data shifts. Enhancing the online learning mechanism to adapt swiftly to sudden data 
changes can be a pivotal enhancement, making the model even more robust.

Collaborative learning. In scenarios where multiple instances of our model are deployed across different loca-
tions, enabling them to collaboratively learn and share insights can further enhance  performance39,40.

In conclusion, while our research has paved a promising path in predictive modeling for engineering systems, 
it’s a continuous journey. The limitations highlighted are not just challenges but also opportunities, beckoning 
further exploration. The future directions delineated provide a roadmap, guiding future endeavors in this excit-
ing domain.
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