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Towards unlocking motor control 
in spinal cord injured by applying 
an online EEG‑based framework 
to decode motor intention, 
trajectory and error processing
Valeria Mondini 1, Andreea‑Ioana Sburlea 2 & Gernot R. Müller‑Putz 1,3*

Brain‑computer interfaces (BCIs) can translate brain signals directly into commands for external 
devices. Electroencephalography (EEG)‑based BCIs mostly rely on the classification of discrete mental 
states, leading to unintuitive control. The ERC‑funded project "Feel Your Reach" aimed to establish a 
novel framework based on continuous decoding of hand/arm movement intention, for a more natural 
and intuitive control. Over the years, we investigated various aspects of natural control, however, 
the individual components had not yet been integrated. Here, we present a first implementation of 
the framework in a comprehensive online study, combining (i) goal‑directed movement intention, 
(ii) trajectory decoding, and (iii) error processing in a unique closed‑loop control paradigm. Testing 
involved twelve able‑bodied volunteers, performing attempted movements, and one spinal cord 
injured (SCI) participant. Similar movement‑related cortical potentials and error potentials to previous 
studies were revealed, and the attempted movement trajectories were overall reconstructed. 
Source analysis confirmed the involvement of sensorimotor and posterior parietal areas for goal‑
directed movement intention and trajectory decoding. The increased experiment complexity and 
duration led to a decreased performance than each single BCI. Nevertheless, the study contributes to 
understanding natural motor control, providing insights for more intuitive strategies for individuals 
with motor impairments.

Brain-computer interfaces (BCIs) are systems that directly translate mentally induced changes of brain signals 
into commands to operate external devices and  applications1. By establishing a communication channel that 
does not rely on peripheral nerves and muscles, BCIs may assist persons with severe motor impairments to 
regain control over interactions with the external world. In individuals with severe high spinal cord injury (SCI), 
recovering of hand and arm function is one of the most common  wishes2, due to its central role in improving 
independence and, consequently, overall quality of life.

Research over the past three decades demonstrated the possibility for end users to achieve successful neuro-
prosthetic or robotic control. BCIs based on intracortical recordings allowed for the operation of robotic arms 
with up to 10 degrees of  freedom3–5. The first results for closed-loop cursor control based on electrocorticographic 
(ECoG) recordings in tetraplegic users have also been  reported6. When coming to non-invasive BCIs, such as 
electroencephalography (EEG)-based systems, the most common control approach is based on the classification 
of different mental states, which are typically induced by the imagination of different voluntary  movements7. As 
a movement imagination is produced, the spectral power and spatial distributions of the EEG rhythms over the 
sensorimotor areas can be voluntarily and reliably modulated, and as such classified and used as control signals 
for the  BCI8,9. The classification of different movement imaginations was successfully utilized to establish hand/
arm neuroprosthetic control in persons with SCI, by allowing for the selection of open/closed positions of a 
hand  orthosis10, or triggering functional electrical stimulation to produce a  grasp11. More advanced applica-
tions, such as controlling cursor movement in  two12,13 or  three14,15 dimensions, have also been demonstrated in 
able-bodied users. Other control strategies, such as steady-state visually evoked potentials (SSVEP)16,  P30017, 
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or the combination of multiple strategies in a unique hybrid BCI (hBCI) system, have also been  proposed18–21. 
Despite the significant progress in this field, the mismatch between the classified mental state and the intended 
end-effector movement can result in an unnatural or non intuitive user experience, which may not be ideal to 
control a neuroprosthesis.

To address these limitations, the European Research Council (ERC)-funded “Feel Your Reach” (FYR) project 
aimed at establishing the knowledge and methodology for a novel control framework based on the continuous 
decoding of hand/arm movement intention, with the ultimate goal of achieving a more natural and intuitive 
control based on EEG  signals22. In pursuit of this goal, the FYR team has extensively investigated various aspects 
of voluntary movement. These include: (i) goal-directed movement  intention23–25, (ii) trajectory  decoding26–32, 
(iii) error  processing33–36, (iv) grasp  representation37–39, and (v) sensory  feedback40–42, which have been individu-
ally studied in both offline and online settings.

For the goal-directed movement intention (i), the team studied movement-related cortical potentials 
(MRCPs), which are low-frequency EEG potentials reflecting movement planning and  execution43,44. The shape 
of MRCPs carries information about  speed45,  force46, grasp  type47 and upper limb  movement48. In the context of 
FYR, the MRCP differences between goal-directed and non-goal-directed movements have been  investigated23, 
highlighting that classification accuracies are enhanced for goal-directed movements, and showing the impor-
tance of both motor and parietal areas for a successful classification. In the progressive effort to cater the setup 
to end-users,24 later on investigated the difference between self-paced movement imaginations and externally-
cued, internally selected targets. Finally, and with the goal of designing an even more realistic and ecological 
experimental paradigm,25 demonstrated the possibility to detect self-initiated reach-and-grasp movements in 
an online setting. The study incorporated eye movements as a time-locking point, handled the related artifacts 
with an eye artifact attenuation  algorithm49, and successfully extracted movement-related features through a 
hierarchical classification approach.

With respect to trajectory decoding (ii), a first study  from50 could demonstrate the possibility to reconstruct 
three-dimensional hand movement trajectories from the low-frequency EEG. Later studies explored the decod-
ing of directional information during continuous  overt51,52 and  imagined53,54 hand/arm movements, confirming 
the possibility to reconstruct  positions52,55,56 and velocities from low-frequency EEG using linear  models50,56, 
and elucidating the spatiotemporal tuning to each movement  parameter26. After establishing the necessary 
knowledge in offline studies, we first realized an online study to allow for the closed-loop control of a robotic 
arm with continuously decoded  movements29. After revealing an amplitude mismatch between hand kinemat-
ics and decoded movement,27 explored the possibility to infer non-directional movement information (like for 
example distance, speed) from the EEG, and proposed that integrating that information in the decoding model 
may alleviate the previously observed amplitude  mismatch28. The updated decoding algorithm, based on partial 
least squares (PLS) regression to find the linear decoding models, together with Unscented Kalman filter (UKF) to 
integrate those models, was finally named as  PLSUKF28. The approach was adopted in a second online study with 
able-bodied participants, which led to successful reconstruction of both movement amplitude and  direction30. To 
cater the setup to end-users,57 finally explored the possibility to decode attempted movements from able-bodied 
participants, and demonstrated the feasibility of the approach with a person with SCI.

As BCI control is susceptible to inaccuracies, the investigation of error processing (iii) may help identify 
corrective approaches to improve the BCI performance. Error potentials (ErrPs) are the neural signature of 
error processing, and appear when the user realizes the BCI makes a  mistake58. After initial studies focused 
on detecting ErrPs in a time-locked manner during discrete  tasks59, more recent research has delved into the 
potential for continuous ErrP detection with asynchronous  approaches60. In the context of the FYR, our team 
has progressively explored the asynchronous detection of ErrPs while continuously controlling an end-effector. 
In their first offline study,33 explored the potential for detecting ErrPs during continuous cursor control, and 
achieved promising results for both the time-locked and asynchronous classification. Later  on34, demonstrated 
the feasibility of asynchronously detecting the ErrPs during the online control of a robotic arm. The experiments 
also delved into the performance of a generic classifier compared to personalized  ones35. Lastly, the feasibility 
of asynchronously detecting ErrPs during continuous control of a robotic arm was demonstrated in SCI  users61.

Other studies in FYR helped deepen the current knowledge on the neural correlates of grasp (iv), by elucidat-
ing how various types of grasp and movement stages are reflected in the  EEG37,38, and the relationship between 
electromyographic and EEG  activity62. Finally, the aspect of sensory feedback has been explored (v), with the 
goal of developing non-invasive methods to transmit kinesthetic  information63 and evaluating its influence on 
 EEG41 and BCI  performance42.

After establishing the knowledge and methodology on the various aspects of voluntary movement, the second 
step of FYR would be to merge all these aspects to realize a comprehensive control framework. The overarch-
ing goal of the project would be to attain a more natural and intuitive control for a hand/arm neuroprosthesis, 
utilizing EEG  signals22.

In this work, we present a first implementation of the FYR framework in a comprehensive online study, com-
bining the aspects of (i) goal-directed movement intention, (ii) trajectory decoding, and (iii) error-processing 
during closed-loop control of a cursor. The described paradigm comes together as a prototype, for which one 
envisioned use-case could be the self-paced control of neuroprosthetic reaching movements, with the additional 
capability to address sudden and unexpected changes in the trajectory of the neuroprosthesis. To cater the 
experimental paradigm to end-users, overt movements have been replaced with attempted movements only. 
Finally, feasibility of the proposed approach has been evaluated with twelve able-bodied volunteers, together 
with one SCI participant.
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Methods
Participants
Twelve able-bodied participants (aged 24.9 ± 3.6, six females) took part in the study. All were right-handed, as 
assessed by the Edinburgh Handedness  Inventory64, and with normal or corrected-to-normal vision.

To investigate the feasibility of the proposed framework in potential end users, we invited one additional 
participant (male, 35) with a cervical spinal cord lesion. The participant received a traumatic complete (AIS  A65) 
spinal cord injury at neurological level C2, due to a motorbike accident in 2003. He is artificially ventilated with 
a mobile device and can only move his eyes and generate minimal face and head movements. He has no sensory 
impression from the neck downwards, i.e. below cervical level C2 (NLI, neurological level of injury).

All participants gave their written informed consent to take part in the study, and received monetary compen-
sation for their time. The experimental procedure conformed to the Declaration of Helsinki, and was approved 
by the ethics committee of the Medical University of Graz.

Experimental paradigm
All participants, both able-bodied and the end-user, were comfortably seated in a dimly lit room, about 1 m 
away from a 48.5 inch screen. The experimental paradigm was displayed on the screen, which displayed the 
cursor to be controlled and other moving objects (Fig. 1a,c). The able-bodied participants sat on a regular chair, 
with their right arm securely strapped to the arm-rest, and their right hand lying on a soft ball for additional 
comfort (Fig. 1a). In contrast, the SCI participant sat on his everyday wheelchair, with his arms freely resting 
on the armrests.

The experiment was conceptually divided into two phases, which we named calibration and online feedback 
(Fig. 1b). Three decoding models were implemented and utilized, either to detect the goal directed-movement 
intention (i), decode the attempted hand/arm movement trajectories (ii), or detect the neural correlates of error 
processing (iii). Details on these models will be later given in section "Decoding models". During the calibra-
tion phase of the experiment (Fig. 1b), the necessary data to calibrate and customize the decoding models for 
each participant were collected. During the online feedback phase, the three models continuously processed the 
signals to enable closed-loop control.

Both the calibration and the online feedback phases were structured into runs, as illustrated in Fig. 1b. Two 
experimental conditions, named “movlook” and “onlylook” were presented to the participants. Two additional 
blocks, called ‘eyeblocks’, were added to collect rest data, saccadic eye movements, and blinks, to fit a regression 
model to attenuate eye movement  artifacts49 and the HEAR model to attenuate pops/drifts66.

Figure 1.  Experimental setup and paradigm. (a) The participants sat in a comfortable chair positioned ∼1 m 
from a screen. For the able-bodied participants, the right arm was strapped to the armrest to mimic the 
scenario of movement attempt. The experimental paradigm was presented on the screen. (b) The experiment 
was conceptually divided in two parts, for the calibration and online feedback operation of three decoding 
models. The main experimental paradigm was implemented in the "movlook" runs. Additionally, "onlylook" 
runs were introduced during calibration to collect the EEG activity related to saccadic eye movements alone. 
Two additional "eyeruns" were finally introduced to record blinks and fit the SGEYESUB eye artifact attenuation 
algorithm. After fitting the three decoding models, the online operation could start. For the tracking phase, the 
proportion of the EEG-based decoded trajectories was progressively increased every three runs, first with 50%, 
and up to the final condition of 100% EEG control. (c) In the "movlook" condition, the trial was divided in three 
phases: reaching, tracking, and, occasionally, error. During the first reaching phase, a green cursor appeared 
from one of the four possible starting positions (upper, lower, left, and right part of the screen). As soon as the 
movement attempt was detected, the cursor moved towards the center of the screen. Later on, and during the 
tracking phase, a white moving trace (snake) appeared from the center of the screen, and lasted for 23 s. The 
cursor position replayed the snake during calibration, or was controlled with an increasing proportion of EEG-
based decoded trajectories during online feedback. In approximately 30% of the trials, an erroneous condition 
was introduced, and the green cursor deviated abruptly from the snake trajectories. The erroneous condition 
occurred at random time-points 16 s to 21 s into the tracking phase. In the calibration runs, the cursor then 
simply disappeared after 1.5 s. In the online feedback runs, the cursor would return to the snake in case the ErrP 
was detected, or simply disappear otherwise. In the "onlylook" condition, only the reaching phase of the trial was 
present.
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In the “onlylook” condition, participants were instructed to solely focus on observing the screen and cursor 
movement. In contrast, in the “movlook” condition, participants were asked to both observe the cursor and 
attempt congruent movements with their right arm. Both the “movlook” and “onlylook” conditions were fur-
ther divided into trials, each with different durations and structures. Three separate phases, named “reaching”, 
“tracking”, and “error” (Fig. 1c) could be presented in the trials. In the “movlook” condition, trials started with a 
“reaching” phase and continued with a “tracking” phase, while the “error” phase only occurred at selected trials. 
In the “onlylook” condition, trials contained the “reaching” phase only; a 2–3 s break was inserted afterwards, 
before starting the next trial.

The data from the “reaching” phase were used for the goal-directed movement intention decoding model (i); 
as the model required both observation and movement attempt data, the “reaching” phase was included both 
in the “onlylook” and “movlook” experimental condition. The data from the “tracking” and “error” phase were 
used, respectively, for the trajectory decoding (ii) and error processing (iii) decoding models; as these models 
only required data with movement attempts, the “tracking” and “error” phases were included in the “movlook” 
trials only.

During the “reaching” phase (Fig. 1c, left), a green cursor appeared on the screen, originating from one out 
of four possible starting points (left, right, upper or lower part of the screen). The order of the four starting 
points was randomized and counterbalanced in each run. At the beginning of the trial, the participants were 
instructed to focus their gaze at the starting position of the cursor; as the participants wished to initiate their 
reaching, they were asked to then shift their gaze towards the center of the screen in a self-paced manner. In the 
“onlylook” experimental condition, the gaze shift was performed alone. In the “movlook” experimental condi-
tion, the participants were additionally instructed to attempt the corresponding movement with their right arm. 
Once the reaching intention was detected, or after a timeout of 5 s, the green cursor moved towards the center of 
the screen. During the calibration runs of both the “onlylook” and “movlook” condition, we relied on a saccade 
detector based on the thresholding of EOG derivatives to detect the saccadic eye movements and, therefore, 
the reaching intention. Once the decoding model was calibrated, we could rely on its output during the “online 
feedback” runs to detect the MRCPs, instead of the saccade detector.

After the “reaching” phase was over, the “tracking” phase of the “movlook” experimental condition could start 
(Fig. 1c, middle). A white moving trace, which we labeled as “snake”, appeared on the screen and was displayed 
for 23 s. Similarly to our previous  studies26,29,30,57, the snake trajectories were offline generated using band-pass 
filtered (0.2–0.4 Hz) pink  noise67, and selected to ensure uncorrelated horizontal and vertical positions and veloci-
ties. The participants were instructed to follow the snake as closely as possible with a green cursor, by tracking 
the snake with their gaze and attempting corresponding movements with their right arm. We instructed the 
participants to keep a congruent mapping between attempted movements and cursor displacement, meaning 
that left/right movements were mapped to left/right cursor displacements, and upwards/downwards movements 
were mapped to upwards/downwards cursor displacement. To facilitate this task, the participants were told to 
attempt the movements as if they were painting on a vertical board. During calibration, a simulated cursor control 
was provided to familiarize the participants with processing delays and feedback. During online feedback, the 
control was progressively shifted from the delayed snake to EEG-based decoded trajectories, starting from 50% 
and eventually reaching 100% EEG control (Fig. 1b).

In approximately 30% of the trials, an erroneous condition, which we named “error”, was introduced (Fig. 1c, 
right). In this condition, the green cursor deviated abruptly by ninety degrees from the snake trajectories, to 
create in the participant the sensation of losing control. The erroneous condition would occur randomly, at a 
time-point between 16 and 21 s into the tracking phase. In the calibration runs, the cursor then simply disap-
peared after 1.5 s. In the online feedback runs, the ErrP decoding model was used to check whether an ErrP 
could be detected after the erroneous condition; in case the ErrP was detected, the cursor would return to the 
snake trajectory.

Both the “movlook” and “onlylook” runs were composed of twelve trials each. Six “movlook” runs and five 
“onlylook” runs composed the calibration phase, totaling 72 “movlook” trials and 60 “onlylook” trials, and 22 
erroneous conditions. In the online feedback phase, an additional six “movlook” runs were presented. The pro-
portion of EEG-based decoded trajectories was stepwise increased in the online runs, first with 50% (“movlook” 
runs 7–9) and finally 100% (“movlook” runs 10–12) EEG-based cursor control (Fig. 1b). Each “movlook” run 
took about 6 min, each “onlylook” 3 min, and each “eyeblocks” 5 min. Calibration of the three decoding models 
took about 15–20 min. Altogether, the experiment lasted about 4.5 h.

Data recording and processing
The electrical brain activity of participants was collected through sixty active EEG electrodes (actiCAP Brain 
Products GmbH, Germany), placed on the scalp according to the 10–10  system68 (Supplementary Fig. S1). The 
reference and ground electrodes were placed at the right mastoid and the anterior-frontal midline (AFz) location, 
respectively. Four additional active electrodes were positioned at the inferior, superior and outer canthi of the 
eyes to record the electro-oculographic signal (EOG) (Supplementary Fig. S1). The EEG and EOG signals were 
recorded at 200 Hz through biosignal amplifiers (BrainAmp, Brain Products GmbH, Germany).

The data were synchronized through the Lab Streaming Layer (LSL) protocol, which can be found at this link: 
https:// github. com/ sccn/ labst reami nglay er. Custom Matlab scripts (Matlab R2019b, Mathworks Inc. USA), along 
with  Psychotoolbox69–71, were used to handle the experimental paradigm and perform online processing of the 
data. For the offline analysis, Matlab, EEGLAB v14.1.172, and the Brainstorm  toolbox73 were utilized.

https://github.com/sccn/labstreaminglayer
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Online processing
The EEG processing pipeline is illustrated in Fig. 2. Initially, a series of filters were applied in the first stage of 
processing. This included a 25-Hz low pass filter (Butterworth, 2nd order) to prevent aliasing, as well as Notch 
filters at 50 Hz and 100 Hz. After filtering, the signals were downsampled to 100 Hz, and any visually identi-
fied bad channels were linearly interpolated based on the four nearest neighbors. The eye artifacts were online 
attenuated using the SGEYESUB  algorithm49. To minimize the influence of possibly residual eye artifacts, the 
anterior-frontal (AF) row electrodes were excluded from further processing. These steps were implemented as a 
common preprocessing procedure, before the pipeline for each decoding model was split (Fig. 2).

For both the MRCP and trajectory decoding pipelines, we applied an additional high-pass filter at 0.18 Hz, 
using a first-order Butterworth filter as described  in29,30. The signals were then re-referenced to their common 
average reference (CAR), and the electrode pops/drifts attenuated using the HEAR  algorithm66. Finally, a second-
order Butterworth low-pass filter at 3 Hz, as shown  in25, was applied. These filters were carefully designed to 
achieve a trade-off between stop-band attenuation and a reasonably limited processing delay, totaling up to 0.14 s 
on average. At this stage, the MRCP and trajectory decoding pipelines were further divided, as illustrated in Fig. 2.

For the online detection of MRCPs, the EEG signals were downsampled to 10 Hz and buffered for 1 s to apply 
the hierarchical classification approach  of25. For the decoding of trajectories, the EEG signals were downsampled 
to 20  Hz29,30, and buffered for 0.3 s to utilize the distance- and speed-informed PLSUKF model  from28. Further 
details on both decoding modes are later given in section "Decoding models".

For the online detection of ErrPs, the 100 Hz signals after the common preprocessing (Fig. 2) were again 
considered. These signals underwent additional filtering using a fourth-order Butterworth band-pass filter with 
a range of 1 to 10 Hz. The data were then buffered to apply the personalized online ErrP  classifier34. The size of 
the buffer was also participant-specific, and further details can be found in the next section.

Decoding models
Goal-directed movement intention (MRCPs). To detect the goal-directed movement intention, the same 
approach  from25 was used. We trained two classification models, denoted as M1 and M2, by utilizing the down-
sampled, low-frequency EEG from the “reaching” phase of the “movlook” and “onlylook” calibration runs, along 
with the “rest” data from the eye-corrected “eyeblocks”. The hierarchical combination of the outputs of these 
classifiers enabled the detection of goal-directed movement attempts.

A first classifier, denoted as M1, was trained to discriminate the “movlook” from the “rest” data. A second 
classifier, called M2, was then trained to discriminate the “movlook” from the “onlylook” data. During the reach-
ing phase of the online feedback blocks, M1 continuously operated to detect attempted goal-directed movements 
(“movlook”) against resting EEG. The second M2 classifier would then validate those detections, and check 
whether it was a true movement attempt (“movlook”) or a gaze shift alone (“onlylook”).

In the online operation, the “movlook” vs “rest” probabilities from M1 were buffered for 1 s. As soon as a 
certain proportion of the probability buffer (referred to as “time-fraction”,  following25), exceeded a probability 
of 0.9, the output of M2 was considered. The “time-fraction" was optimized for each participant based on the 
calibration data, as detailed in the last paragraph of this section. Once the M2 classifier was activated, the move-
ment attempts were considered to be detected when the "movlook" vs. “onlylook” probabilities exceeded 0.9 for 
two consecutive samples.

A shrinkage linear discriminant analysis (sLDA) classifier was  employed74,75 for both M1 and M2. The feature 
vector for the “movlook” and “onlylook” data consisted of the amplitudes of the cleaned, low-frequency, down-
sampled EEG within a time window of [− 0.5 0.5]s around saccade onset. For the “rest” data, 1 s-long epochs 
were extracted from the eye-corrected, cleaned and downsampled “eyeblocks”, and specifically from the rest, 
horizontal and vertical eye movement trials. On average 48 epochs per class were extracted from the calibration 
trials for each of the two classifiers.

To optimize the “time-fraction” parameter for the online, hierarchical asynchronous classification, we per-
formed a 5 × 5 cross-validation using the calibration data. At each repetition, the training portion of the data was 

Figure 2.  Online and offline processing pipelines. After being filtered with an anti-aliasing low-pass filter at 
25 Hz and Notch filters, the EEG was downsampled to 100 Hz, the bad channels interpolated, the eye artifacts 
attenuated, and the frontal channel rows removed from further processing. Then, data was processed in parallel 
pipelines. Later on, the pipelines were split. The pipeline for the ErrP continued with a [1 10] Hz band-pass 
filter, buffering according to the participant-specific window length, and classification with the personalized 
classifier. The MRCP and trajectory decoding pipeline continued with a 0.18-Hz high-pass filter, common 
average referencing (CAR), HEAR for pops/drifts attenuation, and 3-Hz low-pass filter. At this point, the MRCP 
pipeline continued with downsampling to 10 Hz, buffering for 1 s, and hierarchical classification. The trajectory 
decoding pipeline continued with downsampling to 20 Hz, buttering for 0.3 s, and decoding with the PLSUKF 
model.
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used to fit the M1 and M2 classifiers, while the test portion was utilized to simulate the hierarchical asynchronous 
classification. True positive (TP) and false positive (FP) windows were defined for each “movlook” trial in the 
test set. The TP window encompassed the signal range [− 1,5 1]s around saccade onset, whereas the FP window 
spanned from trial start (i.e. beginning of the reaching phase) until just before the TP window. After simulating 
the asynchronous hierarchical classification, we considered a trial to be correctly classified if at least one detection 
was happening in the TP window, while at the same time having no detections in the FP window. The proportion 
of correctly classified trials was then computed for each “time-fraction” value ranging from 0.1 to 0.9, with 0.1 
increments. The “time-fraction” that maximized the proportion of correctly classified trials was then chosen, 
for each participant, to be used in the online feedback runs. After determining the optimal “time-fraction”, both 
M1 and M2 were retrained using all calibration data.

Trajectory decoding. For the trajectory decoding aspect, the distance- and speed-informed PLSUKF model 
 from28 was adopted. The model allowed us to infer four directional movement parameters, namely the horizon-
tal and vertical hand/arm positions, as well as horizontal and vertical hand/arm velocities, from the buffered 
EEG data. Two additional non-directional movement parameters, namely distance and speed, were included in 
the model as  in28, so as to capture the amplitude information.

To decode the movement parameters, we considered the last 0.3 s of EEG data. At each time point tk, the 
movement was inferred based on the current and previous six downsampled EEG samples {tk−6, tk−5, tk−4, tk−3, tk−2, 
tk−1, tk}, referred to as lags. All EEG channels, excluding the anterior-frontal (AF) row, were utilized, resulting in 
a total of 55 channels. Consequently, we employed 385 features (7 lags × 55 channels) to decode the movement 
at each time-point. Partial-least squares (PLS) regression was used to find the linear decoding models to predict 
each movement parameter from the multi-lag EEG. As in previous studies, the information from all models was 
then fused with an Unscented Kalman Filter (UKF)28,30.

To fit the PLSUKF model, we utilized the “movlook” trials from the calibration runs. Specifically, the 23 s-long 
“tracking” part of the trial was extracted, after excluding trials with erroneous conditions. The trials exhibiting 
abnormal amplitude (± 100 μV threshold), variance or kurtosis were additionally marked, and visually inspected 
to confirm whether rejection was necessary or not. The proportion of rejected trials was 2.3 out of 50 calibration 
trials on average. As the experimental paradigm involved attempted rather than overt movements, we used the 
snake trajectories as a reference signal for the regression, following the approach  of57,76.

Error processing (ErrPs). To detect the ErrPs, we used the same classifier as  in34. The data from the calibration 
phase were utilized to build a classifier that distinguishes ErrPs from spontaneous EEG, referred to as “error” 
and “correct” conditions, respectively. Subsequently, we asynchronously tested the classifier during the online 
feedback phase.

To train the classifier, the “movlook” trials of the calibration phase were considered. Among the 72 trials, 
22 contained an erroneous condition during the “tracking” period. Hence, we had 22 trials available for each 
participant for the “error” class, while the remaining 50 were assigned to the “correct” class.

The feature vector was composed by the amplitude of the 60 EEG channels, taken at all time points within a 
participant-specific window time-locked to the error onset. The participant-specific window was determined by 
visually inspecting the average response of the “error” and “correct” classes at electrode FCz within the range of 
[− 0.5 1]s with respect to the error onset. For the “correct” trials, a virtual error onset was randomly generated 
within the same time distribution as the occurrence of the erroneous condition, and therefore between 16 and 
21 s after the start of the tracking phase. On average, the participant-specific window occurred 0.45 s after the 
error onset, and had a duration of 0.385 s.

To reduce the dimensionality of the feature vector, we performed a Principal Component Analysis (PCA), 
and retained only the components explaining 99% of the data variability. These components were then utilized 
as features to train a  sLDA74.

After training the classifier, we optimized a threshold (τ) for the online asynchronous classification. This 
was achieved by running the classifier asynchronously on the calibration data using a sliding window approach. 
For each window, the classifier provided the probability of the analyzed signals belonging either to the “error” 
or “correct” class. As soon as the “error” probability exceeded the threshold τ for three consecutive samples, we 
considered the ErrP to be detected.

To identify the optimal threshold for each participant, we tested 41 thresholds ranging from 0 to 1 in incre-
ments of 0.025. The “error” and “correct” trials were segmented within the range of [− 0.5 1]s relative to the error 
and virtual onset, respectively. The entire calibration data were partitioned into training and test sets using a 
5 × fivefold cross-validation approach. After fitting the classifier on the training set at each iteration, we evaluated 
the performance of the asynchronous ErrP detection on the test set. True Negative (TN) and True Positive (TP) 
trials were defined accordingly. We considered as TN the “correct” trials with no ErrP detection throughout the 
entire trial duration. We then considered as TP the “error” trials in which no ErrP was detected before error 
onset, and at least one ErrP was detected within 1 s of the error onset. For each tested threshold, the average 
True Negative Rate (TNR) and True Positive Rate (TPR) were computed, ordered based on ascending order of 
the thresholds, and further smoothed using a moving average with seven samples, as  in34. For each participant, 
the threshold maximizing the product of the smoothed TPR and TNR was selected, and subsequently employed 
during the online feedback phase.

A block diagram describing the online operation of the three decoding models can be found in Supplemen-
tary Fig. S2.
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Offline performance evaluation (sensor space)
Goal-directed movement intention (MRCPs). The offline analysis of EEG signals in channel (i.e., sensor) space 
was performed by applying the same MRCP processing pipeline as in Fig. 2, but employing zero-phase instead 
of online filters. Trials were time-locked to the saccade onset in the calibration runs, and to classifier detections 
in the online feedback runs. Separate averages were computed for the “movlook” and “onlylook” conditions, and 
a two-sided Wilcoxon paired signed rank test was used to compare group-level data for each channel and time-
point. The false discovery rate (FDR) was controlled with the Benjamini–Hochberg  procedure77, by adjusting the 
p-values and considering a significance level α = 0.05.

We assessed the classifier’s performance in terms of classification accuracy. For the calibration runs, a 5 
times × fivefold cross-validation was employed to estimate the accuracy of both M1 and M2 classifiers. For the 
online feedback runs, the classification accuracy was computed as the percentage of detections.

We evaluated the chance-level performance with a shuffling approach. The calibration data was partitioned 
according to a 5 times × fivefold cross-validation scheme. In each repetition and fold, the EEG data and the 
corresponding labels were randomly shuffled 20 times, resulting in a total of 500 shuffles for the entire cross-
validation loop. For each shuffle, the M1 and M2 classifiers were trained anew, and the “time-fraction” parameter 
optimized as described previously in section "Decoding models". The M1 and M2 classification accuracies were 
then estimated on the test portion of the data. The 95th percentile of each accuracy distribution was considered 
as the upper bound confidence interval for chance-level performance (with α = 0.05). Taking into account the 
hierarchical classification approach, the product of M1 and M2 chance-level accuracies was considered as the 
chance-level for the online feedback runs.

Trajectory decoding. The similarity between target and decoded trajectories was assessed using the Pearson’s 
correlation coefficient, r. By considering the snake as target trajectory, we estimated the correlation coefficient 
r for each participant, movement parameter (positions, velocities, distance and speed) and condition (calibra-
tion, 50%, and 100% EEG control). To capture whether amplitude mismatches were happening between target 
and decoded trajectories, the amplitude ratio Aratio between snake and decoded trajectories was additionally 
computed, as  in28.

A shuffling approach was employed to evaluate whether the decoding models performed better than ran-
dom. We broke the association between multi-lag EEG and the target trajectories, by randomly shuffling trials 
and trajectories 100 times. A new PLSUKF model was fitted for each shuffle, and the correlation coefficient r, 
root mean square error rms and amplitude ratio Aratio were evaluated each time. The upper bound confidence 
interval (with significance α = 0.05) was finally 56estimated by taking the 97.5th of the distributions, thus yield-
ing the values of  rchance,  rmschance, and  Aratiochance for each participant and condition. All the available calibration 
trials were used to estimate the performance on online feedback runs, while a leave-one-trial-out approach was 
adopted to estimate the performance during calibration to avoid overfitting.

Error processing (ErrPs). For the calibration runs, the ErrPs were visualized by epoching the EEG [− 0.1 1]s 
with respect to the error (or virtual) onset, in the “error” and “correct” trials respectively. In the online feedback 
runs, only the “error” trials were considered, and further divided into “correctly classified” and “non-correctly 
classified” errors based on ErrP detection. To this purpose, the EEG was time-locked [− 0.8 0.2] with respect to 
the first online ErrP detection for the “correctly classified” trials, and to the participant-specific average detection 
time for the “non-correctly classified” trials. Both for the calibration and online feedback runs, we computed the 
average for each condition, and compared it at group level for each channel and time-point through a two-sided 
Wilcoxon paired signed rank test. Similar to the MRCP analysis, we controlled the false discovery rate with the 
Benjamini–Hochberg  procedure77, by adjusting the p-values and considering a 0.05 significance level.

As mentioned earlier (section "Error processing (ErrPs)"), the performance of the ErrP classifier was evalu-
ated in terms of true positive rate (TPR) and true negative rate (TNR). For the calibration data, TPR and TNR 
were estimated using a 5 times × fivefold cross-validation. For the online feedback data, the TPR and TNR were 
separately calculated for the 50% and 100% EEG conditions.

The corresponding chance-level performance was assessed using a shuffling approach. The calibration data 
was partitioned in a 5 times × fivefold cross-validation manner. For each repetition and fold, we shuffled the EEG 
data and corresponding labels 20 times, resulting in a total of 500 shuffles for the entire cross-validation loop. 
The ErrP classifier was trained anew for each shuffle, and the TNR and TPR estimated on the test portion of the 
calibration data, as well as for the online feedback runs. The upper bound confidence interval for chance-level 
performance (with α = 0.05) was determined as the 95th percentile of each TPR and TNR distributions for each 
condition (calibration, 50% EEG control, and 100% EEG control).

Source space analysis
For each part of the framework, we additionally investigated the sources of EEG activity, by mapping the signals 
of the calibration blocks to the cortical surface with the Brainstorm  toolbox73. The ICBM152 template head model 
was selected, and the conductivities of the cortex, skull, and scalp layers were set to (1, 0.008, 1), respectively. 
To account for individual variability, the participant-specific electrode locations, recorded at the beginning of 
the experiment using an ultrasonic pointer (ELPOS, Zebris Medical Gmbh, Germany), were co-registered with 
the head model. The registration process involved using three anatomical landmarks (nasion, left, and right 
preauricular points). In case the participant’s anatomy deviated from the template head model, we refined the 
registration by projecting the floating electrodes on the scalp layer. The cortex was modeled with 5000 voxels, 
and the forward propagation model computed with  OpenMEEG78. The corresponding inverse solutions were 
then computed with  sLORETA79, considering three unconstrained source components per voxel. The EEG 
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noise covariance matrix was estimated from the eye-corrected data of the “eyeruns”, and applying shrinkage 
 regularization80. The norm of the three x, y and z source components was finally computed for each voxel.

For each component of the framework, different portions of the decoding models or underlying EEG 
signals were projected into the source space. For the goal-directed movement intention part (i), the down-
sampled and epoched EEG, time-locked [− 1 1]s with respect to the saccade onset in the reaching task, was 
considered in the “movlook” vs. “onlylook” conditions. For the trajectory decoding part (ii), the linear decod-
ing models between multi-lag EEG and the six movement parameters were considered. As previously men-
tioned, we used PLS regression to predict the six movement parameters Y ∈ R

6×tk from the multi-lag EEG 
X ∈ R

385×{tk−6,...tk} , at each time point tk. For each decoding model W ∈ R
385×6 , the corresponding activation 

patterns A = Cov(X) ·W · Cov(Y) ∈ R
385×681 were mapped to source space as in previous  studies29,30,57; the 

averaged chance level activation patterns were then considered as a contrasting condition. Lastly, for the error 
processing part (iii), the downsampled EEG, epoched [− 0.1 0.99]s with respect to the error (or virtual) onset, 
was projected to source space based on the “error” vs “correct” class.

For each part of the framework and experimental condition, the grand-average activity was calculated across 
all able-bodied participants. To ensure comparability across participants, the EEG activity of each participant 
was first normalized to its global field power (GFP)82, obtained as the average standard deviation of the eye-
corrected “eyeruns” data.

Source space statistics
For each part of the framework, statistical analyses were run in source space so as to highlight differences between 
the tested conditions. For the goal-directed movement intention part (i), we compared the cortical activity in the 
“movlook” and “onlylook” conditions. For the trajectory decoding part (ii), we considered the activation patterns 
from the PLS linear decoding models for each time-point and movement parameters, and compared them to the 
corresponding averaged chance-level activation patterns. For the error processing part (iii), the cortical activity 
around the error (or virtual) onset in the “error” and “correct” trials was compared.

Consistent with prior  investigations26,29,30,57, we assessed significance within specific region of interests (ROIs) 
associated with movement and error processing (Supplementary Fig. S3), adapted from the Desikan-Killiany 
 atlas83. These ROIs included the superior frontal gyrus (SFG), the primary motor cortex (M1), the primary 
somatosensory cortex (S1), the superior and inferior parietal lobules (SPL, IPL), the occipital gyrus (OcG), 
the precuneus and cuneus (PCun, Cun) were considered for the analysis of goal-directed movement intention 
and movement decoding. For the error processing, the rostral-anterior, caudal-anterior, posterior and isthmus 
cingulate cortex (rACC, cACC, PCC, ICC) were additionally  considered84. We computed the average activity in 
each ROI by averaging its voxels.

We tested for significant differences between conditions through two-tailed non-parametric paired t-tests85,86 
with 1000 repetitions. We controlled the false discovery rate (FDR) by adjusting the p-values with the Benja-
mini–Hochberg  procedure77.

Results
Goal‑directed movement intention
For the goal-directed movement intention part, the data of one participant had to be excluded because of 
technical problems in the recordings. For the remaining 11 able-bodied participants, we obtained calibration 
accuracies of 77.9 ± 7.8% for the M1 classifier (“movlook” vs. “rest”), and of 62.5 ± 6.5% for M2 (“movlook” vs. 
“onlylook”). The corresponding chance-level accuracies (with significance alpha = 0.05) were 72.9 ± 2.6% for M1 
and 68.0 ± 2.0% for M2. The M1 classifier performed better than chance in 8 out of 11 participants, while the 
M2 classifier in 2 out of 11 participants. For the online feedback runs, the hierarchical classification approach 
achieved an average detection rate of 60.0 ± 24.0%. The corresponding chance-level accuracy was 48.9 ± 1.8%, 
with the classifiers performing better than chance in 7 out of 11 participants.

Analyzing the data in sensor space revealed a frontocentral negativity in the calibration data for both “mov-
look” and “onlylook” conditions, peaking at − 0.1 s for the “movlook” and at 0 s for the “onlylook” condition with 
respect to the saccade onset (Fig. 3a, upper panel). This negativity was accompanied by a positivity observed 
in the occipital and parietal channels (Fig. 3b). At group-level, no statistically significant differences in scalp 
potentials between the “movlook” and “onlylook” conditions were observed over channels and time-points (Fig. 3a 
and 3b). Specifically, only 2 out of 11 participants exhibited a stronger negativity in the “movlook” condition 
compared to the “onlylook” condition at electrode Cz (Supplementary Fig. S4). Similar scalp potentials to those 
observed during calibration, were also recognised by the classifier in the online feedback runs when examining 
the data time-locked to the classifier’s detection (Fig. 3a, lower panel, for channel Cz, Supplementary Fig. S5 for 
all other channel locations).

When analyzing the data in source space, statistical tests likewise revealed no significant differences between 
the “movlook” and “onlylook” conditions, at any time-point or ROI. Despite the nonsignificant differences, a 
tendency could be observed in the grand-averaged cortical activity, with the activity related to the “movlook” 
appearing to be more frontally located than in the “onlylook”. Additionally, the “movlook” activity extended to 
the left motor area, which corresponds to the motor region contralateral to the executed movement (Fig. 3c).

Trajectory decoding
For the trajectory decoding part, we obtained average correlations of (0.22 ± 0.10) for the x component, and 
(0.18 ± 0.08) for the y component (Fig. 4a) for the calibration runs. The reported performance represents the 
average correlation obtained for positions and velocities for each component. The corresponding chance-level 
correlations (with significance alpha = 0.05) were found to be 0.13 ± 0.02 for the x component, and 0.12 ± 0.02 
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Figure 3.  Able-bodied participants, goal-directed movement intention results. (a) Upper part: Grand average 
potentials at electrode Cz, epoched [− 2, 2]s with respect to the saccade onset (t = 0 s), for the calibration trials 
in the “onlylook” vs. “movlook” condition. Coloured shaded areas show the 95% confidence interval of the mean 
for each condition. Lower part: Grand average potentials at electrode Cz, epoched [− 2, 2]s with respect to the 
classifier’s detection, for the online “movlook” condition; only the trials with detected movement attempt are 
averaged. (b) Topographical maps representing the spatial distribution of potentials [− 0.4, 0.4]s with respect to 
saccade onset of the “movlook” (1st row), “onlylook” (2nd row) condition, and the difference between the two 
(3rd row). (c) Grand-average EEG potentials in the source space [− 0.4, 0.4]s with respect to saccade onset of the 
“movlook” (1st row), “onlylook” (2nd row) condition, and the difference between the two (3rd row).

Figure 4.  Able-bodied participants, trajectory decoding results. (a) Overview of the Pearson’s correlation 
distributions for the x and y decoded positions, in the conditions with 0%, 50%, and 100% EEG. In each bar, 
the bigger central dot represents the median of the distribution, the whiskers extend to the 25th and 75th 
percentile, and the small dots represent the participants. (b) Sample target and decoded trajectories for the x and 
y positions. (c) Grand-average decoder patterns in source space, at all time-lags used for the decoding.
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for the y component. Therefore, the decoding model could perform better than random in 10 out of 12 and 8 
out of 12 participants for the x and y components, respectively, for the calibration trials. Over the course of the 
online feedback runs, as shown in Fig. 4a, there was a tendency for the decoding performance to decline. Specifi-
cally, the correlations decreased from (0.21 ± 0.13) in the 50% EEG condition to (0.14 ± 0.13) in the 100% EEG 
condition for the x component. For the y component, the correlations already declined to (0.13 ± 0.10) in the 
50% EEG condition, and remained stable at (0.13 ± 0.12) in the 100% EEG condition.

The amplitude of the trajectories was on average well reconstructed, with an average amplitude ratio Aratio 
across all participants and conditions of (1.08 ± 0.13). An illustrative example of decoded trajectories can be 
seen in Fig. 4b.

Figure 4c displays the projection of the decoder activation patterns in source space. Qualitatively, the most 
prominent activations were observed in the parieto-occipital areas for both the x and y velocity decoding models. 
This observation was further supported by the statistical analysis, revealing significant activations in the veloc-
ity activation patterns in the ROIs covering motor and parieto-occipital areas for both velocity components. As 
detailed in Supplementary Table S6, the precuneus (PCun), superior-parietal (SPL) and inferior-parietal (IPL) 
lobules, occipital gyrus (OcG) and cuneus (Cu) of both left and right hemisphere were significantly active for 
both velocities components. Additionally, significant activation was found in the left somatosensory cortex (S1), 
while the right S1 and primary motor cortex (M1) showed significance for the y velocity component (Supple-
mentary Table S6). The distance activation pattern was also covering parieto-occipital and contralateral motor 
areas (Fig. 4c), however, no statistical significance was found.

Error processing
Figure 5 displays the main results pertaining to the error processing part. The grand averages of “error” and 
“correct” trials at electrode Fcz are presented in Fig. 5a. A prominent positive deflection (Pe) could be observed 
at 0.44 s, followed by a late error-related negativity (ERN) at 0.77 s after error onset. The ErrP was generally 
consistent across participants, although in some cases two distinct positive or negative peaks could be observed. 
More details about the ErrP morphology of single participants can be found in the c and in the Supplementary 
Table S7. The statistical analysis confirmed significant differences (alpha = 0.05) between “error” and “correct” 
conditions in the intervals [0.36 0.47]s and [0.76 0.87]s after error onset, which correspond to the time points 
around the Pe and the observed late ERN.

An ErrP shape similar to calibration could be found in the online feedback runs. On average, the ErrP was 
detected at 1.22 ± 0.65 s after the error trigger, and with a recognisable ERN right before the detection (Fig. 5b) 
in both the 50% EEG and 100% EEG conditions. Consistent with these findings, the statistical analysis con-
firmed significant differences (alpha = 0.05) between “correctly classified” and “non-correctly classified” errors, 
at 0.15–0.20 s before the detection.

Figure 5.  Able-bodied participants, error processing results. (a) Grand average EEG potentials at electrode 
Fcz during calibration. The signal is time-locked [− 0.1 1]s with respect to error trigger (t = 0 s). Coloured 
shaded areas show the 95% confidence interval for the mean for the “error” and “correct” conditions. Black stars 
mark the significantly different dots between conditions. (b) Grand average EEG potentials at electrode Fcz 
during online conditions. The signal is time-locked [− 0.1 1]s with respect to the first error detection (t = 0 s). 
Coloured shaded areas show the 95% confidence interval for the mean for the “correctly classified error” and 
“non-correctly classified error” conditions. Black stars mark the significantly different dots between conditions. 
(c) Overview of the TNR and TPR for the calibration, 50% and 100% eeg online condition. The big central dot 
represents the median of the distribution, the wishers extend to the 25th and 75th percentiles, and the dots 
represent the participants. (d) Grand average EEG potentials in the source space, in the “error” calibration 
condition. As in (a), signals are time-locked with respect to the error triggered (t = 0 s). The time points were the 
Pe and late ERN potentials are highlighted.
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The performance of the personalized classifier was assessed based on true negative rate (TNR) and true posi-
tive rate (TPR) measures. On average, the TNR and TPR performances for the personalized classifier for the (cali-
bration, 50% EEG, 100% EEG) conditions were (68.4, 75.9, 72.2)% and (57.2, 36.2, 36.2)%, respectively (Fig. 5c). 
The corresponding chance level performances (alpha = 0.05) were (75.6, 74.4, 72.4)% and (42.3, 44.6, 44.9)%.

The classification of “correct” trials (TNR) performed better than chance only in 5 out of 12 participants. 
However, the classification of the “errors” (TPR) performed better than chance in 11 out of 12 participants dur-
ing calibration, and dropped to 3 out of 12 participants during online feedback. It should be noted how the TPR 
in online feedback runs could be computed on a very limited number of error trials, in the order of 5–10 error 
trials per condition. This could explain the low TNR scored by some of the participants in the online feedback 
runs, despite a recognizable ERN shape when the ErrP was detected (Fig. 5b).

The results of source space analysis are illustrated in Fig. 5d. Qualitatively, a large activation was observed 
in the parietal, sensorimotor and posterior cingulate cortex (PCC) in correspondence with the Pe positivity. 
Subsequently, we could observe the activation spread to parieto-occipital areas, before focusing on the senso-
rimotor areas and the caudal part of the anterior cingulate cortex in correspondence with the late ERN peak 
(0.72 s to 0.80 s in Fig. 5d). The statistical analysis confirmed significant activations (p < 0.01, adjusted) at all the 
considered ROIs, starting from about 0.3 s after error onset and throughout the positive Pe and negative ERN 
deflection (Supplementary Fig. S8 for details).

Participant with SCI
In addition to the able-bodied volunteers, one participant with spinal cord injury (SCI) was invited to investi-
gate the feasibility of the proposed framework in potential end users. The main results for this participant are 
reported in Fig. 6.

For the goal-directed movement intention part, we obtained calibration accuracies of 52.3% for the M1, and of 
51.1% for M2. The corresponding chance-level accuracies (with significance alpha = 0.05) were 73.3% for M1 and 
66.6% for M2. For the online feedback runs, the average detection rate for the hierarchical approach was 29.2%, 
and the corresponding chance-level accuracy 48.9%. The averaged signal at Cz for the “movlook” vs. “onlylook” 
condition, time-locked to the saccade onset during calibration, as well as with respect to the classifier’s detec-
tion during the online feedback runs, are reported in Fig. 6a. Qualitatively, a small negative shift similar to the 
fronto-central negativity for the able bodied participants (Fig. 3b) can be observed in the “movlook” condition 
around saccade onset. The average scalp potential for each condition at all other scalp locations is provided in 
Supplementary Fig. S11.

Figure 6.  Participant with SCI, comprehensive results. (a) Left: Grand average potentials at electrode Cz, 
epoched [− 2, 2]s with respect to the saccade onset (t = 0 s), for the calibration trials in the “onlylook” vs. 
“movlook” condition. Coloured shaded areas show the 95% confidence interval of the mean for each condition. 
Right: Grand average potentials at electrode Cz, epoched [− 2, 2]s with respect to the classifier’s detection, 
for the online “movlook” condition; only the trials with detected movement attempt are averaged. (b) Grand-
average EEG potentials in the source space [− 0.4, 0.4]s with respect to saccade onset of the “movlook” (1st row), 
“onlylook” (2nd row) condition, and the difference between the two (3rd row). (c) Sample target and decoded 
trajectories, for the x and y position. (d) Grand-average decoder patterns in source space, at all time-lags used 
for the decoding.
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Figure 6b displays the results of projecting the “movlook” or “onlylook” activity into source space. The “mov-
look” condition exhibits qualitatively stronger activity than the “onlylook” condition, especially in the parieto-
occipital and contralateral motor areas.

For the trajectory decoding part, the trajectories could be reconstructed with an average correlation of (0.14, 
0.13, 0.12) for the x component and (0.08, 0.18, 0.29) for the y component, for the (calibration, 50% EEG, and 
100% EEG) conditions, respectively. The corresponding chance level correlations (alpha = 0.05) were (0.09, 0.22, 
0.19) and (0.09, 0.21, 0.24), respectively. Sample decoded trajectories are depicted in Fig. 6c. The results of the 
corresponding source space analysis are reported in Fig. 6d. Qualitatively, parieto-occipital activity is related to 
the horizontal velocity (vel x), distance and speed, while the contralateral motor cortex contributes further to 
the decoding of vertical velocities (vel y).

For the error processing part, a clear ErrP shape for the SCI participant could not be identified (Supplemen-
tary Fig. S14). Therefore, a personalized classifier could not be trained, and the data were not further analyzed 
in this context.

Discussion
In this work, we present the results of a first online study incorporating several aspects of natural motor con-
trol, which were previously and independently investigated in the “Feel Your Reach”  project22. Specifically, the 
aspects of (i) goal-directed movement intention, (ii) motor trajectory decoding, and (iii) error processing were 
integrated in a unique and comprehensive framework to allow for online, closed-loop control of a cursor based 
on EEG signals. To the best of our knowledge, this is the first time that three EEG-based BCIs were implemented 
together within a unique hybrid BCI  system18,19, executed in an online setting, and evaluated both with able-
bodied individuals and a person with severe spinal cord injury.

Goal‑directed movement intention
For the detection of goal-directed movement intention, we decided to build up on the approach proposed  by25. 
In their work, Pereira et al. realized continuous closed-loop detection of self-initiated reach-and-grasp move-
ments towards physical targets; they allowed for specific eye movements, aiming to create a natural control 
strategy for participants. In our study, we employed the same strategy and classification approach  as25, however 
with two fundamental modifications. First, we replaced the overt "reach-and-grasp" movements with movement 
attempts, to cater the setup to the needs of end-users. Second, we replaced the physical targets with a virtual 
target on the screen, to implement a unique paradigm for all aspects of the framework. Similar  to25, we explored 
two experimental conditions: "onlylook" where participants shifted their gaze towards the target, and "movlook" 
where participants additionally attempted a hand/arm movement simultaneously. A hierarchical classification 
approach was finally implemented to discriminate between these conditions.

From the analysis of EEG potentials in sensor space, we obtained that both the “movlook” and “onlylook” con-
ditions were related to a large fronto-central negativity around the saccade onset, paired with a positivity at more 
parieto-occipital locations. When examining the same data projected in source space, we found that this activity 
primarily originated from parieto-occipital areas. Both the scalp distributions and the source space projections 
closely resembled those reported  by25 in their study involving overt movements, despite our study focusing on 
attempted movements only. However,  unlike25, we did not find any significant differences between the "movlook" 
and "onlylook" conditions, neither in sensor nor source space, possibly due to inter-participant variability.

In sensor space, only 2 out of 11 participants exhibited distinguishable scalp potentials between conditions, 
with a stronger fronto-central negativity observed in the "movlook" rather than the “onlylook” condition. Similarly, 
when examining the results in source space, no statistical difference between conditions was found, although the 
"movlook" condition, which may be associated with hand/arm movement MRCPs, appears to be located more 
frontally, and contralateral to the movement. Previous studies  by87 have identified the primary sensorimotor, 
premotor and medial frontocentral areas as generators of the hand/arm movement MRCPs. While the observed 
tendency suggests a relationship with the additional hand/arm attempted movement, the variability across par-
ticipants does not allow for highlighting significant differences.

The source-space analysis results align with previous findings in studies from our  group25,88.  In25 with overt 
movements, the "movlook" condition demonstrated significantly stronger activity in the contralateral motor 
and supplementary motor areas compared to the "onlylook" condition. Similarly,88 investigated the differences 
between oculomotor and visuomotor tasks involving eye and hand movements during externally-cued reaching 
tasks. They found significantly increased activity in the central sensorimotor areas when hand/arm movements 
were involved. Despite the differences in the nature of the task (externally- vs. self- paced, overt vs. attempted 
movement), our results are qualitatively in line with the findings of  both25,88. However, the less intuitive task in 
our study, coupled with the additional cognitive workload imposed by the complex experimental design, may 
have contributed to increased signal variability, making the conditions more challenging to discriminate.

Both experimental conditions finally exhibited strong activity in the parieto-occipital areas. We attribute 
this activity to the oculomotor task, which was shared by both conditions. This observation aligns with the well-
established role of the posterior parietal cortex in sensory integration and movement planning, here including 
the planning of saccadic eye and hand/arm  movements89,90.

Analyzing the classifier’s performance, we found that detecting attempted hand/arm movements against spon-
taneous EEG (M1 classifier), was generally successful for most participants. However, discrimination between 
saccadic eye movements with and without additional hand/arm movement attempts (M2 classifier) was not 
successful overall, and performing at chance levels for most participants. This result is in line with the EEG 
potentials findings both in sensor and source space, indicating a lack of significant differences between conditions 
and thus posing a more challenging classification task. When examining the results in the online feedback runs, 
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the hierarchical classification approach led to correct identification of movement attempts in most participants. 
However, since we did not include any “onlylook” condition in the online runs, we were unable to determine 
how many of those instances would have been mistakenly identified.

Altogether, although discrimination between the "movlook" and "onlylook" conditions was possible for some 
participants and the average activity in the contralateral motor areas supported this distinction in source space, 
the overall results suggest that the signals are not clearly distinguishable between the conditions. This lack of 
distinction may be attributed to the task’s complexity and limited intuitiveness. Future designs may consider 
reintroducing physical rather than virtual targets, to enhance task intuitiveness and immersion. Additionally, 
running a further study on able-bodied participants using the electromyographic (EMG) activity from the fore-
arm as a more precise time-locking point may help elucidate the detectability of neural correlates of attempted 
hand/arm movements on top of saccadic eye movements.

Trajectory decoding
With regards to trajectory decoding, our paradigm implemented a two-dimensional pursuit tracking task, 
following a similar approach to our previous online studies involving both overt and attempted hand/arm 
 movements29–31,57. In this task, participants were asked to follow a moving trace, referred to as the snake, with 
their gaze while simultaneously attempting the corresponding hand/arm movements. The collected signals were 
utilized to regress the linear decoding models for several directional and non-directional movement parameters 
(positions, velocities, distance, and speed), which are finally integrated through an Unscented Kalman  Filter28. 
Once the model is trained, the continuous decoding of voluntary movement can be performed, with the intention 
to provide a more natural and intuitive control method compared to the classification of discrete mental states.

On average, we obtained Pearson’s correlation coefficients of approximately 0.2 between the target and decod-
ing trajectories. These values were lower than those observed in our previous studies involving both overt and 
attempted  movements29–31,57. We attribute this decrease in decoding performance to the increased complexity 
of the experimental design, which likely imposed additional cognitive workload on the participants, leading to 
reduced focus. The continuous switching between different tasks throughout the experiment could have contrib-
uted to this effect. During the online feedback runs, the correlation coefficients progressively declined, similar to 
the findings reported  in29. This decline may be attributed to nonstationarities introduced in the EEG signal after 
the feedback is provided, as well as potential changes in control strategy and mental state compared to the calibra-
tion  phase91. Furthermore, the long duration of the experiment could have contributed to the observed decline. 
To enhance overall decoding performance, future investigations could explore knowledge transfer between 
participants to implement calibration-free sessions, reducing recording duration and cognitive workload. The 
recent studies  in92  and93 have pursued research in this direction, focusing on general decoding models in sensor 
and source space. Additionally, the implementation of adaptive schemes for the decoder may aid in addressing 
feedback-induced nonstationarities, improving feedback quality, participant engagement and, ultimately, control.

In addition to movement direction, the amplitude of the decoded trajectories could be correctly reconstructed, 
consistent with previous findings obtained with the distance and speed-informed PLSUKF  model28.

Regarding the source space analysis, we identified prominent activation patterns primarily associated with 
movement velocities. Several regions of interest (ROIs) in the parieto-occipital areas exhibited significantly 
stronger activity compared to chance level activation patterns. These regions included the superior and inferior 
parietal lobules (SPL and IPL) on both hemispheres, the occipital gyrus (OcG) on both hemispheres, the cuneus 
and precuneus (Cu and Pcun) on both hemispheres, as well as the left primary sensory cortex (S1-l) for horizontal 
velocity and the right primary motor and sensory cortex (M1-r and S1-r) for vertical velocity. These findings align 
well with our previous studies on continuous trajectory decoding involving both overt and attempted movements, 
as well as with investigations in monkeys and other human studies. Studies in monkeys have highlighted neural 
tuning to the direction of hand/arm movement in both the motor  cortex94 and the superior parietal  lobule95, 
which corresponds to the areas exhibiting velocity-related activation patterns in our study. The importance of the 
posterior parietal cortex in decoding changes in end-point movement direction has been confirmed  by96,  while97 
demonstrated that motor and parietal areas may even adapt to represent controlled end-effector movement inde-
pendently of the animal’s limb, which may be encouraging for decoding attempted movements. The importance 
of sensorimotor areas as well as the inferior parietal lobules was finally highlighted  by50, when reconstructing 
three-dimensional voluntary hand movements from EEG. In addition to the attempted hand/arm movement 
alone, the pursuit tracking task finally required the involvement of visual processing, eye movements, and eye-
hand coordination, which have been related with the parietal reach  region98,99, and are therefore consistent with 
the cortical sources highlighted here. Qualitatively, the activation patterns associated with distance and speed 
also exhibited activity in the parieto-occipital areas, along with the contralateral motor cortex. These findings 
align with the results reported  in28, further supporting previous observations.

Error processing
For the error processing part, the analysis of data in sensor space revealed, on average, a wide centro-parietal 
positive deflection (Pe) around 0.44 s, followed by a more frontal late error-related negativity (ERN) at 0.77 s after 
triggering of the erroneous condition. The observed spatial distribution corresponds to the typical distribution 
of Pe and ERN  components59, although their latency may vary depending on paradigm and  task100. In our case, 
both the spatial and temporal distribution of the ErrP is consistent with what previously found in a previous 
study from our  group34. The results finally suggested the presence of two distinct positive peaks for three of the 
participants (P02, P07, P08 in Supplementary Fig. S8), although further investigation would be needed to confirm 
this shape, due the low number of trials.
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When examining the data in source space, we could observe the activity originating from the posterior cin-
gulate cortex (PCC) and precuneus during the Pe. Later on, the activity bilaterally extended onto the cuneus, 
superior-parietal lobule and sensorimotor cortex, and ending up in the supplementary motor areas and the 
caudal part of the anterior cingulate cortex (ACC) during the ERN. The ERN results are well in line with litera-
ture, mostly agreeing on this potential to be generated in the caudal part of the anterior cingulate  cortex84,101–104, 
supplementary motor  area105, and medial prefrontal  areas106. The origin of Pe is more debated, and several loca-
tions have been highlighted as possible Pe origins, ranging from the bilateral frontal  cortices107, to the caudal 
and rostral part of the ACC 105,108, and more parietal  areas107,108. It’s been noted how the candidate Pe generators 
largely overlap with those of  P300109, suggesting that the potentials two may reflect similar neural and functional 
processes. In addition,108 revealed the presence of two different deflections for the Pe, thus suggesting that more 
than one neural process may be involved in its appearance. The sources of Pe activity here identified mostly align 
with previous findings, although the localization does not appear to be very specific, given the wide portion 
of the brain involved. Despite the result should be interpreted with caution given the limited number of trials 
involved, this variability may support the previous observation that different neural processes are involved in 
the generation of the  Pe108.

The TNR and TPR performances demonstrated slightly lower results compared to previous  studies33,34. We 
believe this can be attributed to the limited number of trials available for training the classifier. Nevertheless, a 
closer examination of the TNR revealed how this was well above chance for most participants during calibra-
tion. This is consistent with the results of the analysis in sensor space, which highlighted a consistent and clearly 
recognisable ErrP shape with respect to correct trials. During the online feedback runs, the TNR performance 
dropped to about 20%. While it should be noted that the TNR was computed on a very limited number of error 
trials (of about 5–10 errors in each online condition), we also attribute the observed decline to the possibly 
different processing and perception of errors during online operation with respect to calibration. Unlike the 
calibration phase, where the cursor replayed the snake behavior with a slight jitter, it may have happened during 
online operation that the erroneous condition was triggered when the cursor was already far off the target. This 
may then have hindered the perception of an “abrupt” error, and therefore not elicited an ErrP. The distinguish-
able shape of correctly classified errors compared to non-correctly classified errors is also in line with this inter-
pretation, suggesting that the classifier was able to recognize the ErrP when present. Considering more realistic 
scenarios for neuroprosthetic continuous control, it may be worth noting that "abrupt" error conditions, which 
trigger ErrPs, may be rare to occur naturally. Therefore, future research directions could involve investigating 
continuous error processing to implement corrective strategies. The recent work  of110,111 is exploring this avenue 
and may provide valuable insights for future studies in this area.

Participant with SCI
In addition to the 12 able-bodied participants, we investigated the feasibility of the proposed framework in 
potential end users by inviting a participant with SCI.

The detection of goal-directed movement intention was not successful in terms of classification, considering 
that both the M1 and M2 classifiers performed about chance both offline and online. Chance-level accuracies 
for both classifiers were in the same range between able-bodied and the SCI participant. For the able-bodied, 8 
out of 11 were better than chance for M1, but only 2 out of 11 for M2, highlighting that discrimination between 
“onlylook” and “movlook” conditions was already a challenging task. The SCI participant presented deflections 
in the amplitude of the neural correlates during the “movlook” condition, similar in the shape to those found 
in able-bodied participants, albeit with smaller amplitudes, which we believe may explain the difficulty of the 
classifiers in detecting movement intention. Despite the smaller amplitude of the “movlook” deflections in sensor 
space, the examination of the sources revealed qualitatively stronger activations over the parieto-occipital areas 
and contralateral motor cortex, in the condition with attempted reaching movements, compared to the condition 
with saccadic movements alone, which supports the hypothesis that the deflections were indeed related to the 
attempted movement. It may be worth mentioning that the participant with SCI was positioned slightly further 
away from the screen throughout the experiment, as he was seated in a wheelchair to minimize any potential 
additional discomfort or distress. This greater distance may have limited the amplitude of saccadic eye move-
ments and, consequently, impacted the visibility of patterns in the parieto-occipital  areas98.

In terms of trajectory decoding performance, the correlation between decoded and target trajectories was 
found to be around chance level. This result slightly deviates from previous findings in our group, demonstrating 
the SCI participant’s ability to perform on par or even outperform several able-bodied participants in similar 
 tasks31. Despite the deviation in decoding performance, the activation patterns related to velocity in source-space 
remained consistent with those observed both in able-bodied participants and with the same participant in our 
previous  study31, which provides reassurance regarding the reliability of the data and the decoding model. We 
hypothesize that the observed drop in performance may be attributed to the increased complexity and the dura-
tion of the task. The additional cognitive workload coming from continuously switching between tasks, such 
as reaching with or without movement attempt, trajectory decoding, and presentation of the erroneous condi-
tions, may have made it more challenging for the participant to focus, which lead to the observed decrease in 
performance. Future efforts to simplify the task or shortening the calibration phase may therefore be beneficial 
to enhance performance.

Regarding error processing, the analysis did unfortunately not yield any recognizable ErrPs for the SCI partici-
pant. Since this participant had not undergone any previous ErrP studies in our group, we do not have a reference 
point to compare his signals with. Nonetheless, it is important to note that the complexity of the task and the 
limited number of trials may have influenced the results, leaving the avenue open to further investigations. In the 
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future, exploring the feasibility of using continuous error processing signals, as in the recent work  by110,111, may 
be relevant in implementing a corrective signal to enhance feedback quality and, potentially, improve control.

Limitations and future work
With respect to previous studies, which took into analysis one aspect at a time, we observed here a general per-
formance drop, which we attribute to the complexity and length of the experiment. While the paradigm comes 
together as a prototype, and has to be intended as a proof-of-concept that the three classifiers can function as 
modules within a unified framework, the current performance does not meet the standards for a reliable system.

One of the most challenging parts was the discrimination of goal-directed movement attempts from the 
condition with gaze shifts only. We attributed the low performance to the lack of reliability in the EEG signals, 
which may be due to the task’s complexity and limited intuitiveness. Future efforts towards making the task more 
immersive and intuitive, may therefore be beneficial to improve the performance. One possible idea may be to 
re-introduce physical objects in the paradigm. This would have the benefits of increasing the participant’s engage-
ment, but also making the paradigm more realistic, and therefore the behavior and signals closer to how they 
would be in real-life scenarios. Another aspect that may be investigated regards the ability to recognise reaching 
movement attempts with an even more natural and unconstrained gaze behavior. Further studies on able-bodied 
people may help elucidate this aspect by making use of a more reliable time-locking point, for example based 
on EMG, and that does not depend on the behavior of the eyes. Possibly, the incorporation of higher-frequency 
features related to the sensorimotor rhythms modulation may help discriminate between the neural correlates 
of gaze shift only, or together with movement attempt.

Regarding trajectory decoding, we believe reducing calibration time remains one of the priorities. Exploring 
transfer learning techniques that enable immediate recording without extensive calibration could potentially 
enhance the results. Deep learning techniques, as in the recent work  from92, or investigation of the stability of the 
decoding patterns in source  space93, could be viable avenues to explore. In this sense, the recent  work92, reanalys-
ing the data from our previous online trajectory decoding studies with overt  movement29,30 demonstrated how 
convolutional neural network (CNN) models could achieve comparable performance with respect to the imple-
mented PLSUKF model, although with promising potential for transfer learning. This suggests the possibility 
of developing a general decoding model trained on a pool of participants, adaptable to the participant-specific 
features with a limited amount of data. Implementing this general model could potentially reduce calibration 
time, significantly shortening the length of the experiment and improving usability. Future work may investigate 
the potential of the model to decode trajectories from attempted rather than overt movements. Later on, the 
necessary adjustments could be made to allow for online operation.

The original intention for integrating ErrPs in the framework was to possibly improve performance and 
correct for misclassifications. In this study, we could successfully demonstrate that ErrPs can be triggered and 
detected in a continuous control paradigm. While some inter-subject variability was present, most participants 
exhibited one positive Pe peak followed by a late ERN. Similarly  to36‘s approach, this opens up the possibility 
of collecting data to develop a pre-trained general classifier that can be adapted to each participant to reduce 
calibration time. The capability to recognise ErrPs could prove valuable in addressing abrupt deviations such 
as, thinking of use-case scenario, unexpected movements of the end-effector. However, this study also led us to 
observe that a continuous decoding task may be more prone to gradual errors, like the errors resulting from the 
gradual deviation of the decoded with respect to the intended trajectory. To address these issues, future research 
could explore the neural correlates of continuous error  processing110,111, which may give new insights on new 
corrective strategies to implement.

Conclusion
In this paper, we presented the results of a first online study integrating three aspects of natural motor control, 
namely goal-directed movement intention, motor trajectory decoding, and error processing, in a unique hybrid 
framework to enable closed-loop control of a cursor using EEG signals.

Overall, this study showed the feasibility of merging three EEG-based BCIs in a unique control framework, 
with the goal to allow for a more intuitive control based on natural attempted movements. The analysis of EEG 
in sensor space revealed similar MRCP shapes than in previous studies with overt movements, as well as the 
typical ErrP shape after the erroneous condition is triggered. Source analysis confirmed the importance of sen-
sorimotor, and posterior parietal areas both for the detection goal-directed movement intention and trajectory 
decoding. However, no significant differences were found when comparing the conditions of eye movements only, 
or with simultaneous movement attempts. Regarding trajectory decoding, participants were asked to attempt 
arm movements to complete a pursuit tracking task. The decoding algorithm led to successful reconstruction 
of the 2-dimensional attempted movement trajectories, although with lower performance than in previous 
studies involving both overt and attempted movements. We attribute this decrease to the long duration of the 
experiment and the increased complexity of the paradigm, as the continuous switching between tasks likely 
imposed additional cognitive workload and reduced the ability to focus. The study finally demonstrated that error 
potentials can successfully be elicited and detected on top of the pursuit tracking task, although the exploration 
of continuous error processing may be in the future an even more promising research direction, thinking of a 
neuroprosthetic continuous control scenario.

The increased duration of the experiment and additional workload however led to a decreased overall perfor-
mance with respect to each single BCI reported earlier. Future efforts focusing on ways to reduce the duration of 
the experiment, such as transfer learning techniques to leverage the knowledge from previous participants will 
be necessary to improve the performance and usability of the system.
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Data availability
The data that support the findings of this study are available from the corresponding author, upon reasonable 
request.
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