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Machine learning and XAI 
approaches highlight the strong 
connection between O

3
 and NO

2
 

pollutants and Alzheimer’s disease
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Sabina Tangaro 2,8, Alena Velichevskaya 9 & Roberto Bellotti 1,2

Alzheimer’s disease (AD) is the most common type of dementia with millions of affected patients 
worldwide. Currently, there is still no cure and AD is often diagnosed long time after onset because 
there is no clear diagnosis. Thus, it is essential to study the physiology and pathogenesis of AD, 
investigating the risk factors that could be strongly connected to the disease onset. Despite AD, 
like other complex diseases, is the result of the combination of several factors, there is emerging 
agreement that environmental pollution should play a pivotal role in the causes of disease. In 
this work, we implemented an Artificial Intelligence model to predict AD mortality, expressed as 
Standardized Mortality Ratio, at Italian provincial level over 5 years. We employed a set of publicly 
available variables concerning pollution, health, society and economy to feed a Random Forest 
algorithm. Using methods based on eXplainable Artificial Intelligence (XAI) we found that air pollution 
(mainly O

3
 and NO

2
 ) contribute the most to AD mortality prediction. These results could help to shed 

light on the etiology of Alzheimer’s disease and to confirm the urgent need to further investigate the 
relationship between the environment and the disease.

Keywords Alzheimer, Machine learning, Explainable artificial intelligence, Pollution, Standardized mortality 
ratio (SMR), One health

Alzheimer’s disease (AD) is the most common form of dementia currently affecting over 44 million people 
 worldwide1. It is estimated that every 3 seconds, someone in the world develops dementia.

AD is characterized by a progressive deterioration of intellectual abilities. During the development of disease, 
the patient progressively loses intellectual faculties, initially regaining short-term memory, and then also includ-
ing long-term memory and motor  skills2.

The first symptoms, however, are generally revealed from the age of 50, with an increase in the incidence of 
the disease of about twice every 5 years, starting from 1 % from 64 years, up to 40 % for patients over 85  years3.

At the morphological level, the peculiarity of AD is an accumulation of proteins and specific neuropatho-
logical findings in the cortex area, in particular senile (neuritic) plaques and neurofibrillary clusters. The study 
of AD and the consequent creation of a care model appears very complex for a number of reasons: (i) the first 
symptoms of the disease can occur even many years after the onset; (ii) a definite diagnosis can only be made 
after death; (iii) the underlying causes of the disease could be many and not easy to identify. Therefore, given the 
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multifactorial etiology of AD, a multidisciplinary “One Health” approach based on heterogeneous data linked 
to AD such as environmental, social, clinical factors could clarify the causes and the pathogenesis of dementia.

Although the etiology and pathogenesis of AD is not fully understood, oxidative stress is a key  component4–7. 
The increase in oxidative stress could be translated into a greater risk of AD. Oxidative stress is a state of imbal-
ance between the production and elimination of Reactive Oxygen Species (ROS) by antioxidant defense  systems8. 
Reactive oxygen species are reactive molecules that present oxygen, therefore capable of oxidizing cells and 
important for maintaining oxygen homeostasis in tissues and destroying  microbacteria9. Examples of ROS are 
the free radicals of oxygen and nitrogen (ROS and RNS) and their derivatives. The oxidation of lipids, proteins 
and DNA due to excessive amounts of ROS leads to deterioration of brain functions, including motor skills and 
it is responsible for the brain  aging10,11.

In recent years, air pollution has been considered a major environmental risk factor for  dementia12–14. The 
presence of ROS in the atmosphere seems to be connected to a common feature among AD patients: the olfac-
tory  dysfunction15. This dysfunction is due to the formation of neurofibrillary tangles in the olfactory bulb and 
olfactory centers before deposition in the brain. Air pollutants can directly act as prooxidants, favoring the 
production of free radicals, inducing inflammatory responses and oxidative  stress16 and thus contributing to 
the onset and development of AD.

Reference17 highlights the hypothesis that Alzheimer’s and Parkinson’s diseases may be catalyzed by agents 
entering the brain via the olfactory mucosa.

Exposures to low-ozone doses are associated with neurodegenerative diseases because they causes a chronic 
oxidative stress  state18. Ozone is the most widespread air pollutant and a powerful ROS agent produced by pho-
tochemical reactions between NOX and Volatile Organic Compounds (VOC) in the  troposphere19. It can cause 
serious health problems in urban areas, especially during heavily polluted and strong sunlight  days20.

Other studies reported that air pollution exposures, in particular PM10 and NO2
21,22, may induce AD-like 

cortical atrophy and lead to poorer cognitive  function23–26.
Not only air pollution but also soil pollution seems to be connected to the onset of Alzheimer. In fact pesticide 

use could increase the risk of developing  AD27–30.
As evidence of the multifactorial nature of AD, also social factor could be considered in the prediction and 

prevention of AD. In particular some studies reported that low education is closely linked with increased cogni-
tive decline or  dementia31–33.34 reported that early life education can prevent the development of cognitive decline. 
Other social factors like life experiences and demographic influences showed an important role in incidence of 
dementia in  adults35.

In our study, we aimed to investigate the connections between AD mortality, socio-economic factors, some 
clinical comorbidities and sources of environmental pollution in Italy at a provincial scale through an artificial 
intelligence approach. For this purpose we used publicly available indicators over the period 2015-2019 collected 
from national and regional agencies and computed the AD deaths incidence expressed as Standardized Mortality 
Ratio (SMR). We predicted the SMR by means of a Random Forest algorithm and investigated the role of each 
considered features in determining dementia mortality in each Italian provinces at different years through two 
different feature importance approaches: (i) a global one based on Random Forest; (ii) a local one by means 
of eXplainable Artificial Intelligence (XAI). The application of XAI techniques has allowed us to increase the 
transparency and interpretation of our machine learning model and to identify the features that gave a main 
contribute to dementia mortality.

Materials and methods
The main goal of our work was the investigation of possible significant correlations between different type of 
environmental pollution, socio-economic factors, clinical comorbidities and AD mortality in the Italian provinces 
from 2015 to 2019 through a procedure based on machine learning techniques. Our pipeline is summarized in 
Fig. 1.

To select the most performing algorithms between Linear Model (LM), and Random Forest (RF) we applied 
a common five-fold cross validation procedure. Then we used the feature set selected by wrapper method Boruta 
to feed this learning model for the prediction of SMR. Also to verify the robustness of our results we employed a 
complex networks tool used in previous works to analyze co-expression networks. Finally, we applied a feature 
importance procedure to outline the role of each feature at wider global and finer local scales with Random For-
est internal functionalities and Shapley (SHAP) values algorithm respectively.

Data collection and preprocessing
In this work we considered 31 indicators that we grouped into 5 categories: Air Pollution, Soil Pollution, Urban 
Environment, Socio-economic Data and Other Pathologies. The full list of such input variables, along with 
descriptions and related data sources, is reported in the Supplementary Information. We collected data for the 
years 2015-2019 of each Italian province from public repositories of Italian National Institute of Statistics (ISTAT) 
and Regional Environmental Protection Agencies (ARPAs). Only the feature “Life Quality Index” is provided 
by “Il Sole 24 Ore”. This index is calculated considering 90 different indicators. As for the clinical comorbidities 
we chose the mortality rate of some diseases connected to AD according to several studies, namely diabetes, 
ischemia, pathologies related to the circulatory, digestive and brain systems. Among Air Pollution data we also 
considered Air Quality Index (AQI) provided by http://moniqa.dii.unipi.it/. This index is obtained by dividing 
the measurement of the pollutant, by its reference limit, established by the Italian Legislative Decree 155/201036.

All features used in this work are available at https://github.com/OneHealthBari/Italian-provinces-data.git
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Standardized AD mortality
ISTAT does not provide the Standardized Mortality Ratio (SMR) of AD for the 107 Italian provinces. Therefore, 
we computed it through the following  definition37,38:

where Om and Em are the observed and the expected number of death by cause respectively. Em is defined as the 
weighted sum of age-specific death rates of the reference population RM

i  per the population of a given locality 
and given age ni:

RM
i  is obtained dividing the number of deaths by age and cause of the reference population Mi with the age-

specific reference population size Ni:

For a given province a SMR value higher than 1, means that the mortality incidence exceeds the reference one 
(we considered the Italian value as reference). Figure 2 shows the distribution of the value of the SMR (Panel 
A) and the concentrations of O3 (Panel B) and NO2 (Panel B) by province, averaged for the considered time 
window (2015–2019). Our computation of SMR is available  on39 . More information about SMR computation 
is reported  on40.

The study of AD is a very complex issue to deal with in terms of time, in fact we do not know exactly when the 
disease started, the onset could even go back decades before the patient’s death. Therefore, due to the peculiarity 
of the analyzed pathology and the impossibility of predicting the exact moment in which it began to develop, in 
our analysis we focused exclusively on the spatial characterization of the data. The idea is therefore to eliminate 
the temporal component from the analysis, and to study the spatial correlations between SMR and pollution, 
socio-economic and health data. We assumed that there have been no substantial changes in the spatial distribu-
tions of input data over the considered years.

(1)SMR =
Om

Em
,

(2)Em =
I

∑

i=1

RM
i × ni ,

(3)RM
i =

Mi

Ni
,

Figure 1.  Flowchart of the implemented analysis. After a data collection and a pre-processing phase, we 
selected the best model (among LM and RF) to forecast the SMR for the 107 Italian provinces between 2015 and 
2019. Then, we developed a feature importance procedure to improve the performance of the selected algorithm 
and to measure the importance of each variable in the model.
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Feature selection procedure
We applied a feature selection procedure relied on the wrapper method  Boruta42 with the aim to improve the 
performance of our selected learning model. This represents a common and extensively applied strategy in 
machine learning analysis. It involves an initial step of selecting features that optimize model performance 
using a wrapper algorithm. Subsequently, only the most informative features are fed into the algorithm as input 
to reduce noise. This approach helps to mitigate the potential pitfalls associated with standard machine learn-
ing applications, such as overfitting and underfitting. Boruta is a robust method, based on Random Forest, that 
reduces noise and correlated features through the randomization of the training set. For each original feature, 
the algorithm produces a synthetic one, called shadow, built by randomly mixing the values of each original 
indicator. With the new dataset (original features and shadows) Boruta trains a RF algorithm in order to com-
pute, after a number of independent shuffles, the importance of both original and artificial variables. Finally 
only the features that are statistically more important than their respective shadow counterparts are selected. In 
particular, a permutation procedure is used to validate the role that the Random Forest (RF) algorithm assigns 
to the features and thus increase the robustness of the method. Shadow attributes are used as reference values to 
determine the importance of the features. When synthetic features have an importance that closely matches the 
corresponding best shadow features, it is challenging for Boruta to make decisions with the desired confidence. 
Boruta is intentionally designed to select all features that are relevant to the prediction of the outcome variable 
and that minimise prediction error. The specific steps that Boruta performs are as  follows43:

• Permute each feature Xj to create a shadow feature X(s)
j .

• Build a Random Forest model using both the original and shadow features.
• Calculate the importance of each feature Xj and X(s)

j  by Mean Decrease Accuracy. Z-score is then calculated 
from the ratio between the mean accuracy loss and the standard deviation of the same distribution.

• Identify of the maximum Z-score among the shadow attributes (MZSA).
• Declare Xj as important for a single run if its Z score exceeds the Z score of MZSA.

Figure 2.  Panel (A) shows the average standardized mortality rate distribution for Alzheimer’s disease within 
Italian provinces; Panel (B) and Panel (C) show the average average distribution of O3 and NO2 concentrations 
( µg/m3 ) at Italian provincial level. This image has been created with the software package “sf ” of R 4.2.241.
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• Perform a two-sided statistical test for all attributes assuming the null hypothesis that the importance of the 
variables is equal to the maximum importance of MZSA. For each characteristic Xj , the algorithm records 
how often in M runs the importance of Xj exceeds the MZSA (a hit is registered for the variable). The expected 
number of hits, following a binomial distribution with p = q = 0.5, is E(M) = 0.5M with a standard deviation 
S =

√
0.25M  . Subsequently, Xj is categorized as important when the number of hits significantly exceeds 

E(M) and as unimportant when the number of hits significantly falls below E(M).
• Repeat the preceding steps for a predetermined number of iterations, or continue the process until all attrib-

utes are appropriately tagged.

The entire feature selection procedure was carried out within a 5-fold cross-validation framework as described 
below.

Learning framework
We implemented a learning framework to forecast the SMR at provincial level. We fed our models with the 
features selected by Boruta. We started with a linear hypothesis and then we used a machine learning approach 
based on Random Forest (RF)44 to improve the model performances. Multiple linear regression is one of the most 
basic and used statistical models. This model investigates, under a linear hypothesis, the relationship between a 
dependent variable (y), some independent variables ( xi ) and their interactions:

where β0 is the intercept value, βi are the regression coefficients to estimate, η is the model error and n i the 
number of features selected by Boruta.

RF is an algorithm composed by an ensemble of binary classification trees (CART). Ensemble learning refers 
to the methodology of utilizing multiple models that are trained on the same dataset. The final output is deter-
mined by averaging the results produced by each individual model. This approach aims to achieve a more potent 
and robust predictive or classification result by leveraging the diverse perspectives and strengths of multiple 
 models44. RF is a supervised machine learning model widely used because is suitable for modeling multimodal 
data and easy of tuning with on only two parameters to set: the number of randomly selected features at each 
node F , and the number of trees of the forest D. Furthermore RF is very robust against overfitting issue thanks 
to a training phase based on a bootstrap process and a feature randomization procedure during which the forest 
is developed. Thanks to the use of decision trees, the Random Forest (RF) algorithm is able to capture non-linear 
relationships present in the input features unlike the linear model. Another important functionality of RF is the 
ability to assess the importance of each variable used in the model through an internal feature importance proce-
dure. In our work we trained RF model with a dataset composed by 107 Italian provinces and 31 socio-economic, 
health and pollution indicators. Furthermore, we used the mean decrease impurity as feature importance method, 
and a RF configurations with M = 600 trees and F = S/3, where S is the number of input features.

We applied a 5-fold cross validation (CV) framework, repeated 100 times, to further increase the robustness 
of our procedure. In the same way, RF overall feature importance is computed by averaging over 100 CVs.

We evaluated the performance of models using both the linear correlation coefficient between predicted and 
actual values and the root mean absolute error (MAE), defined as:

where Ai is the actual value and Pi is the predicted value.

Complex networks tool
To verify the robustness of our findings we implemented a complex network approach. A complex network is 
a geometric model consisting of points (nodes) and lines (links) that symbolise the relationships between the 
elements within a complex system. The complex network approach is widely used in the study of complex sys-
tems because it provides information about the behaviour of the system through the abstraction of the network 
structure.

Our aim was to evaluate whether adding further confounding features to the ML model described in Sect. 
"Learning framework", our results remain constant. To do this we have created the network of Italian provinces. 
Starting from the dataset described in Sect. "Data collection and preprocessing" (107 provinces and 31 independ-
ent indicators) we build a network in which the nodes are represented by the Italian provinces. From this network, 
firstly we extracted some network features (4 new variables), able to capture the connections between different 
provinces and to provide additional spatial information to the model. Then we added the new features to the 
31 indicators previously used and repeated the Machine Learning procedure described in the previous section.

In order to create the adjacency matrix we computed Spearaman’s correlation between each province, which 
is defined by an array of the 31 features described in Sect. "Data collection and preprocessing". We used the 
Spearman’s correlation for two main reasons: (i) outliers were present in analyzed  dataset45; the sample size was 
quite  small46. Given provinces i and j, we computed di,j , an element of the Spearman correlation matrix D, as 
the absolute value of the correlation coefficient ri,j between the indicator values of province i ( xi ) and province 
j ( xj ), for the N = 31 indicators:

(4)y = β0 + β1x1 + β2x2 + ...βnxx + η,

(5)MAE =
1

n

N
∑

i=1

|Ai − Pi|,
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where x̄i and x̄j are the mean province i and province j indicator values across all the used indicators and R(xi,a) 
the rank variable.

Adjacency matrix and information entropy
Starting from the correlation matrix D with the elements di,j , we computed the adjacency matrix C of elements 
ci,j by means of a hard thresholding procedure:

where th indicates the optimal threshold that we selected to maximize the Shannon entropy based on Freeman’s 
betweenness centrality, a topological property of the network. So, we choose the network configuration that 
maximizes the entropy of betweenness distribution. The betweenness of node (province) i in a network with G 
elements (provinces) is defined as:

where njk(i) is the number of geodesics (the shortest path connecting two nodes) between node i and node j that 
pass trough node i and njk is the number of geodesics between node j and node k.

For each value of th, we got a different adjacency matrices C(th) and compared the Shannon entropy:

where b(th)i  is the betweenness of node (province) i in the network defined by adjacency matrix C(th).
The hard threshold analysis implemented in this work is an approach proposed in previous articles for the 

study of gene co-expression  networks47–49.

Network centrality features
We calculated some quantities related to the intensity of the node connections and the weight distribution in 
order to be able to study the same nodes as their interaction changes. For each province in the network we com-
puted the betweenness and the degree defined as the amount of connections of the node i:

Along with these two measurements we also evaluated the eigenvector centrality that quantifies a node’s impor-
tance while giving consideration to the importance of its neighbors and the closeness centrality of province i in 
a network with N nodes:

where sij is the shortest-path distance between i and j.

Explainable artificial intelligence and Shapley values
The main purpose of Explainable Artificial Intelligence (XAI) is to increase transparency and interpretability of 
Machine and Deep Learning  methods50–52. XAI refers to a set of techniques that combines a number of proper-
ties of AI models such as informativeness, uncertainty estimation, generalization and  transparency53,54. In our 
analysis, we implemented the SHAP local explanation method to evaluate the role of each feature in the Random 
Forest model. Unlike the feature importance evaluated entirely by Random Forest which provides global informa-
tion of the machine learning algorithm on the whole training set, SHAP gives the contribution of each feature in 
the prediction of the single observation. The SHAP algorithm is based on cooperative game  theory55,56 and the 
concept of the Shapley (SHAP) values. Given all possible feature subsets F of the total feature set S ( F ⊆ S ) for 
a feature j the SHAP value is evaluated as the difference between two model outputs, the first obtained includ-
ing that specific specific feature, the second without. The SHAP value of the j-th feature for the observation x is 
measured through the addition of the j-th feature to all possible subsets,

(6)di,j = |ri,j| =

∣

∣

∣

∣

∣

∣

∑N
a=1(R(xi,a)− R(x̄i))

∑N
b=1(R(xj,b)− R(x̄j))

√

∑N
a=1(R(xi,a)− R(x̄i))2

∑N
b=1(R(xj,b)− R(x̄j))2

∣

∣

∣

∣

∣

∣

,

(7)ci,j =
{

1, if di,j ≥ th and i �= j,
0, otherwise,

(8)bi =
G
∑

i �=j �=k

njk(i)

njk
.

(9)HC(th) = −
G
∑

i=1

b
(th)
i log2(b

(th)
i )

(10)ki =
G
∑

j=1

cij ,

(11)cli =
N − 1

∑N−1
j=1 sij

,

(12)SHAPj(x) =
∑

F⊆S−{j}

|F|!(|S| − |F| − 1)!
|S|!

[fx(F ∪ j)− fx(F)],
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where |F|! is the number of feature permutations which precede the j-th feature; (|S| − |F| − 1)! is the number 
of feature permutations that follow the j-th feature value; |S|! represents the total number of permutations of 
features; fx(F) indicates the model prediction f for the sample x, considered a subset F without the j-th feature; 
fx(F ∪ j) is the output of the same model including the j-th  feature55. In our analysis we computed the mean 
SHAP values after a 5-fold CV, repeated 100 times for each considered year.

Data processing and statistical analyses were performed in R 4.2.241 and Python 3.9.

Results
Firstly, we applied a preprocessing procedure, in which we filled the missing values in the considered dataset with 
the mean values of the corresponding features. Often a certain characteristic had no values for some provinces. 
Therefore, these missing values were replaced by the average value of the feature for the reference year. As sug-
gested by Zhongheng  Zhang57, the use of an estimate such as the mean for imputing missing values is appropriate 
in analyses with a limited number of samples, such as our study. Then we applied a linear model on the whole 
feature sample inside a repeated (100 times) 5-fold cross-validation framework (described in Sect. "Learning 
framework") for each considered year.

We used linear model results as benchmarks of our analysis. To improve the findings of linear model we 
implemented a RF classifier, compared the performances of the two models and selected the best performing 
one (RF). Then we applied Boruta algorithm to choose the most informative set of feature with which to fed RF 
inside a 5-fold cross-validation framework.

The performances obtained through the linear model, RF and RF fed by the Boruta features are reported in 
Table 1. All correlation coefficients of RF with and without Boruta are statistically significant at 1% . Figure 3 
shows the distributions of MAE for each analyzed year: RF with Boruta resulted the best performing method. 
The results of the feature importance procedure assessed by means of RF algorithm are summarized in the panel 
A of Fig. 4, where the features importance for each year is shown in a color scale from red (high) to yellow (low). 
The features not selected by Boruta are indicated with white boxes. The analysis shows that O3 and NO2 have a 
consistently high importance.

Network analysis was then conducted. In particular we built the adjacency matrix through the hard threshold-
ing procedure based on the Shannon entropy of betweenness described in Sect. Complex networks tool. Next, 
we computed the 4 network centrality metrics, added them to the original database, and repeated the machine 
learning and feature selection procedures for each year. The new RF performance shows no relevant changes, 
with a small difference of 0.1%. The role of the 4 network features is not relevant within the model as shown in 
panel B of the Fig. 4. The importance of the other features instead remains almost constant. Therefore, for the 
sake of simplicity, we performed SHAP analysis on the dataset without network metrics. We conclude that our 
results are robust even adding new features.

Table 1.  Mean absolute error and p-values of the three developed models, for each year. All metrics are 
evaluated using a 5-fold Cross Validation repeated 100 times.

Year

Linear model Random forest
Random forest + 
boruta

MAE p-value MAE p-value MAE p-value

2015 0.32 ± 0.03 0.02 ± 0.03 0.24 ± 0.01 <1% 0.22 ± 0.01 <1%

2016 0.32 ± 0.03 0.03 ± 0.03 0.21 ± 0.01 <1% 0.20 ± 0.01 <1%

2017 0.29 ± 0.02 0.01 ± 0.01 0.23 ± 0.01 <1% 0.21 ± 0.01 <1%

2018 0.29 ± 0.02 0.01 ± 0.01 0.24 ± 0.01 <1% 0.23 ± 0.01 <1%

2019 0.30 ± 0.01 0.01 ± 0.01 0.22 ± 0.01 <1% 0.20 ± 0.01 <1%

Figure 3.  MAE for the three implemented models: linear model (LM), random forest (RF) and random forest 
with boruta (RF+B). Each distribution was computed through a 5-fold cross validation procedure repeated 100 
times.
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For each feature selected by Boruta and for each year, we computed the SHAP values associated to the SMR 
prediction. The means of these SHAP values have been reported in the Supplementary Information. Figure 5 
show the distribution of SHAP values over the period 2015–2019 for each Italian province. These plots, where 
the features are ordered in terms of importance in the model, display that O3 , NO2 always appear among the 
most important factors.

Finally, to underline the differences in terms of AD mortality and pollution in the different provinces, we 
performed a min-max normalisation of both the SMR distribution and the O3 and NO2 concentrations shown 
in Fig. 2. From these three maps, we computed an average map, which is displayed in the Fig. 6.

Figure 4.  Average feature importance obtained through RF model after a 5-fold CV procedure with 100 
ripetitions, for the considered time span (2015–2019). The white boxes show that the corresponding feature was 
rejected in the feature selection procedure relied on the Boruta algorithm. Panels (A) and (B) are referred to RF 
models trained with and without centrality network features respectively.
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Discussion
In the present work, we focused on the relation between AD mortality and pollution, socio-economic and 
health indicators by means of a learning methodology based on Artificial Intelligence algorithms. We used 31 
publicly available indicators to forecast the spatial distribution of AD deaths incidence expressed as Normalized 
Mortality Ratio (SMR) calculated for each Italian province over the period 2015-2019. First we chose the best 
performing method in terms of MAE and linear correlation between LM and RF. Then we selected the most 
important factors through the Boruta wrapper method and fed a Random Forest algorithm. Through RF with 
Boruta we obtained a good average performance of 0.21 of MAE over all considered years. To verify the robust-
ness of our results we implemented a complex network approach, never applied on this type of data. Through a 
procedure based on Spearman’s correlation and Shannon’s entropy we built the network of the Italian provinces. 
From this network we extracted 4 features that we added to the 31 indicators previously used and we fed the 
machine learning model repeating the procedure described in Sect. "Learning framework". These measures of 
centrality reported in Sect. "Network centrality features" condense spatial information at various levels. The 

Figure 5.  SHAP distribution values of the most influential features for the considered time window (2015–
2019). Each point in the same row corresponds to a different province.
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new features do not improve the performance of our procedure (we only noted a difference of 0.1%) but this 
procedure shown a good stability of our findings. In fact, the role of the most important features in the model 
remains unchanged even by adding factors that could be confounding. The result of the implemented global 
feature importance procedure based on Boruta and Random Forest, shown in Fig. 4, highlights the burden of 
environmental pollution on AD mortality. Overall, we found that O3 , NO2 and the mortality rate due to diseases 
of circulatory system are among the most important factors associated with high SMR values. A clear spatial 
association between AD mortality and O3 and NO2 at a provincial scale emerges through a comparison among 
the average distribution (over 5 years) of SMR, shown in panel A of Fig. 2 and the average concentrations of O3 
and NO2 shown in the panel B and C of the same Figure, confirming the existence of some geographic patterns. 
To emphasise these patterns, we calculated the average map of the maps shown in Fig. 2. The geographical areas 
with the most intense colour scale have the highest values for both pollution and SMR. It is evident that most of 
the provinces in Puglia, Abruzzo, Tuscany and Lombardy are significantly affected by both high AD mortality 
risk and relevant levels of O3 and NO2 pollutants, although they differ in geographical, meteorological and socio-
economic terms. This confirms that AD mortality and air pollution are more associated to each other than any 
other variable that could explanation different patterns.

The pivotal role of O3 and NO2 in the model is confirmed also by XAI analysis displayed in Fig. 5. An impor-
tant information provided by SHAP results is how the considered features influence the sign of the SHAP values. 
The behaviors of O3 and NO2 in the Shapley plots indicate that high concentrations of these air pollutants corre-
spond to an excess of AD deaths. So both Boruta and SHAP highlighted the importance of O3 and NO2 pollutants, 
giving a global and local explanation respectively. As previous mentioned, these results are already investigated 
in several works. Studies on rats have shown that long-term exposure to ozone, produces short- and long-term 
memory loss, along with motor  disabilities18,58.59 underlined the effect of chronic ozone exposure on brain tissue 
and the close relationship between ozone pollution and neurodegenerative diseases.14 reported an association 
among increase in ozone concentration in Rome and increase in risk of hospitalisation with dementia.60 found 
a high risk of AD in areas of Taiwan strongly polluted by ozone .61 reported evidence of a positive correlation 
among residential levels of air pollution across London (in particular NO2 ) and people diagnosed with AD and 
vascular dementia. These findings are in agreement with many other works which conclude that increased NO2 
concentrations are linked to an elevated risk of AD (and other forms of dementia)  incidence62–64.

As we have already said, another important finding underlined by our feature importance procedure is the 
relevant rule of mortality related to cardiovascular diseases in the prediction of SMR. SHAP analysis underlined 
that low mortality rate for the circulatory system problem correspond to high AD mortality values. This result 
is confirmed by a negative correlation coefficient ( −0.32 ) between SMR and the feature “circulatory system”, but 
appears to be in contrast to the findings of other works in which AD and cardiovascular diseases are reported 
strongly  associated65,66. An explanation of our results may be due to the type of data used since they are mor-
tality rates and not incidence rates. The negative correlation between SMR for AD and the mortality rate for 

Figure 6.  Average map between the SMR distribution and the O3 and NO2 concentrations shown in Fig. 2. 
Before averaging the 3 distributions, minimum maximum normalisation of the values was performed. This 
image has been created with the software package “sf ” of R 4.2.241.
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cardiovascular diseases is likely due to the fact that a large number of patients with dementia also suffer from 
heart problems, but death from cardiac causes precedes that from AD and vice versa. This strong association 
between AD and cardiovascular disease translates into an inverse association of the relative mortality rates. Many 
other work reported this link between AD and cardiovascular diseases.

In a study carried by Scherbakov and Doehner, it was showed that brain is subject to cerebral perfusion, 
which commonly happens in hearth failure. The reason is the high vascularization of the  brain67.68 found that 
cerebral hypoperfusion increases the production of neurofibrillary tangles and Amyloid-β (Aβ ) plaques, char-
acteristic of AD. Also, the hypoperfusion causes the breakdown of the blood-brain barrier, which obstructs the 
removal of A β69. Another mechanism which play an important role in the formation of amyloid plaques, in 
cases of hypoperfusion, is the breakdown of the blood-brain barrier, which impairs the clearance of A β69. To our 
knowledge, our work represents the most comprehensive study of the close connection between environmental 
factors (especially pollution) and dementia affecting an entire Italian population so far. Our analysis, through the 
support of machine learning and XAI techniques and with a large set of variables, provides a view of the most 
important factors both at a global and local level.

We acknowledge that our study has some limitations. The first one is the incipient nature of dementia that 
increases the difficulty of accurate diagnosis and proves problematic in detecting associations with AD risk fac-
tors. This aspect leads to a possible underestimation of AD mortality value. In fact, as we have already said, it is 
possible to diagnose AD only after the patient’s death, therefore the need to perform an autopsy automatically 
generates an underestimation of the mortality rate. Another limitation to this analysis is represented by the 
estimation of the concentrations of the analyzed pollutants. We assessed the concentration of air pollutants in 
a province through the available monitoring stations, which does not cover the whole territory. So we made a 
spatial approximation. A possible evolution of this approach consists in the creation of a pollution map of Italian 
territory by means of satellite data (for example Sentinel-5 mission) which have a large point density. Our results 
suggest that constant monitoring over the years and the ever-increasing availability of data will also help predict 
the evolution of AD in the future, given that it occurs many decades after exposure to pollutants.

Conclusions
In this study we investigated possible risk factors of AD taking into account pollution socio-economic and 
health data. We built a model, based on Machine Learning and Explainable Artificial Intelligence techniques 
and complex networks framework to predict the AD mortality at the Italian provincial level over a period of 5 
years (2015–2019). Our model presented a good precision with a mean absolute error of 0.22. Through a feature 
importance procedure relied on global and local approaches we found a link between pollution and AD with O3 
and NO2 that assumed pivotal rules in the model. Although our analysis presents some limitations due to the 
physiology of AD, our findings are promising and deserve further investigation also by means of satellite data 
to estimate pollution concentrations.

Data availability
The datasets of SMR generated and analysed during the current study are available in a Dryad data repository39 . 
The other datasets used and analysed during the current study are available from the corresponding author on 
reasonable request.
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