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Statistical detection of selfish 
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systems
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The core of many cryptocurrencies is the decentralised validation network operating on proof-of-work 
technology. In these systems, validation is done by so-called miners who can digitally sign blocks once 
they solve a computationally-hard problem. Conventional wisdom generally considers this protocol 
as secure and stable as miners are incentivised to follow the behaviour of the majority. However, 
whether some strategic mining behaviours occur in practice is still a major concern. In this paper we 
target this question by focusing on a security threat: a selfish mining attack in which malicious miners 
deviate from protocol by not immediately revealing their newly mined blocks. We propose a statistical 
test to analyse each miner’s behaviour in five popular cryptocurrencies: Bitcoin, Litecoin, Monacoin, 
Ethereum and Bitcoin Cash. Our method is based on the realisation that selfish mining behaviour will 
cause identifiable anomalies in the statistics of miner’s successive blocks discovery. Secondly, we 
apply heuristics-based address clustering to improve the detectability of this kind of behaviour. We 
find a marked presence of abnormal miners in Monacoin and Bitcoin Cash, and, to a lesser extent, in 
Ethereum. Finally, we extend our method to detect coordinated selfish mining attacks, finding mining 
cartels in Monacoin where miners might secretly share information about newly mined blocks in 
advance. Our analysis contributes to the research on security in cryptocurrency systems by providing 
the first empirical evidence that the aforementioned strategic mining behaviours do take place in 
practice.

Blockchains are decentralised and distributed systems, where sequential, verified data is stored sequentially in 
blocks of a chain and data transmission is secured from manipulation through cryptography. Among all block-
chain-based technologies, cryptocurrencies are the most famous ones. The original crypto consensus mechanism 
is called “Proof-of-Work” (PoW) and is employed in the majority of cryptocurrency systems1,2. The consistency 
of a PoW system’s ledger is maintained by all participants solving hash puzzles, a process usually called “block 
mining”. In order to solve the puzzles, attempts have to be made through brute force and therefore, a priori, the 
probability of finding a solution is proportional to the number of tries per unit of time a miner is able to perform, 
measured in hashes per second (H/s). Each miner is then rewarded by a nominal amount of cryptocurrency 
if they are the first acknowledged miner to find a valid block in the longest chain of the network. This type of 
rewarding system provides an incentive for miners to contribute their resources to the system, and is essential to 
the cryptocurrency’s decentralised nature. According to this mechanism, the more mining power (resources) a 
miner invests, the bigger their chance to mine the next block first3: as a result miners often join in mining pools 
to share their mining powers, thus reducing the variance of their rewards.

PoW mining protocols in principle are tailored to be resistant towards multiple kinds of attacks, but several 
potentially harmful strategies have been analysed in the literature and some of them have been shown to be 
profitable under proper conditions. Some attacks might influence the information propagation in the peer-to-
peer network, as is the case for Sybil attacks, eclipse attacks4 and routing attacks5; others could threaten data 
consistency, such as double-spending attacks6 or block withholding attacks7, which are the focus of this paper. 
According to the PoW protocol, when miners find a block they should submit it to their peer nodes uncondi-
tionally. However, in a block withholding attack, miners could decide to not submit the block, or to postpone 
submitting it. The former, which is also named as sabotage, has no direct benefit for the attacker but can harm 
the other miners; the latter however, which is also known as selfish mining (SM), can be shown to be potentially 
profitable for the attacker.
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The selfish mining (SM) attack was first described by Eyal and Sirer8 in 2014 as follows: the selfish mining pool 
keeps its mined blocks private, secretly creating a private branch. However, their private branch will not remain 
ahead of the public branch indefinitely. Consequently, a selfish miner judiciously reveals blocks from the private 
branch to the public to ensure a profit from the attack. The SM strategy is illustrated in Fig. 1. Let’s classify the 
miners in a stylised P2P mining network into two groups: selfish (red node) and honest (green and black nodes). 
At t1 , a selfish miner mines a block (in red) appended to the longest chain terminating at t0 , but withholds it and 
secretly starts mining on this new private branch. Then, if the selfish miner finds the next block ( t2A ), the attack 
is successful and they can choose whether to publish the new chain or continue mining selfishly; however, if an 
honest miner also finds a block (in green) at the same height ( t2B ), the selfish miner will immediately publish its 
secret block, triggering a competition. Later ( t3 , t3A ), if the selfish miner finds the next block after its own block, 
it is also a successful attack, whereas if ( t3B ) an honest miner finds the next block after the selfish miner’s block, 
the selfish miner still enjoys the revenue of the first block. The only negative outcome for the selfish miner is ( t3C ), 
where an honest miner finds the next block after the honest miner’s block, resulting in the selfish miner not get-
ting any reward. The original work by Eyal and Sirer demonstrates that a selfish pool that controls more than 1/3 
of the total mining power will always be able to gain mining rewards in excess of its proportion of mining power. 
Moreover, for a mining pool with high connectivity and good control of information flow, the power threshold 
for its profitability could be close to zero, which implies that by leveraging on the information asymmetry even 
the smaller pool has the potential to earn profits by doing selfish mining. Consequently, if the higher rewards 
of selfish pools encourage more miners to join, it may eventually lead to the selfish pool holding the majority of 
mining power, and collapse the decentralised nature of the cryptocurrency ecosystem.

The formulation of the SM attack has drawn a lot of attention and many extended mining strategies have been 
proposed, such as stubborn mining9 and the publish-n strategy10. Many of these extended strategies use Markov 
Decision Processes (MDP) solving to compute optimal selfish mining strategies and have managed to lower the 
profitability threshold of running a SM attack from 25% hash power8, to 23.21%11, or even 21.48%12. Meanwhile, 
various countermeasures have been proposed against SM attacks. Zhang13 has categorised the existing defence 
methods into two approaches: 1) making fundamental changes to the block validity rules, for example adopting 
the   ZeroBlock14 timestamp-free solution which requires that each block must be generated and received by the 
network within a maximum acceptable time interval, or 2) lowering the chance of honest miners working on 
the selfish miner’s chain during a forked situation, as in the case of the Freshness Preferred defence15 which uses 
unforgeable timestamps issued by a trusted party, providing an incentive for miners to immediately publish newly 
mined blocks. To replace the original Bitcoin Fork-Resolving Policy (FRP), denoted by length FRP, Zhang13 pro-
posed weighted FRP : it asks miners to compare the weight of the chains instead of their length, where the weight 
is the number of “in time” blocks in the chain, and a block is considered “in time” based on an upper bound on 
the block propagation time. However selfish miners’ timely reaction to another competitive block, and the high 
cost of changing the blockchain’s fundamental design, might be obstacles to efficiently implementing defences 
against SM attacks. More essentially, the problem of how to detect these selfish miners and quantify the size of 
the attack is a more urgent problem for the already running blockchain platforms. At the end of 2020, Nicolas 
analysed the benefits and limitations of 6 SM detection models16. From his summary, one can easily find that 
most of the existing detection methods have not been tested on real blockchain systems. Hou et al.17 used a deep 
reinforcement learning framework, called SquirRL, to evaluate both single and multiple agent selfish mining 
attacks in Bitcoin, Monacoin and Litecoin, The empirical data they scraped is the estimated hourly total hash 
power from real cryptocurrency systems. Some stochastic modelling of the PoW mechanism18,19 has verified the 
profitability of SM attack and shown the attackers can leverage on their location in the P2P network. However, 
none of these previous studies has detected selfish miners in any real blockchain platforms. The question of 
whether selfish mining exists in practice or not is largely left unanswered so far.

Although selfish mining attacks have not been empirically discovered by academic research, Monacoin, a 
cryptocurrency developed in Japan, reportedly has suffered a selfish mining attack that caused damage estimated 

Figure 1.   Visualisation of selfish mining strategy.
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at roughly $90,00020. Therefore, the empirical evidence on whether miners do deviate from the mining protocols 
in practice is important to the security and stability of cryptocurrencies21, and it is necessary to direct research 
towards refining detection methods.

In our previous work22,23, we had tried to identify the selfish miners in real cryptocurrency systems by propos-
ing the Miner Sequence Bootstrapping method (MSB), the core of which is to shuffle simulations of the sequence 
of miners’ block discoveries. The MSB method is more strict with users with low computing power. In this paper, 
we propose a more comparable and interpretable statistical test to evaluate miners’ behaviour in five popular 
PoW-based cryptocurrencies: Bitcoin, Litecoin, Ethereum, Monacoin and Bitcoin Cash. The logic informing 
our detection method is that selfish miners’ behaviour of selectively revealing their mined blocks in sequences 
would cause abnormal occurrences of successive block discovery, diverging from the expected behaviour under 
a null hypothesis of statistical independence between mining outcomes. We define these abnormal occurrences 
as selfish anomalies. As we show in the following, under the null hypothesis of “honest” mining the number of 
sequences of two blocks in a row mined by the same miner over a given time interval is characterised by a type 
II binomial distribution of order 224, which we use to construct a statistical test to detect mining anomalies. In 
order to optimise the detection results, we also apply heuristics-based address clustering techniques on all UTXO 
blockchain datasets. Furthermore, we extended the object of our method from single miner (mining pool) to 
pairs of miners that may constitute a mining cartel, in which miners secretly share information related to blocks 
discovery before publishing. Our main contributions are listed as follows : 

1.	 To the best of our knowledge, our empirical research on selfish mining attacks and mining cartels in real 
cryptocurrency systems is presented for the first time. Mining attack detection is important for maintaining 
blockchain security and could be a fundamental index for cryptocurrencies ranking in the future.

2.	 In our mining behaviour detection test, we use a type II binomial distribution of order 2 to compute each 
miner’s probability of successive block discovery. This can be widely applied in various competitive consensus 
protocols, including but not limited to PoW and PoS.

3.	 Our results show that in some cryptocurrencies abnormal miners do secretly collaborate in mining cartels; 
this could raise concerns about concentration of mining power which has been ignored by most of previous 
studies.

4.	 We highlight the importance of heuristic address clustering for empirical studies in real blockchain systems, 
especially for user behaviour analysis.

5.	 Our empirical analyses also reveal that mathematical or economical models that focus on cost-benefit analysis 
could fail to detect some behaviours, as participants of cryptocurrencies might have bounded rationality or 
be risk seeking.

Results
Dashboard of datasets
The mining difficulty adjustment in the PoW protocol ensures a fixed average time between each block, called 
“block time”. Since Bitcoin (BTC), Litecoin (LTC), Monacoin (MONA), Ethereum (ETH) and Bitcoin Cash (BCH) 
have different block times, in order to have compatible datasets we split the blockchain in different time intervals 
tailored to maintain a similar number of blocks ( ∼ 5000) in each sample. This amounts to monthly (BTC and 
BCH), weekly (LTC), 5 days (MONA) and daily (ETH) splits. In Fig. 2 we show the number of blocks mined in 
each time interval for the five cryptocurrencies from the genesis block until the end of our dataset on December 
2020. One can find that the mining markets of all the five cryptocurrencies have unstable stages of block mining 
with different lengths after launch. However, because of the difficulty adjustment, the amount of blocks in each 
stated period is similar in five coins (as shown in Fig. 2a). In our Ethereum and Monacoin datasets we only have 
information about each block miner’s address, while miners’ addresses were tagged to named mining pools in 
the Bitcoin, Litecoin and Bitcoin Cash datasets.

We further show the revenue (amount of mined blocks) distributions in each period in Fig. 3. The “Unknown” 
miner are some mining addresses whose identities cannot be traced back to any known pool. It is worth mention-
ing that some of the unknown mining addresses might be owned by named pools (e.g. to hide their activities 
such as selfish mining). In detail, one can observe that in BTC and LTC as time flows more and more blocks were 
mined by named pools, while in BCH there are more than 20% of blocks that are mined by “Unknown” miners 
all the time. Comparing MONA and ETH where we lack the information about mining pool identity, we find 
that in MONA the revenue distributions among miners’ addresses is more volatile.

In addition, according to the “PoW” mechanism, the fair proportion of blocks a miner may discover during 
a time period (i.e. their blocks share) is equal to their share of mining power. Since we lack better estimators of 
hash rates, for the rest of this paper we use a miner’s share of blocks as a proxy for its mining power.

Address clustering
After finding the “Unknown” miners and large fluctuation of hashing power distribution, to enhance the datasets 
we adopt known methodologies to cluster addresses controlled by the same miner25–28. All the heuristic methods 
we applied exploit inherent properties of UTXO-based transactions, which can include multiple inputs and 
multiple outputs and generate patterns that allow to cluster addresses together. This was not possible on the 
account-based blockchain of Ethereum, where only one input and one output can appear in the same transaction. 
Further details of the three applied methodologies ( H1 , H2 , Hp ) are provided in the Methods section.

We apply the most basic method, H1 , to cluster the miners’ addresses in the Monacoin dataset. The distribu-
tion of mined blocks share among different entities (addresses or clusters) is shown in Fig. 4, and the outcome 
of clustering in MONA is shown in the subplot of network in Fig. 4. In the latter dots are addresses, connected 
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and marked in the same colour if they belong to the same cluster, and the highlighted communities are the larger 
clusters with more than 10 addresses. It can be seen that the H1 methodology aggregates miner’s addresses into 
clusters of different size, effectively changing the estimation of hashing power attributed to them.

For the Bitcoin, Litecoin and Bitcoin Cash datasets where we already knew the named-pools of part of the 
blocks, we try all the three mentioned heuristics to tag the “Unknown” miners to named pools, with the priority 
order as H1 > H2 > Hp . In other words, in each among the BTC, LTC, and BCH datasets, firstly we apply H1 to 
cluster the miners’ addresses, and then each “Unknown” miner whose address could be clustered together with 
all the addresses of a named mining pool will be tagged to this named pool. We then do the same using the H2 
and Hp methods to complement the tagging.

The result of this procedure is shown in Fig. 5, where it is clear that although it’s difficult for address clustering 
heuristics to tag all the “Unknown” miners, a significant fraction of blocks can be attributed to a tagged pool, 
which is important for a more accurate estimation of miners’ actual computing (hashing) power.

Figure 2.   Number of miners and blocks during each period in five cryptocurrencies.

Figure 3.   Periodic hashing power (share of blocks) distribution in BTC, LTC, BCH, MONA and ETH.
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Abnormal miners in real‑world cryptocurrencies
To detect abnormal selfish mining behaviour, we devise a statistical test that we apply on each miner’s sequence 
of mined blocks. The null hypothesis is that miners are “honest”, i.e. they act without selfish behaviour. As we 
show in the Methods section, under the null hypothesis the event of whether a miner mines a block or not is a 
Bernoulli random variable, with the success probability equal to the miner’s hashing power share. However a 
successful selfish mining attack could lead to anomalies in a miner’s outcome of discovering blocks in sequence. 
Therefore, we design our test statistic to identify suspicious miners by the amount of times in which they mine 
successive blocks, i.e. the number of success runs of length 2, whose probability distribution under the null is 
given by a type II binomial distribution of order 224. To account for multiple hypothesis testing errors we apply 
the Benjamini-Hochberg correction29 for the p-values to control for excess false positives, setting the target False 
Discovery Rate (FDR) to 5%.

The results of our tests (before address clustering) are shown in aggregate in Fig. 6. In Fig. 6a, each bar shows 
the proportion of abnormal miners (with the corrected p-values, p̂ < 0.05 ) in the five cryptocurrencies. Bars 
in different colours represent results under different classification criteria: the blue, orange, green, yellow and 
the grey bar respectively show the fraction of abnormal miners for whom at least 25%, 50%, 75% or all (max) 
tests during the considered time periods reject the null hypothesis at 5% FDR. For example, in Monacoin, the 
result expressed by the grey bar shows that about half of the miners behaved selfishly in all the periods they 
were active. We then compare the detection results before and after address clustering, shown in Fig. 6b where 
the red dashed lines display the results after address clustering in Bitcoin (circle), Litecoin (square), Monacoin 
(inverted triangle) and Bitcoin Cash (star). Following address clustering the ratio of abnormal miners in each 
coin decreases; however, even after clustering, there were more than 46% miners who always engaged in strategic 
mining behaviour in Monacoin. In addition, the reduction in abnormal ratio when changing the criterion from 
lower quartile (25%) to maximum (max) is larger in Bitcoin Cash than in Monacoin, which shows the abnormal 
miners in Monacoin might be more likely to continuously behave with the selfish strategy, or alternatively that 
many malicious miners might enter Monacoin only to run the SM attack, leaving the system right after.

In addition, we show the number of abnormal miners for each period in Monacoin, Ethereum and Bitcoin 
Cash in Fig. 7. The result of each period includes all miners whose corrected p-value, p̂ , is smaller than 0.05 

Figure 4.   Address Clustering in Monacoin.

Figure 5.   Periodic share of blocks owned by “Unknown” miners before and after clustering in BTC, LTC, BCH.
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in that period. The empirical results of Monacoin (7a) show that the period with the most abnormal miners 
is around June-July 2018, which is near but much longer than the period 13-15 May 2018 when Monacoin 
announced they had suffered from a selfish mining attack. Besides, a part of miners might have been trying the 
selfish mining attack throughout time, not only during the mentioned periods. It seems that the selfish mining 
attack on Monacoin was contained after 2019 as we see a downward trend in the amount of abnormal miners. The 
result in Fig. 7c shows that several miners in Bitcoin Cash might try to conduct the selfish mining attack much 
more erratically, and a large number of abnormal miners appeared in Nov. 2018 in Bitcoin Cash, with still a few 
abnormal miners persisting into more recent years. Similarly in Ethereum (Fig.7b), there were more abnormal 
miners at ETH’s launch, with SM attacks being more frequent in 2018 and occasionally occurring during the 
run time. Besides the selfish mining behaviours, network inefficiencies in relaying information could also cause 

Figure 6.   Ratio of abnormal miners in BTC, LTC, MONA, ETH and BCH.

Figure 7.   Number of abnormal miners during each time period in MONA, ETH and BCH. The grey shaded 
area highlights the 5% significance critical level under the null model of no selfish mining with network delay, 
obtained by bootstrap.
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statistical abnormalities30. Thus, to further verify the robustness of our detection method, we compare the detec-
tion results with a null model where there is no selfish mining but only a spurious autocorrelation generated by 
network delay. As shown by the grey area, which shows the 5% significance critical level under the network delay 
null obtained by bootstrap, in each subperiod of Fig. 7, only few abnormal miners should be expected, even in 
systems with low block intervals such as Ethereum and Monacoin. The details about the null model, including 
the parameters of network delay in different systems obtained by Fadda et al.31 and the influence of the network 
delay on the autocorrelation in the mining sequence, can be found in the Supplementary Information.

To further research the effect of increasing mining power on the potential of doing SM attack, we group 
active miners in each period by their corresponding hashing power in that period, and calculate the proportion 
of abnormal miners in each hashing power interval. In Fig. 8, one can find that in Monacoin the incidence of 
SM behaviour increases with miners’ power when below 50% hashing power, and this increasing incidence also 
exists in Ethereum when below  30% hashing power, as well as in Bitcoin Cash below  25% power.

Network of mining cartels
In order to detect the existence of a mining cartel, where different miners share the information in advance among 
themselves and perform a coordinated selfish mining attack, we have extended our methods from testing single 
miners to pairs of miners. Considering pairs of miners i and j as a group ij, we conduct the similar hypothesis 
tests as above for each pair of miners and also calculate their corrected p-values, p̂ij in each period. Then we con-
sider the pairs with p̂ij < 0.05 (but such that both p̂i and p̂j are greater than 0.05 in the given period) as potential 
cartels composed by miners i and j. After testing each pair of miners in the five cryptocurrencies, we show the 
network of identified mining cartels for each cryptocurrency in Fig. 9, where each node represents a pool (in 
BTC, LTC and BCH) or an address (in MONA and ETH) and each link represents an identified cartel between 
two miners. The weight (width) of each link is the number of periods this pair of miners has been detected as a 
cartel in all periods. The size of the node reflects the miner’s average hashing power over all its active periods.

As shown in Fig.9a,b, we find two abnormal cartels in Bitcoin and only one in Litecoin, and each of these 
cartels only includes two members. In Bitcoin Cash as shown in Fig.9c, there are a few cartels, most of which are 
in a connected subgraph, and the four most powerful mining pools AntPool, BTC.com, ViaBTC and Bitcoin.
com (the four biggest blue nodes) are fully connected with each other. We identified many abnormal cartels in 
both Monacoin (in Fig. 9d) and Ethereum (in Fig. 9e), but the connectivity of cartel networks in Monacoin and 
Ethereum is totally different. In Monacoin, a bit like in Bitcoin Cash, we find large cartels containing two or 
three powerful miners and many small miners, with a very high connectivity. In addition, there are also some 
separated small cartels with a few miners. However, the whole cartel network of Ethereum has a low connectivity. 
There are two separated large cartels, each of which contains several powerful miners, as well as a few cartels of 
varying size and with a generally low connectivity.

Discussion
The ledger of cryptocurrencies is always maintained through distributed consensus. Proof-of-work (PoW) is 
the most widely used consensus mechanism, maintaining the consistency of the system’s ledger by requiring 
validators to solve an arbitrary mathematical puzzle to earn the right to verify transactions. Following the tre-
mendous increase in market capitalisation of cryptocurrencies these years, developing defences against potential 
attacks on blockchain system has become an important topic. We considered the problem of selfish mining, one 
of the attacks which breaks information symmetry in blockchain systems, proposed by Eyal and Sirer in 2014. 
When employing the selfish mining (SM) strategy, malicious miners selectively keep their newly mined blocks 
temporarily private instead of publishing them immediately. To our knowledge, most of the previous studies 
on detection of selfish mining attacks are analytical models without empirical tests on real blockchain systems.

In this study, we proposed a statistical method to conduct empirical research on detection of selfish miners 
in five “PoW”-based cryptocurrencies, namely Bitcoin (BTC), Litecoin (LTC), Monacoin (MONA), Ethereum 
(ETH) and Bitcoin Cash (BCH). Regardless of whether SM actually leads to monetary gains or not, we empha-
sise that the strategy could lead to anomalies in the frequency with which a miner discovers successive blocks. 

Figure 8.   Fraction of abnormally behaving miners sorted by hashing power ranges in MONA, ETH and BCH.
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We also investigated mining cartels, where miners secretly share information about new blocks among partners 
to pursue a collective SM strategy. Since the existence of mining cartels may generate threats to the security of 
blockchain-based systems, but has been ignored in previous studies, we also adapted our methods to test miners 
pairwise in order to detect at least some potential cartels. Our results suggest that although the SM strategy was 
proposed as an attack to the Bitcoin system, it was employed by more miners in Monacoin and Bitcoin Cash. In 
particular in Monacoin, out of all the different miners that have operated on the blockchain historically, about 
50% were detected as potential selfish miners. Our detection results are consistent with Monacoin’s own report 
about having suffered selfish mining attacks. We also detect more mining cartels in Monacoin, Ethereum and 
Bitcoin Cash compared with the two in Bitcoin and only one in Litecoin. The cartel network in Monacoin has a 
very high connectivity, but the cartels in Ethereum are more separated and most of them are in a tree structure. 
In addition to that, our results also show the importance of address clustering when conducting empirical stud-
ies in real blockchain systems.

There are some limitations to our work. First of all, selfish mining attacks and forming mining cartels are 
only two of the possible reasons for the anomalies we detect in miner’s rates of successive block discoveries; 
alternatives include for example finite block diffusion times32. Secondly, we relied on the empirical frequency of 
mined blocks to estimate constant miners’ hash rates within each time window: while this is the best estimator 
we can obtain from blockchain data, it is not necessarily accurate for several reasons, including that miners may 
vary their hash rate within a time window. This is expected to affect the test results, but we believe this can be 
overcome with further methodological research.

Future steps in this research include adapting the methodology to the more complex situation where min-
ers have a variable hashrate within the time periods, relaxing the constant hashing power hypothesis, as well 
as including mining difficulty and cost as parameters. Another future development is the analysis of miners’ 
(validators’) selfish behaviour in cryptocurrencies that apply other consensus mechanisms33,34 using various 
detection methods (e.g. machine learning35,36 and edge computing-based method37 ). In addition, our research 
sets the stage to investigate whether the “uncle block reward” could cause Ethereum to be more vulnerable to 
selfish mining attacks38,39. Finally, our methods can also be applied as a forensics tool to characterise strategic 
mining behaviours, contributing to monitoring the security in current cryptocurrency ecosystems.

Methods
Anomalies in selfish mining attack
Following the “PoW” protocol, a miner’s discovery of each block should be random and independent without 
any influence from the previous blocks, if the information diffuses through the network instantaneously32. Thus, 
during a certain time period where each miner’s hashing power hi is assumed constant, the event whether miner i 

Figure 9.   Networks of Mining Cartel in BTC, LTC, BCH, MONA and ETH.
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mined block t or not follows a Bernoulli distribution with probability hi . However, when doing a strategic mining 
attack (e.g. selfish mining), the miners selectively publish their mined blocks to keep their leading height in block 
competition. This could lead to identifiable anomalies in statistics of successive blocks discovery.

How many consecutive blocks an attacker could mine is important to blockchain security and also to attack 
detection. As we can imagine when selfish miners keep mining on their private chain, they also take risks of los-
ing the expected revenue. In the competition of solving hash-puzzle, in order to ensure a fair revenue, most of 
the attacks in PoW systems won’t have a long private chain. According to the strategies of selfish mining8, when 
the private chain falls behind the public chain or the lead drops to 1, the attacker will immediately publish their 
private block. Furthermore, in the research on the alternative “stubborn mining”9, the authors did not observe 
any case where a selfish miner could earn more revenue if they don’t merge with public when they fall behind by 
more than 1 block. In addition, there is a heuristic using the NS3 bitcoin simulator to detect malicious miners by 
observing the fork height40. The results show that if the mean height of the fork is higher than 2, the blockchain 
system can be considered under selfish mining attack. All the arguments above then indicate that the length of 
a private chain would not be very long, usually no more than 2 blocks.

Therefore, in this paper the statistical analysis of selfish mining behaviour focuses on the case of the same 
miner mining two consecutive blocks. Although a selfish mining strategy may not significantly increase the 
proportion of blocks mined by strategic miners41, using our methodology we can detect the abnormal miners 
by testing the probability of miners’ successive block discovery.

Probability of successive block discovery
Assume there are N miners in the system, identified by index i = 1, . . . ,N . Define a random variable X(t), where 
t = 1, . . . ,T is the block index and X(t) = i if miner i mined block t. Assuming over the given time period the 
miner’s hashing power hi is constant, X(t) is characterised by a multinomial probability distribution with unit size, 
X(t) ∼ M(h, 1) where P[X(t) = i] = hi is proportional to miner i’s hashing power and, of course, 

∑

i hi = 1 . The 
auxiliary random variable Yi(t) which is 1 if X(t) = i and 0 otherwise then follows a Bernoulli distribution with 
probability hi . We can then define our test statistic as the number of times ci that the event Yi(t) = Yi(t + 1) = 1 
has occurred, i.e. that miner i has mined ci consecutive pairs of blocks among the T total blocks.

The probability distribution that characterises ci is given by Ling24. Indeed the random variable ci follows what 
is called a type II binomial distribution of order 2, and the expression below (Equation  1 ) for the probability 
mass function is also given in the original paper. Calling c(T)i  the random variable ci for a sequence of length T,

In applying the above formula, Ling also put P(c(T)i = 0) = 1 if T < 2 . In Fig. 10a, we show an example that 
probability distribution of variable c under different hashing powers h where the amount of blocks T is 100. 
The most probable value of miner’s runs c increases with their hashing power, where a run is defined as two 
consecutively mined blocks.

Detection of abnormal miners
One of the main purposes of this paper is to obtain empirical evidence about whether selfish mining behaviours 
occur in practice or not. To achieve this purpose, we conducted hypothesis tests for every miner in various 
cryptocurrencies under the null hypothesis that the miner is honest, such that rejections of the null would iden-
tify a potential selfish miner in a certain period. Our null hypothesis means that miner i acts non-selfishly in 
compliance with the protocol, i.e. all blocks are mined randomly and independently. Under this null, the p-value 
is going to be the probability that miner i has at least ci runs of two consecutively mined blocks occurring in a 

(1)P(c
(T)
i = x) =











hTi if x = T − 1

2hT−1
i (1− hi) if x = T − 2(> 0)

�x+2
j=1 h

j−1

i (1− hi)P(c
(T−j)
i = x −max{0, j − 2}) if 0 ≤ x < T − 2

Figure 10.   Illustrative diagrams of the statistical method used to detect abnormal mining behaviour in Proof-
of-Work protocols.
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sample of T blocks. Thus, the p-value corresponding to the observation of ci consecutively mined block pairs is 
pi = P(x ≥ ci) , or

To give better intuition, in Fig. 10b, we report the critical values c∗ of the number of consecutively mined blocks 
at significance level α = 0.05 , for different values of mining power h and amount of blocks T. That is to say, for 
example in the purple line, when the amount of the block is 5000 , the miner with less than 30% hash power 
but more than 491 runs of two consecutive blocks might conduct strategic mining behaviours whitin the 95% 
confidence interval.

When running multiple hypothesis tests the probability of obtaining one or more false positives (in this case 
identifying honest miners as abnormal) quickly becomes very high. For this reason it is important to adjust the 
p-values of each test to control for the False Discovery Rate (FDR), i.e. the expected fraction of false rejections 
among all rejected null hypotheses. We then adjust the p-values according to the procedure by Benjamini and 
Hochberg (BH)29, where the corrected p-value reads

with pk being the k-th smallest p-value out of T total p-values in the test. After getting the p̂ for all the miners, we 
can reject the null with a 5% FDR for miners k < k∗ , where k∗ is the maximum k such that p̂k∗ < 0.05 , implying 
our results are expected to return a 5% rate of false positives.

Detection of mining cartels
Either an individual miner or a mining pool doing strategic mining could be considered as a single attacker. How-
ever, if some attackers share information earlier or only among themselves and collaborate to achieve the attack, 
they can be seen as a cartel. A mining cartel is then a secretly coordinating group where miners get together and 
privately share information about their mined blocks. In previous papers22,23, Li et al. already pointed out that 
the existence of mining cartels has always been ignored so far. Considering a mining protocol secure as long as 
the pool’s mining power is limited below a certain threshold always relies on the assumption that the miners 
(or pools) are operating independently. However, strategic miners may have incentives to associate in cartels, 
such as to benefit from the increased mining power and having information in advance about the blocks mined 
by the other members. On the other hand, detection of mining cartels contributes to revealing the potential 
relationships between attackers.

Based on the assumption that the collaboration in a cartel will cause the same anomalies of successive blocks 
discovery by cartel members, we run our test method on pairs of miners to detect potential cartels in five cryp-
tocurrency systems. Therefore, we verify whether a cartel has formed between two miners i and j by measuring 
the anomalies in their consecutive blocks’ statistics. Specifically, we use cij which is the number of times that two 
consecutive blocks is mined by the pair of miners i and j (regardless of the order), to replace ci in Eq. 1. Likewise, 
we replace hi by hij = hi + hj which is the estimated aggregated mining power. As a result we can calculate the 
p-value of a pair of miners i and j, pij to which we also apply the usual FDR correction, and then use the corrected 
p̂ij-value to classify miners i and j as a cartel.

Of course one may identify a cartel because each miner is independently selfish. For this reason we only 
consider a cartel if neither of them is individually selfish, i.e. i and j form a cartel if p̂ij < 0.05 , while p̂i ≥ 0.05 
and p̂j ≥ 0.05.

Address clustering
The blockchain protocol adopted by all the analysed cryptocurrencies except Ethereum allows users to have more 
than one address linked to their wallet, which might be used to hide the track of their transactions and balances. 
Thus, accurately clustering together the different addresses of a miner is very important to estimate the mining 
powers and detect miner behaviour. We applied three known methodologies to the different cryptocurrencies 
in our dataset42–44 which are available from the blockchain analytics library BlockSci25:

(2)pi =

T−1
∑

x=ci

P(c
(T)
i = x) = 1−

ci−1
∑

x=0

P(c
(T)
i = x)

(3)p̂k =
pk ∗ T

k



11

Vol.:(0123456789)

Scientific Reports |         (2024) 14:6251  | https://doi.org/10.1038/s41598-024-55348-3

www.nature.com/scientificreports/

•	 Heuristic 1 ( H1): Multi-input Addresses
	   If two (or more) addresses are inputs to the same transaction, they are controlled by the same user.
•	 Heuristic 2 ( H2): Optimal Change Address
	   If the amount of an output address is lower than any of the inputs used in the transaction, then it is reason-

able to assume that the output is used for the transaction change and is controlled by the same user as the 
inputs.

•	 Heuristic p ( Hp): Peeling chain
	   A transaction is considered to be in a peeling chain if it includes one input and two outputs, and both the 

previous and the following transaction follow this structure. It is reasonable to state that the outputs linking 
the peeling chain are change addresses.

Specifically, in the implementation, when using the first heuristic method ( H1 ), different addresses used as 
inputs to one transaction are treated as being controlled by the same user. Then in H2 , the identified so-called 
change addresses are treated as being controlled by the same user as the inputs. Finally in Hp , the “peeling chain” 
structure is used as a different definition to identify change addresses.

Dataset
Our empirical analysis focuses on five popular PoW-based cryptocurrencies which are Bitcoin (BTC), Litecoin 
(LTC), Monacoin (MONA), Ethereum (ETH) and Bitcoin Cash (BCH). Our dataset contains information of 
blocks from their launch to the end of 2020, including blocks’ height, mined time, the tag of corresponding min-
ers (miner address/ pool name). In detail, datasets of Monacoin and Ethereum querying by BlockSci only have 
the miner address of each block, while the datasets (download from Blockchair: https://gz.blockchair.com/) of 
other three cryptocurrencies already have the labeled name of mining pools. In this research, we define time 
windows for each cryptocurrency depending on the block time to ensure a similar amount of blocks in each 
detection interval. We present a summary description of the five datasets in Table 1, and further enumerate each 
crytocurrency for detailed introduction.

•	 Bitcoin was started on 3 January 2009 when the internet persona Satoshi Nakamoto mined the first (so-called 
genesis) block of the chain, known as the genesis block. Nowadays, this most famous digital asset has a rich 
and extensive ecosystem with a total market capitalisation of about 800 billions US dollars. About every 10 
minutes, a new block is created and quickly published to all nodes, without requiring central oversight.

•	 Litecoin was a fork of the Bitcoin Core client released by Charlie Lee, a Google employee and former Engi-
neering Director at Coinbase. The Litecoin network went live on 13 October 2011 differing primarily by 
having a decreased block generation time (2.5 minutes), increased maximum number of coins, different 
hashing algorithm, and a slightly modified GUI.

•	 Monacoin was a fork of Litecoin launched on 31 December 2013 by an anonymous person under the moni-
ker of Mr. Watanabe. It bills itself as the first Japanese cryptocurrency and is predominantly used in Japan. 
Monacoin has an average block creation time of 1.5 minutes. Most notably, Monacoin was reported to have 
suffered from selfish mining attacks between May 13th and 15th in 2018 that caused roughly 90,000 dollars 
in damages20.

•	 Ethereum is the second largest cryptocurrency after Bitcoin, with currently over 300 billions US Dollars 
market capitalisation. Ethereum is the blockchain that issues Ether and was proposed in late 2013 by Vitalik 
Buterin, a cryptocurrency researcher and programmer, and the system went live on 30 July 2015 featuring 
smart contract functionality. The block time of Ethereum is around 14 seconds. In 2022, Ethereum will be 
moving from PoW to proof of stake (PoS) as part of its “Ethereum 2.0” upgrade.

•	 Bitcoin Cash was a hard fork of Bitcoin that seeks to add more transaction capacity to the network. On 1 
August 2017, Amaury Séchet released the first Bitcoin Cash software implementation. As in Bitcoin, new 
blocks are on average generated every 10 minutes by using a difficulty adjustment algorithm (DAA). Bitcoin 
Cash also uses an Emergency Difficulty Adjustment (EDA)45, algorithm which has caused an instability in 
mining difficulty of the Bitcoin Cash system, resulting in Bitcoin Cash being thousands of blocks ahead of 
Bitcoin.

Table 1.   Summary description of datasets.

Coin Launch time Block time Height of blocks Interval Miners

Bitcoin 2009-01-03 10 minutes 663913 Monthly Named pool

Litecoin 2011-10-07 2.5 minutes 1974760 Weekly Named pool

Monacoin 2013-12-31 1.5 minutes 2206670 5 days Address

Ethereum 2015-07-30 14 seconds 11564743 Daily Address

Bitcoin Cash 2017-08-01 10 minutes 189735 Monthly Named pool
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Data availibility
The datasets generated and analysed during the current study are completely publicly available in the Blockchair 
repository (https://​gz.​block​chair.​com/). And the datasets are also available from the corresponding author on 
reasonable request.
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