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Semi‑automated approaches 
for interrogating spatial 
heterogeneity of tissue samples
Vytautas Navikas , Joanna Kowal , Daniel Rodriguez , François Rivest , Saska Brajkovic , 
Marco Cassano  & Diego Dupouy *

Tissues are spatially orchestrated ecosystems composed of heterogeneous cell populations and 
non‑cellular elements. Tissue components’ interactions shape the biological processes that govern 
homeostasis and disease, thus comprehensive insights into tissues’ composition are crucial for 
understanding their biology. Recently, advancements in the spatial biology field enabled the in‑depth 
analyses of tissue architecture at single‑cell resolution, while preserving the structural context. The 
increasing number of biomarkers analyzed, together with whole tissue imaging, generate datasets 
approaching several hundreds of gigabytes in size, which are rich sources of valuable knowledge 
but require investments in infrastructure and resources for extracting quantitative information. The 
analysis of multiplex whole‑tissue images requires extensive training and experience in data analysis. 
Here, we showcase how a set of open‑source tools can allow semi‑automated image data extraction 
to study the spatial composition of tissues with a focus on tumor microenvironment (TME). With 
the use of Lunaphore COMET platform, we interrogated lung cancer specimens where we examined 
the expression of 20 biomarkers. Subsequently, the tissue composition was interrogated using an 
in‑house optimized nuclei detection algorithm followed by a newly developed image artifact exclusion 
approach. Thereafter, the data was processed using several publicly available tools, highlighting 
the compatibility of COMET‑derived data with currently available image analysis frameworks. 
In summary, we showcased an innovative semi‑automated workflow that highlights the ease of 
adoption of multiplex imaging to explore TME composition at single‑cell resolution using a simple 
slide in, data out approach. Our workflow is easily transferrable to various cohorts of specimens to 
provide a toolset for spatial cellular dissection of the tissue composition.

A plethora of biological events is coordinated by spatially orchestrated processes governing the dynamics of 
cell-intrinsic mechanisms and cell-to-cell interactions. The resolution of spatial patterning and cell organiza-
tion becomes extremely relevant in heterogenous contexts such as the cancer ecosystem where the malignant 
lineages are only one of many players. The non-malignant counterparts that constitute the tumor microenvi-
ronment (TME), a complex sociological structure dominated by immune and stromal cells, along with vessels, 
and other mesenchymal components, highly contribute to cancer development and progression. Advances in 
spatial profiling technologies enable the precise characterization of molecular and cellular  details1,2. Thus, new 
opportunities to reach unprecedented insights about phenotypic interactions and to open new avenues for the 
study of physio-pathological events are emerging. The deployment of such technologies usually poses significant 
challenges. The adoption barriers start with assay optimization, design, and image analysis. They also include 
the handling and processing of complex and heavy in size computational datasets. On top of that, amplifying the 
number of spatial features extracted from a minimal number of biological samples entails additional hurdles. 
While a fraction of these roadblocks emerges across different methodologies such as the preservation and the 
structural heterogeneity of tissue specimens, other confounding variables heavily depend upon the technology 
toolbox adopted for the spatial analysis. Choosing the image analysis toolset can also require strenuous efforts, 
especially finding the right balance between solution cost and complexity. On top of that, the adaptation and 
integration of open-source software solutions often require basic coding skills, minimal IT infrastructure, and 
adequate expertise that is required to identify and exploit the most appropriate methodology for advanced tissue 
phenotyping at single-cell level. The need for standardization in the multiplex immunofluorescence field is well-
recognized with efforts being undertaken to standardize the guidelines for assays and image analysis  process3,4. 
Recently, image analysis pipelines were suggested for spatial biology assays such as imaging mass  cytometry5 and 
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spatial  transcriptomics6. For instance, an open-source computational pipeline, MCMICRO, was proposed as a 
standardized  workflow7, which guides the user through all analysis steps to extract single-cell data from whole-
slide images acquired using different spatial omics modalities. Similarly, efforts are being undertaken to render 
image analysis more technology-agnostic while focusing on the spatial context of the data, such as the discovery 
of cell  niches8. Independently, the sequential immunofluorescence (seqIF) protocol that generated data for this 
 study9 has been used to characterize inflamed  mucosa10,  pancreatic11,  prostate12 and brain  tumors13–15, but the 
dedicated set of open-access tools that support single-cell analysis has not been suggested so far.

Here, we describe an end-to-end workflow, composed of established open-source libraries, as the analysis 
tools for multi-layered spatial proteomic profiles generated on a wide range of biological tissues and conditions 
by seqIF using the Lunaphore COMET  platform9. We further introduce the potential of our approach for any 
biological dataset generated in the OME-TIFF format, and its versatility to address key questions related to spatial 
biology including, but not limited to, cell phenotyping, distance proximity, and the detection of enriched cell-
to-cell adjacencies. Our proposed solution integrates a new data-driven approach to clean the dataset from false 
positives thereby reducing the erroneous depictions for the rare cell entities. Our semi-automated supervised 
approach based on marker intensity serves to quantify cell phenotypes of interest rapidly and efficiently using 
both supervised and unsupervised phenotyping approaches.

Methods
Next‑generation tissue microarray construction (ngTMA)
ngTMA was developed at the Institute of Tissue Medicine and Pathology, University of Bern, using tissues 
obtained from patients who provided informed consent for research purposes, in compliance with the Federal Act 
on Research Involving Human Beings dated 30 September 2011, commonly referred to as the Human Research 
Act (HRA). Specifically, this was done in accordance with Article 16 and Article 17 of the HRA, which mandates 
obtaining informed written consent from patients participating in research projects, permitting the use of their 
biological material for general research purposes. Permission to utilize the tissue material was granted by the 
Ethics Committee of the Canton of Bern, and the collection of these tissues was conducted in strict accordance 
with the HRA. The details of the construction of tissue microarrays (TMAs) have been described  previously16,17. 
The cores used in the TMA were 0.6 mm in diameter. The TMA sample used in the study was composed of 
matched primary and metastatic tumor cores of lung cancer (Fig. 2A).

Hyperplex staining and whole‑slide imaging
Formalin-fixed paraffin-embedded (FFPE) slide was preprocessed with PT Module (Epredia) with Dewax and 
HIER Buffer H (TA999-DHBH, Epredia) for 60 min at 102 °C. Subsequently, the slide was rinsed and stored 
in a Multistaining Buffer (BU06, Lunaphore) till use. The 20-plex protocol template was generated using the 
COMET Control Software, and reagents were loaded onto the device to perform the fully automated sequential 
immunofluorescence (seqIF)  protocol9. The nuclear signal was detected with DAPI (Thermo Scientific, cat no: 
62248, 1/1000 dilution) by dynamic incubation of 2 min or by complementing secondary antibody cocktails with 
DAPI. For all staining cycles, the dynamic incubation time of primary antibody mixes was set to 4 min, while 
the dynamic incubation time of secondary antibodies and DAPI cocktails was set to 2 min. All primary antibody 
cocktails were diluted in Multistaining Buffer (BU06, Lunaphore), except for the CD31-aSMA mix that was 
diluted in 1% AURION BSA-c (Aurion). For each imaging cycle, the following exposure times were used: DAPI 
80 ms, TRITC 400 ms, Cy5 200 ms. The elution step duration was set to 2 min for each cycle and was performed 
with Elution Buffer (BU07-L, Lunaphore). The quenching step was set to 30 s and was performed with Quench-
ing Buffer (BU08-L, Lunaphore). The imaging step was performed with Imaging Buffer (BU09, Lunaphore). 
Primary antibody details can be found in Table 1. Alexa Fluor Plus 647 goat anti-mouse (Thermo Scientific, cat 
no: A32728, 1/200 dilution) and Alexa Fluor Plus 555 goat anti-rabbit (Thermo Scientific, cat no: A32732, 1/100 
dilution) or Alexa Fluor Plus 647 goat anti-rabbit (Thermo Scientific, cat no: A32733, 1/200 dilution) and Alexa 
Fluor Plus 555 goat anti-mouse (Thermo Scientific, cat no: A32727, 1/100 dilution) secondary antibody mixes 
were used. Once the experiment was completed, a raw OME-TIFF file was generated by the COMET Control 
software for downstream analysis.

Image pre‑processing
The final step of the COMET protocol consists of alignment, stitching, flat-field correction, and generation of 
output 16-bit OME-TIFF images. They are executed in the COMET Control software after the automated seqIF 
protocol execution and data acquisition. Pixel-wise autofluorescence correction was performed using Horizon 
Viewer software for each marker separately. Autofluorescence images acquired before each imaging cycle were 
used for the correction to minimize the occurrence of background subtraction artifacts. This also allowed us to 
ensure the minimal deviation of the fluorescence intensity values that might be caused by the photobleaching 
of autofluorescent tissue structures over 21 imaging cycles. The pre-processed stack was then exported and is 
available as Supplementary Data: https:// lunap hore. com/ downl oad- center- tma- downs tream- analy sis/.

Image segmentation
The DAPI image was used to segment cell nuclei, using a pre-trained StarDist nuclei segmentation  model18,19. 
The model was pre-trained in-house using 12,138 manually annotated nuclei from various tissues imaged with 
the COMET platform. The custom-trained StarDist model allowed us to achieve approximately 15% higher 
segmentation precision. The estimated precision and F1 scores, computed using the validation dataset previously 
unseen by the model, were 0.92 and 0.83, respectively. Segmentation was performed in  QuPath20 software. The 
segmented nuclei were dilated by 5 pixels (1.15 µm) to approximate the cell boundaries. The corresponding mean 
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expression values were calculated from the segmentation masks for each of the fluorescence channels. The full 
expression table composed of 68,801 detected cells was then exported as a .csv file and used for further analysis. 
Nuclei segmentation masks were used to calculate the mean pixel values for FoxP3, IDO-1, ki67, CD3, CD4 and 
CD8 markers, for all other markers, the mean pixel values in the approximated cytoplasm compartments were 
used (Table 1). The proportion of PanCK-positive tissue was estimated by dividing the area of the whole TMA 
tissue by the area defined by a global threshold on the PanCK image.

Data filtering
Before performing cell type assignment, the single-cell detections were filtered as described in Supplementary 
Figs. 1 and 2. In short, the erythrocytes were first excluded by performing unsupervised clustering of the expres-
sion table from a non-background subtracted image stack (Supplementary Fig. 1). Mean values of nuclei masks 
from all the markers, including the two first autofluorescence channels were used. For erythrocyte detection, each 
column of the data was normalized by subtracting the median and dividing by the standard deviation. Dimen-
sionality reduction was then performed using uniform manifold approximation and projection (UMAP) algo-
rithm implemented in the Scanpy  framework21. For UMAP n_neighbors parameter was set to 40 with a min_dist 
parameter set to 0.5. The Leiden clustering was performed using a resolution parameter set to 1. Clusters with 
high expression levels in all channels (Supplementary Fig. 1B) were considered as clusters mainly composed of 
erythrocytes as it is visualized in Supplementary Fig. 1C,D. Visual examination confirmed accurate erythrocyte 
detection and 3432 detections were excluded for further processing. For further data cleaning, detections were 
filtered based on the 4 parameters that were measured for each annotation: StarDist detection probability, DAPI 
mean intensity, detection area and circularity as described in Supplementary Fig. 2. In short, the distributions 
of the corresponding measurements were then filtered excluding 5% lowest values. For area, cells with the 0.1% 
highest area were also excluded. 10,797 cells were removed from the dataset with the described filtering approach. 
The impact of the filtering procedure on the subsequent unsupervised data clustering was further examined in 
Supplementary Fig. 6. A total of 55,063 cells were used for further analysis.

Supervised phenotyping
To perform a supervised cell type assignment, a binary tree classifier based on the expression of 14 markers was 
used. For performing a rule-based classification, the expression table was binarized by a custom intensity-based 
thresholding approach: each column of the pre-filtered expression table was winsorized with the upper limit 
of 0.01% to remove the outliers and then the data was Z-normalized by subtracting the mean and dividing by 
the standard deviation. To remove the user bias, automatic thresholding was performed based on the detected 
background parameters. The background was set to the lowest intensity peak in the Z-normalized data and the 
positivity threshold was set as 6σ from the position of the peak. The σ was defined as FWHM/2.355 and calculated 
for each marker separately. Finally, the decision tree-based classification was based on the pre-defined ruleset 
which is summarized in Fig. 3A. Data was visualized using Squidpy and Matplotlib  frameworks21,22. Cell-type 
annotations were also examined in QuPath as image overlays.

Table 1.  Details on biomarker panel, image acquisition and data used for analysis.

Cycle Marker Fluorescence channel Antibody clone, supplier Cellular compartment
Max intensity value displayed 
in Fig. 2C

1
FoxP3 Cy5 SP97, Thermo Scientific Nucleus 40,000

CD68 TRITC KP1, Thermo Scientific Cytoplasm 50,000

2
aSMA Cy5 1A4, Lunaphore Cytoplasm 50,000

CD31 TRITC EP3095, Abcam Cytoplasm 40,000

3
CD38 Cy5 SP149, Cell Marque Cytoplasm 65,535

IDO-1 TRITC V1N3IDO, Thermo Scientific Nucleus 40,000

4
S100 Cy5 4C4.9, Thermo Scientific Cytoplasm 40,000

CD11c TRITC EP1347Y, Abcam Cytoplasm 40,000

5
PD-L1 Cy5 IHC411, GenomeMe Cytoplasm 40,000

ki67 TRITC MIB-1, Dako Nucleus 30,000

6
CD8 Cy5 4B11, Biorad Nucleus 30,000

PD-1 TRITC EPR4877(2), Lunaphore Cytoplasm 20,000

7
CD4 Cy5 EPR6855, Abcam Nucleus 25,000

PanCK TRITC AE1/AE3, Dako Cytoplasm 40,000

8
CD3 Cy5 MRQ-39, Cell Marque Nucleus 40,000

CD20 TRITC L26, Lunaphore Cytoplasm 40,000

9
CD16 Cy5 SP175, Cell Marque Cytoplasm 40,000

HLA-DR TRITC TAL-1B5, Santa Cruz Cytoplasm 50,000

10
Vimentin Cy5 SP20, Abcam Cytoplasm 40,000

CD45 TRITC PD7/26+2B11, Dako Cytoplasm 30,000
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For processing with the Astir framework, the expression table was filtered as described in Data Filtering and 
normalized using the arcsinh transformation with a factor of 150. The marker table based on the same rules as 
described in Fig. 3A was used as an input for the automated cell type assignment algorithm. After cell-type fit-
ting, cells with an assignment probability < 0.5 were defined as Unknown.

Unsupervised phenotyping
The expression table for unsupervised phenotyping was normalized as for supervised classification. The UMAP 
was computed with the n_neighbors parameter set to 40, and the min_dist parameter set to 0.5. The Leiden 
clustering was performed using a resolution parameter set to 0.8. A total number of 20 clusters were detected 
with the procedure described. The neighboring clusters with analogous PanCK expression pattern were merged 
into a metacluster (tumor cells) as described in Supplementary Fig. 8 to better reflect the data. The cluster with 
false-positive PD-1 cells was also removed based on the morphological features of the cells as described in 
Supplementary Fig. 9. Finally, the cell types were determined based on the Z-normalized expression table and 
data was visualized using Squidpy and Matplotlib  frameworks21,22. Cell-type annotations were also examined 
in QuPath as image overlays.

Spatial analysis
Cells that were classified in an unsupervised manner were further examined spatially, by using the spatial analy-
sis features of a Squidpy  framework21. The expression table was filtered based on the pre-determined cancer 
type: metastatic or primary for a comparison further described in Fig. 5. The graph from spatial coordinates 
was constructed using spatial_neighbors method with coord_type parameter set to generic. The neighborhood 
enrichment score (Fig. 5B) and interaction (Fig. 5D) matrices were then computed separately for both types 
of tissues. Finally, the co-occurrence scores for cells of interest (Fig. 5C) were calculated for each of the cores 
separately and  averaged21.

Ethical approval
This study has been approved by the Commission cantonale (VD) d’éthique de la recherche sur l’être humain 
(CER-VD), project ID: 2022-01489.

Results
Sequential immunofluorescence (seqIF) approach for spatial proteomics
To visualize the composition of tumoral tissues, we used the seqIF protocol on COMET (Fig. 1). The microfluidic 
setup was previously described and  characterized23, with an adaptation of the scanning area to 81  mm2. COMET 
platform protocols are based on the fast fluidic exchange (FFeX)  technology24 (Fig. 1B) that yields in ultra-fast 
and efficient antibody-based staining (approximately 15 min per single staining step of 2 markers), followed by 
imaging (approx. 30 min per marker) and elution (approx. 10 min per marker) (Fig. 1C). The immunostaining 
reaction, that occurs within the closed chamber formed in between the imaging window of the microfluidic chip 
and the histological slide, is precisely controlled via the automated system and the final signal reliably reflects the 
amount of antigen present in the  tissue25. The seqIF protocol resulted in a co-registered multi-layer OME-TIFF 
image containing the following layers of information: nuclei signal acquired in the DAPI channel, intrinsic tissue 
autofluorescence images acquired in both TRITC and Cy5 channels, 20 single biomarker images. Additionally, 
we acquired the autofluorescence images after each elution cycle that allowed us to precisely monitor the evolu-
tion of autofluorescent signal and elution efficiency over the different cycles of the  protocol9, and to perform 
accurate background subtraction (see methods chapter: Image pre-processing). COMET images from every cycle 
were stitched and automatically aligned within the COMET Control software, and the output file was ready for 
qualitative assessment and quantitative analysis at the end of the seqIF protocol (Fig. 1D).

To challenge the quality of data produced by the COMET device, we used a sample dataset that encom-
passes several specimens with a heterogenous tissue composition. To efficiently address this challenge, we used 
ngTMA containing both primary lung tumor samples and the corresponding lymph node metastasis specimens 
(Fig. 2A,B). The 20-plex panel consisted of biomarkers directly targeting immune cells (CD3, CD4, CD8, CD11c, 
CD16, CD20, CD31, CD45, CD68, FoxP3, HLA-DR), non-immune tumor microenvironment (aSMA, CD31, 
PanCK, S100, Vimentin), features of the immunosuppressed microenvironment (IDO-1, PD-1, PD-L1) and the 
proliferation marker ki67 (Fig. 2C). The specificity of detection of a single biomarker was evaluated according 
to internal standard  guidelines9. For all biomarkers, the protocol resulted in high-quality staining that allowed 
to detect both signal positive and signal negative areas (Fig. 2C–E). Additional images were also acquired after 
each elution step allowing to assess the elution efficiency that was qualitatively deemed as excellent for all the 
markers based on quality-control criteria previously  reported9. Once the initial quality control of the final image 
was passed, we moved toward the downstream image data analysis.

Nuclei‑based cell segmentation and data filtering
We based our analysis on a single-cell feature extraction, which in turn required a reliable cell segmentation 
approach (Fig. 2F). In the first step of the workflow, single-cell detection was performed based on the DAPI stain-
ing. We applied the StarDist  method18,19 to delineate the single-cell annotations. To improve the segmentation 
results, we internally generated a dataset of 12,138 manually annotated nuclei from a heterogeneous dataset of 
234 image crops extracted from COMET images of several tissue types. The validation dataset consisted of 1192 
nuclei and was carefully crosschecked internally by manual curation. Training of the model with this dataset 
was harmonized as per the guidelines provided by the  authors18. The model trained in-house showed a clear 
trend toward better performance when compared with the standard StarDist model (see methods section: Image 
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segmentation). Once trained, the model was used to generate single-cell masks for the next steps of analysis. 
Subsequently, the annotation of nuclei was expanded by 5 pixels for each of the cells to obtain a proper cell 
delineation. The measurements of fluorescent signal intensities and the corresponding detected features were 
exported from  QuPath20 for 68,801 segmented cells stemming from a single raw TMA image.

To ensure high quality of cell detections, we applied a two-step verification process of detected objects. 
Because of the formalin-based fixation, FFPE tissues are known to be highly  autofluorescent26 along with struc-
tural elements such as collagen and elastin increasing such confounding phenomena. Additionally, highly vas-
cularized tissues contain a significant number of erythrocytes that can be encountered in all acquisition channels 
of COMET microscope, including faint signal in DAPI channel. To discriminate between the true cell detections 
and artefacts caused by autofluorescent signal, we applied a two-step single-cell data cleaning  procedure27. Once 
all measurements were exported, we performed unsupervised clustering for all nucleus features based on the 
measurements in all channels but DAPI. Using results visualized with UMAP approach (Figure S1A), we could 
detect 4 clusters that were characterized by high expression of all the markers as well as relatively strong signal 
in unstained images due to tissue autofluorescence (Figure S1B). Manual curation of these clusters revealed the 
high levels of erythrocytes’ detection (Figure S1C,D) at each cycle of the seqIF workflow within them and were 
therefore excluded from subsequent analysis. In the second step of filtering, we excluded objects based on 4 fea-
tures, (1) model specific feature—StarDist detection probability (cut-off value: 0.65, Figure S2A), (2) signal-based 
feature—DAPI mean intensity (cut-off value: 2917.1, Figure S2B), and shape-based features— (3) nucleus area 
(7.1 µm2 < accepted value < 137.9 µm2, Figure S2C) and (4) nucleus circularity (cut-off value: 0.65, Figure S2D). 
Visual inspection confirmed that excluded objects were mostly artefacts (Figure S2E, F). In total, 14,229 cells 
were discarded during the 2 steps of data cleaning with 55,063 cells passing the quality control and deemed as 
acceptable for the subsequent analysis pipeline.

Before the final step of feature extraction, background subtraction was performed for all channels separately, 
using the corresponding autofluorescence channel recorded before each  cycle9. The background subtraction was 
performed pixel-wise and infrequent negative pixel values were zero-floored.

Figure 1.  COMET platform automated workflow ensures “slide in, data out” approach. (A,B) In contrast to 
the passive diffusion of reagents happening during static incubation (A), the Fast-fluidic exchange (FFeX) 
technology achieved by the imaging microfluidic chip ensures active distribution of reagents and the possibility 
of a dynamic incubation over the surface of tissue sections (B). The homogeneous distribution of reagents 
ensures high-quality staining that is achieved in the scale of  seconds9. Schematics were created with BioRender.
com. (C) The COMET platform automates the sequential immunofluorescence (seqIF) protocol, where tissue 
samples can undergo 20 cycles of staining-imaging-elution. A pre-processed tissue (i.e.: tissue section that 
underwent deparaffinization and heat-induced epitope retrieval process offline) is sequentially stained with 
primary and secondary antibodies (2 antigens at a single step) together with a DAPI counterstaining and then 
imaged using a three-color fluorescence microscope. After imaging, an elution procedure is performed to 
remove the antibody complexes, and the process is repeated for another cycle. Schematics were created with 
BioRender.com. (D) 20-plex fluorescence image stack which was used for analysis is shown. COMET hyperplex 
images are stored as co-registered multi-layer image files using a generic OME-TIFF format.



6

Vol:.(1234567890)

Scientific Reports |         (2024) 14:5025  | https://doi.org/10.1038/s41598-024-55387-w

www.nature.com/scientificreports/

Figure 2.  COMET enables high-quality and high-throughput data acquisition for multiple markers which can be used to segment 
cells and to extract single-cell data accurately for subsequent phenotype analysis. (A) A map of a ngTMA used for the hyperplex 
staining. The panel consists of cores from primary lung squamous cell carcinoma (SCC), primary lung adenocarcinoma (AC) and 
lung cancer lymph node metastasis (LNmtx) tissue samples from 5 different cases (specimens S1–S5). (B) Whole slide image (WSI) 
of the same TMA section stained with hematoxylin and eosin. Scale bar: 1 mm. (C) Background subtracted single channel zoom-in 
fluorescence images of all markers in the panel (see Table 1 for panel composition and staining conditions). Images are displayed using 
the same displayed minimal intensity value (0) and corresponding maximum intensity values (see Table 1). Scale bars: 50 µm. (D) 
An overlayed multicolor visualization of the fluorescence image of 5 markers from the panel (white: PanCK, red: CD4, green: CD3, 
blue: CD8, magenta: CD45). Scale bar: 1 mm. (E) Zoom-in into images from panel D, depicting (1–2) stroma-tumor interface, (3) 
accumulation of immune cells in the tumor stroma (3) and (4) accumulation of macrophages near the tumor stroma. Scale bar: 50 µm. 
(F) DAPI image with corresponding nuclei annotations, showing single-cell nuclei segmentation with a pre-trained  StarDist18 model. 
The segmented nuclei were further dilatated by 5 pixels to approximate the cellular membrane. All scale bars: 20 µm.



7

Vol.:(0123456789)

Scientific Reports |         (2024) 14:5025  | https://doi.org/10.1038/s41598-024-55387-w

www.nature.com/scientificreports/

Figure 3.  Supervised rule-based cell phenotyping assisted with automatic thresholding can be applied to the 
COMET dataset to identify known phenotypes present in the data and to quantify their populations. (A) A rule-
based tree classifier was used to assign cell types to individual cells based on their binary expression profiles. 
The expression was binarized (i.e., positive vs negative label for each marker) using an automatic thresholding 
approach described in Figure S4. (B) Spatial distribution of all cell types found using the tree classification 
shown in (A). The cells classified as unknown are not visualized. The colors of horizontal rectangles show the 
different tumor types (primary versus lymph node metastasis) as in (D) and vertical rectangles refer to different 
specimens (sample S1–S5) as in (E). The rectangles marked with numbers 1–4 correspond to the zoom-ins 
in panel (G). The scale bar: 500 µm. (C) Expression matrix for each of the cell phenotypes presented in (A). 
Z-normalized mean expression values per group are visualized. (D,E) Normalized cell type distributions 
of corresponding cell phenotypes for (D) different tumor types: primary vs metastatic and (E) for different 
specimens: S1–S5. (F) Cell count histogram for corresponding cell phenotypes. (G) Annotations of classified 
tumor and immune cells (top) and the corresponding antigens detected in the multi-color fluorescence images 
(bottom). Scale bars: 50 µm.
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Dynamic range assessment
To investigate in detail the biomarker expression within the tissues, a single-cell resolution of the image as well 
as a broad dynamic range of the immunofluorescent signal must be delivered by imaging modality. COMET 
images have a pixel size of 0.23 μm and a spatial resolution below 1 µm, which is sufficient to clearly discriminate 
the subcellular biomarker expression patterns and segment cells into their nuclear, cytoplasmic, and membra-
nous compartments (Fig. 2E,F). To investigate if images generated with COMET provide a dynamic range of 
fluorescent signal sufficient to discriminate different levels of biomarker expression, we examined in more detail 
the HLA-DR expressing cells in the lung tumor metastasis core of specimen 3 (core C2, Figure S3). HLA-DR 
protein expression is known to be reflecting the activation status on immune cells as macrophages and dendritic 
 cells28. HLA-DR expression can also be triggered in the tumor  cells29, thus its expression levels are expected to 
be heterogeneous and can vary from negative through low, medium, and high.

In this specimen, we identified a bimodal expression of HLA-DR with high levels expressed by immune cells 
and low expression found in epithelial tumor cells (Figure S3A). When exploiting the mean cell intensity as a 
unique parameter to interrogate cell phenotypes, we found distinguishable differences between the two cell types 
(Figure S3B). When mean cell intensity was compared with the cell size feature on the biaxial scatter plot, both 
the identification and quantification of immune vs tumor cells could be straightforwardly achieved with a gating 
strategy (Figure S3C). These data demonstrate that COMET platform has a sufficient resolution and dynamic 
range to accurately discriminate cell-intrinsic biomarker expression variability.

Supervised phenotyping of tumor microenvironment
Spatial detection of multiple biomarkers enables the identification of diverse cell types present within a tissue. To 
spatially find predefined cell types based on known expression  patterns30, we applied supervised methods based 
on a priori classification rules as a first approach (Fig. 3A). The 20-plex panel presented here was established 
with the aim to characterize tumor-infiltrating immune cells within the TME (Fig. 2C). The panel was designed 
to allow performing a rule-based single-cell phenotyping which uses binary expression features derived with 
a threshold-based approach (Fig. 3A). We characterized the immune cell infiltration level, along with tumor-
intrinsic features and stromal compartments of different cores of a lung cancer TMA.

In the first step of data analysis, we z-normalized mean cell intensities for all 20 biomarkers (Figure S4A,B). 
Subsequently, we applied an automatic threshold-based approach to determine positive cells for each marker 
individually. We established a metrics-based approach relying on the statistical characteristics of the background 
signal (i.e., negative cells) (see Methods chapter: Supervised phenotyping and Figure S4C for more details). This 
semi-automatic thresholding approach was deployed to eliminate the user bias and harmonize thresholding 
values over all markers. Our approach successfully detected the positive cells (Figure S4D,E), which was further 
confirmed by the visual inspection by experienced senior biologists. To identify distinct cell types, we applied a 
decision tree-based classification (Fig. 3A). Cell identities were manually assigned based on the known marker 
combinations, which are established in  literature31. Based on this approach, different cellular classes were detected 
in most of the cores present in the TMA (Fig. 3B–F). Unknown cells, that did not fit any of the identified classes, 
were summing up to 30% of all cells and were mainly present in primary tumor cores (Fig. 3B,D) that displayed 
lower expression levels for markers of interest.

The second most abundant class was a cell type with a predefined phenotype of PanCK+ non-proliferating 
tumor cells. Visual inspection of randomly selected areas of the TMA confirmed that once the cell type was 
identified, the phenotyping of the cells was accurate, and it properly reflected the biomarker signal (Fig. 3G). 
The main limitation of a rule-based classifier stems from the lack of inclusion for the markers lying outside of the 
established rules. To examine the expression patterns of each pre-defined class, we plotted a heatmap showing 
the biomarker abundance and distribution for the detected cell types (Fig. 3C). We could confirm the expected 
expression of Vimentin positivity by immune and stromal cells and its absence within tumor cells. Surprisingly, 
other markers like CD20, were not limited to CD3- immune cells but also detected to a lower extent in other 
immune subtypes such as several myeloid and T cell classes. Indeed, for small densely clustered cell types such 
as lymphocytes, signal spillover through cell masks is one of the most important challenges in threshold-based 
 classification32. Indeed, to minimize the signal leak from neighboring cells into an area used for the phenotyping 
of T cells, we analyzed the mean intensity of CD3, CD4, and CD8 markers within the nucleus mask and a similar 
approach for other small cells, as B cells, might help in their threshold-based phenotyping.

Additionally, we have also tested the recently published Astir algorithm as an alternative to developing a 
fully automated threshold-based pipeline for cell  identification33. This machine learning algorithm was devel-
oped to provide unbiased classification of cells into predefined  classes33 and can be easily applied to COMET 
image-derived data. We aimed to detect the same classes as in our decision tree-based classifier (Figure S5A). 
Astir algorithm detected unknown cells with the highest frequency, especially in primary tumor cores, while 
immunosuppressive tumor cells were the second most frequent cell type identified (Figure S5B–D). Similarly, to 
the threshold-based classifier, the simple phenotypes were assigned as expected with a few rules (Figure S5A), 
while the assignment of complex phenotypes, (i.e., dendritic cells) turned out to be more challenging.

Unsupervised cell classification and spatial cell distribution
After evaluating how supervised classification methods can be applied to a COMET dataset, we explored unsu-
pervised classification as an alternative automated workflow (Fig. 4). We performed Leiden  clustering34 and 
UMAP dimensionality reduction  technique35 for data visualization.

Leiden clustering resulted in the detection of 20 clusters (Figure S8), that were merged into 14 clusters 
(Fig. 4A, see below) after detailed examination and analysis as described below. For each cluster, we further 
examined the expression patterns of the corresponding signature markers—for example, for the regulatory T 
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Figure 4.  Unsupervised cell phenotyping using Leiden clustering and assisted by UMAP performs fast and unbiased mapping of 
the single-cell phenotypes present in the COMET dataset and enables subsequent quantification of tissue composition. (A) UMAP 
projection of all markers with reference cell phenotypes assigned based on the Leiden clustering results. Further details on cell 
phenotype assignment can be found in  Methods chapter: Unsupervised phenotyping and SI Figs. 7–9. (B) Quantification of single-cell 
expression patterns at sub-cellular scale. Averaging of single-cell image crops was performed to obtain average expression profiles for 
the randomly selected subset (N = 2000) of tumor cells (PanCK) and regulatory T-cells (CD3, CD4, FoxP3) selected with an identical 
approach. Scale bars: 5 µm. C) The expression matrix for each of the cell phenotypes based on Leiden clustering results. Z-normalized 
mean expression values per class are visualized. (D,E) Normalized cell type distributions of corresponding cell phenotypes for 
(D) different tumor types (primary or metastatic) and (E) for different specimens. (F) Cell count histogram for corresponding cell 
phenotypes. (G) A spatial distribution of all cell phenotypes with colors corresponding to Leiden classes. (H) A spatial distribution of 
regulatory T cells, lymphoid B cells and CD11c macrophages, showing the apparent density difference between primary and metastatic 
tumors. Scale bars in (G,H): 500 µm.
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cells cluster we generated a mean intensity projection for the signature markers of cells belonging to this clus-
ter, where the expected localization of FoxP3, CD3 and CD4 expression was confirmed (Fig. 4B). Similarly, we 
could identify the exclusive cytoplasmic expression of PanCK with no nuclear interference (Fig. 4B). It further 
demonstrates that the spatial resolution obtained is sufficient to quantify the spatial biomarker expression at a 
sub-cellular level. Additionally, the known expression patterns can be used for optimization and quality control 
of unsupervised cell approximation algorithms.

Following the unsupervised classification step, cell identity for each class was assessed based on the following 
parameters: (1) expression level of the markers in corresponding sub-cellular compartments (Table 1) in each 
of the clusters (Fig. 4A,C, Figure S7), (2) visual inspection of the cells in the tissue context, and (3) literature 
reference. Using this method, 6 clusters expressing heterogeneous levels of PanCK were identified, all of them 
located nearby in the UMAP representation graph (Figure S8A,B). Therefore, we merged these clusters into a 
metacluster of tumor cells (Figure S8C). As a result, the tumor cell cluster was the most abundant in this dataset, 
which is expected, considering that 39% of the original image area is PanCK positive (PanCK+) (See details in 
the Methods chapter: Image segmentation). However, the total stromal components outnumbered the number of 
the PanCK+ cells corroborating the high infiltration of non-tumoral cells previously reported for lung  tumors36,37. 
Some clusters were consistently detected in all specimens, with a higher frequency of activated T cells, B cells 
and the CD11c+ macrophages being present in the secondary tumors. Importantly, the spatial evaluation of the 
clusters revealed the degree of tissue heterogeneity and the different patterns of immune infiltrations between 
specimens of primary and metastatic cancer tissues (Fig. 4G,H).

Once the phenotypic classes were properly assigned to each cluster identified in Fig. 4, we investigated the 
degree of cell proximity and interaction to identify interacting cells in the analyzed COMET dataset. Due to a 

Figure 5.  Spatial analysis of the tumor microenvironment reveals spatial connections between interacting 
cell phenotypes identified with the unsupervised clustering results. (A) A schematic explanation of the cellular 
neighborhood enrichment score which was used to establish and quantify spatial relations between different 
cell phenotypes. Enrichment score is a metric that quantifies the degree to which cells from one cluster are 
frequently close to cells from another cluster. A high score indicates enrichment, while a low score indicates 
depletion. Blue: cells of interest, green: cell class being analyzed as a neighboring class, gray cells: other cells 
surrounding cells of interest. (B) Neighborhood enrichment scores for different cell phenotypes for primary 
(left) and metastatic (right) tumor tissues. (C) Co-occurrence probability between tumor cells and regulatory 
CD4+ T cells, CD16+ macrophages and CD8+ T cells plotted vs the distance from the tumor cells. (D) 
Interaction matrices, showing the number of shared edges in between cells from different phenotypes. Matrices 
for phenotypes from primary (left) and metastatic (right) tumor tissues are displayed.
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large fraction of unknown cells in the supervised approach, we have decided to perform the spatial examination 
of the clusters identified via the unsupervised clustering approach. We applied spatial characteristics such as cel-
lular neighborhood enrichment score and the co-occurrence probability (Fig. 5A–C). Due to the small size of the 
TMA cores, the results are not fully representative of the original tissue milieu, however, we could observe, that 
macrophages tended to localize to a greater extent in proximity to the tumor cells (Fig. 5C), while T cells tended 
to remain further from tumor cells. Interestingly, the distribution of T regulatory cells seemed to differ between 
primary and metastatic tumors with more frequent homotypic T regulatory cells’ neighborhood (Fig. 5B) and 
intracellular interactions (Fig. 5D) in metastatic cores. Tumor cell homotypic interactions, reported  previously38, 
were also detected in our dataset (Fig. 5B,D). Preliminary observations on spatial characteristics highlighted the 
potential of a spatial analysis approach to identify tissue-specific patterns of cell distributions.

Discussion
In the past decade, spatial biology emerged as an important tool in understanding tissue  biology39. Several 
novel approaches to interrogate the protein composition of tissue have recently been  developed40 including, 
but not limited to: cyclic  immunofluorescence41, co-detection by  indexing42, multiplex ion beam  imaging43, 
 seqIF9, in addition to manual immunofluorescence protocols as for example iterative indirect immunofluores-
cence  imaging44. Automation, together with protocol improvements, significantly decreased the turnaround 
time of staining and imaging experiments, as demonstrated by the COMET platform, presented here, enabling 
large cohorts to be processed with multiple biomarkers in weeks instead of months. Alongside high acquisition 
speed, COMET platform can acquire data with sub-µm resolution and sub-pixel image registration accuracy, 
thus ensuring high-image quality for downstream data analysis. This unseen pace of data acquisition imposes 
an important need to establish intuitive, fast, and easy-to-adapt image analysis pipelines to process, analyze and 
interpret the data. Assay automation tends to decrease the risk of technical variability in the data generation 
 pipeline9. However, the risk of user-induced bias in the image analysis should also be considered as an important 
parameter when evaluating and comparing spatial biology  results45, especially when applied to clinical outcomes 
such as predictive responses or prognosis. The hyperplex datasets are exceptionally prolific in information about 
tissue biology but data interpretation still requires investments in terms of resources, infrastructure, and time, 
especially when applying in-depth image analysis methods. Consequently, image processing often becomes a 
bottleneck, negatively impacting the efficiency of research studies. Thus, active implementation of fully automated 
and unbiased workflows is on the surge and pushing forward the boundaries of digital tissue  pathology7,21. In 
the study presented here, we show compelling evidence that seqIF on COMET enables a detailed tumor micro-
environment analysis and provides fertile ground to investigate in depth any tissue composition at single-cell 
level and with subcellular resolution. To allow the spatial biology field to overcome the persistent challenges for 
data analysis and interpretation, the success of protocol automation needs to be transferred to image analysis.

To facilitate the automation of image analysis on complex immunofluorescence datasets, certain preprocess-
ing and data filtering steps might be performed upfront. The common practice is to decrease the contribution 
of autofluorescence in the analyzed signal, either during the sample preparation and/or at the data acquisition 
 step46. Additionally, during the image analysis, the background signal can be removed digitally once the assay is 
completed by applying a pixel-wise background subtraction step with a corresponding autofluorescence image 
of the same tissue. COMET enables the simultaneous application of all these methods of background subtraction 
aimed to significantly increase the signal-to-background ratio of immunofluorescence tissue  images9.

Here, we exploited a priori knowledge of tissue autofluorescence to generate an innovative approach for 
detecting and filtering out common artifacts at the single-cell level such as the ones caused by erythrocytes, 
which usually confound the interpretation of tissue geometry when applying nuclei segmentation algorithms. 
We took advantage of Leiden clustering to successfully find false positive single cell candidates that were then 
visually identified as erythrocytes. Such automated procedure does not require laborious pre-training as being 
completely data driven. Thus, it allows to efficiently filter out false positive detections that can be mistakenly 
interpreted as rare cell subtypes at a later stage of the analysis. Thereafter, we also performed common data 
cleaning operations to reduce the number of false positive detections. Our approach proved the advantage of 
data-driven pre-processing and highlighted it as being a crucial step to minimizing the error rate for the down-
stream single-cell  analysis40,47.

Determining cell identities with the use of known expression patterns is currently the gold standard method 
for cell identification in the field of single-cell  analysis48,49. Such rule-based supervised approach is largely used 
in flow  cytometry50 and in time-of-flight mass  spectrometry51, and has been further implemented by the digital 
pathology field. For example, to identify PD-L1 positive cells as “companion” or “complementary” diagnostics, 
tumor proportional score or tumor cell expression is being  leveraged52. While supervised classification is very 
efficient for low-plex images and for a small number of rules, its deployment for hyperplex data remains cumber-
some, due to the growing complexity of analysis and to the labor-intensive set up of the rules. This consideration 
is further corroborated by the need for manual or semi-automatic thresholding, which becomes challenging 
for heterogeneous datasets entailing multiple tissue samples, such as TMAs. Furthermore, manual adjustments 
of marker positivity thresholds often result in user-specific bias. To mitigate the above-mentioned issues, we 
applied an automatic thresholding approach for rule-based classification. The FFeX technology provides uni-
form staining within the whole staining area, ensuring that the detected fluorescence signal reflects biomarker 
 expression25. However, due to the inter-sample variability in our dataset, we could detect a wide range of bio-
marker signal intensity, and therefore, a large fraction of cells was not classified. Interestingly, we observed that 
the supervised phenotyping outcomes produced by Astir and the threshold-based classifier were both strongly 
dependent on the rule complexity, and therefore, class distribution was unbalanced quantitatively. Thus, the 
thresholding and classification might need to be separately adapted per specimen for adapting our approach to 
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tissue-intrinsic variability of biomarker expression. Overall, the general rule-based classifier which uses global 
thresholding might not be fitted for analyses of a heterogenous set of samples even when automation decreases 
the assay variability. The versatility offered by automating technologies has surged the portfolio of biomarkers 
spatially detected, further highlighting the need for establishing classification guidelines aimed at harmonizing 
single-cell spatial  analytics4,40,47.

Unsupervised cell phenotyping mitigates user-based bias and enables full immersion in the data without a 
priori assumptions, and mostly relies on the choice of clustering method parameters, the input data filtering in 
addition to the data normalization approach  used47,53. The development of clustering methods applied to high-
parameter single-cell data analysis is evolving at a frantic pace, and the more recent approaches aim to minimize 
the number of prior  assumptions54 while exploiting the overall data  structure55 and/or the statistical cluster 
 robustness56. Interestingly, it was shown that the data normalization process of hyperplex datasets significantly 
confounds the outcomes of classic unsupervised  clustering53, spotlighting that the more appropriate normaliza-
tion method should be accurately identified.

In addition, we observed that heterogeneous datasets bear remarkable levels of intra-sample variation at the 
biomarker expression level (Figure S8) as well as intra-population variation between detected cells (Figures S3, 
S8) thus prompting the appearance of biologically irrelevant clusters that required a meta-cluster assignment 
process via manual curation (Figure S8). These overarching issues can possibly be mitigated with the use of novel 
data-driven sample normalization  methods57,58. As an exploratory single-cell data analysis approach, unsuper-
vised clustering still requires accurate data preparation, cross-validation of the outcomes and often the manual 
visual inspection of cluster identity. Once the automation of cluster translation into cell types is ready, the full 
potential of unsupervised cell phenotyping could be unlocked and free studies from user-driven interpretation 
biases.

The extraction of biological signatures and/or clinical scores from hyperplex tissue images generates a new 
dimension for the spatial profiling of single cells. However, this mining process can only be achieved once the cell 
types are correctly identified, because spatial metrics are typically computed as a final step of the analysis. Here, 
the proposed open-source tools are easily applicable to data obtained from automated hyperplex platforms such 
as COMET. We deployed cellular neighborhood and interaction analysis approaches (Fig. 5) to reveal a detailed 
cellular mapping of tissue  specimens59. Our analysis corroborated on previous  observations38 that lung tumor 
cells prioritize homotypic interactions, despite using a very heterogeneous dataset limited in size.

The field of spatial biology is rapidly expanding from research-use-only applications into a more clinically 
relevant angle where spatial biomarkers could represent a novel diagnostic toolkit in both prognostic and pre-
dictive settings. Recently, AI-driven image analysis applied to spatial cellular contexts has shown a possibility 
of accurately predicting lung tumor clinical outcomes from biopsies, thus demonstrating a strong potential for 
clinical  use38,60. In addition, spatial localization metrics such as PhenoTIL, which combines hematoxylin and 
eosin staining with multiplex immunofluorescence images, has been shown as a novel predictor score for lung 
 cancer61. Along with other recently developed analogies, this successful approach showcased its potential to 
illuminate unappreciated biological mechanisms that can lead to more accurate diagnostic biomarkers.

New imaging technologies allow for unprecedented access to information detailing a myriad of biological 
processes thus generating cellular and tissue atlases related to research and therapeutic discoveries. To accomplish 
the promises of spatial biology, technical challenges related to data acquisition, processing and interpretation 
must be addressed and the handling of such complexity will strongly depend upon the integration of computa-
tional approaches seamlessly operating across multi-layered datasets. On top of that, we believe that the scien-
tific community shall continue to profuse efforts towards multi-site cross-validation of fully automated image 
analysis workflows ideally across different immunofluorescence-based modalities. The need for democratizing, 
validating, and scaling up image analysis workflows is pressing, and this advancement will help to elevate spatial 
biology into a technology that is poised to become harmonized and capillary, revolutionizing the research and 
clinical domains.

Data availability
Background-subtracted raw TMA OME-TIFF image is available under the link: https:// lunap hore. com/ downl 
oad- center- tma- downs tream- analy sis/. Scripts and single-cell data are available in the GitHub depository under 
the link: https:// github. com/ lunap hore- public/ downs tream- analy sis- toolb ox.
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