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Projections of meteorological 
drought severity‑duration 
variations based on CMIP6
Farhad Behzadi 1, Saman Javadi 1*, Hossein Yousefi 2, S. Mehdy Hashemy Shahdany 1, 
Ali Moridi 2, Aminreza Neshat 3*, Golmar Golmohammadi 4 & Rahimeh Maghsoudi 1

This research utilized the outputs from three models of the Coupled Model Intercomparison Project 
Phase 6 (CMIP6), specifically CanESM5, GFDL‑ESM4, and IPSL‑CM6A‑LR. These models were used 
under the SSP1‑2.6 and SSP5‑8.5 scenarios, along with the SPI and SPEI, to assess the impacts of 
climate change on drought in Iran. The results indicated that the average annual precipitation will 
increase under some scenarios and decrease under others in the near future (2022–2050). In the 
distant future (2051–2100), the average annual precipitation will increase in all states by 8–115 mm. 
The average minimum and maximum temperature will increase by up to 4.85 ℃ and 4.9 ℃, 
respectively in all states except for G2S1. The results suggest that severe droughts are anticipated 
across Iran, with Cluster 5 expected to experience the longest and most severe drought, lasting 6 
years with a severity index of 85 according to the SPI index. Climate change is projected to amplify 
drought severity, particularly in central and eastern Iran. The SPEI analysis confirms that drought 
conditions will worsen in the future, with southeastern Iran projected to face the most severe drought 
lasting 20 years. Climate change is expected to extend drought durations and increase severity, posing 
significant challenges to water management in Iran.

Significant changes has been proved to occur due to increase in the concentration of the greenhouse gases and 
climate  change1. The extreme climate events can cause economic losses and impact people in many  ways2. Thus, 
understanding the spatiotemporal characteristics of future droughts in the context of climate change is vitally 
important in designing the relevant adaptation and mitigation measures. Drought is a common natural disaster 
that frequently occurs worldwide and cannot be managed and mitigated as promptly as other natural disasters 
such as floods, wind storms, and even  earthquakes3. Drought always occurs due to precipitation deficiency and 
is aggravated by higher temperature and evapotranspiration than normal conditions, leading to reduced avail-
ability of water  resources4–7. Moreover, droughts are among the most widespread climatic extremes, damaging 
ecosystems and deteriorating the land carbon  sink8,9.

Global Climate Models (GCMs) have been used as a primary tool for examining the past and future changes 
in climate extremes to determine the effects of climate change on drought. A new generation of GCMs has been 
recently developed for the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and 
 organization10. A new set of emissions and land-use scenarios was considered in CMIP6 under new features of 
societal development, namely the shared socioeconomic pathways (SSPs). The output of CMIP6 has been used 
in various studies to predict drought and meteorological data worldwide. For example, using CMIP6 models 
and SSP scenarios, Su et al.11 and Li et al.12 determined drought conditions over China and northwest China, 
respectively. Combining 20 CMIP6 model outputs indicated that climate change will increase precipitation in 
the Northern region of Egypt by 37% and by 54% for SSP119 and SSP126, respectively, and decrease by 35% for 
both scenarios in its southwestern  region13.

Almazroui et al.14 used the CMIP6 models (under the three scenarios of SSP1-2.6, SSP2-4.5, and SSP5-8.5) 
to determine the impacts of climate change on precipitation and temperature for the periods 2030–2059 and 
2070–2099 in Africa. The outputs from CMIP6 models were used. Their results showed that, generally, the 
average annual temperature would increase by 1.2–4.4 ℃ (max. 5.6 ℃ in the Sahara) and the average annual 
precipitation by 4.8–15.2% in Africa. Suitable planning and issuing early warnings are necessary to determine 
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how climate change causes droughts in various regions. In the same vein, considering emissions scenarios by 
2100, Ukkola et al.15 reported that CMIP6 models yielded systematic and coherent patterns. Using SSP scenarios, 
the outputs from CMPI6 models and the SPEI index, Su et al.11 determined future drought characteristics for 
three periods (2021–2040, 2041–2060, and 2081–2100) in China on a 12-month scale. The results indicated 
that the CMIP6 models had a suitable capability in monitoring of future droughts. Shrestha et al.16 also studied 
droughts in regions in India during 2015–2044 using CMIP6 models and the self-calibrating Palmer Drought 
Severity Index (scPDSI).

Supharatid and  Nafung17 used the output of CMIP6 models under the two SSP2-4.5 and SSP5-8.5 scenarios 
and the Standardized Precipitation Evapotranspiration Index (SPEI) to investigate the impact of climate change 
on drought over Southeast Asia. Their results showed that the projected drought characteristics show relatively 
longer durations, higher peak intensities, and more severities under SSP5-8.5, while the higher number of 
events are projected under SSP2-4.5. Overall, the SPEI-12 over SEA displays significant regional differences 
with decreasing dryness trend toward the twenty-first century. Also, Li et al.18 assesses the duration, frequency, 
and intensity of drought events in the Asian drylands based on nine CMIP6 models. The results show that a 
high percentage of land area is experiencing significant drought intensification of 65.1%, 89.9%, and 99.8% 
under Shared Socioeconomic Pathways (SSP) 126, SSP245, and SSP585 scenarios, respectively. Furthermore, the 
future droughts will become less frequent but longer in duration and more intense, with even more severe future 
droughts predicted for northwest China and western parts of Uzbekistan and Kazakhstan.

Iran, located in an arid and semi-arid region, was selected to study changes in precipitation and tempera-
ture (minimum and maximum) utilizing the data at 92 synoptic meteorological stations in the near future 
(2022–2050) and distant future (2051–2100). Moreover, Delaunay Triangulation Clustering, the standardized 
precipitation index (SPI) and Standardized Precipitation Evapotranspiration Index (SPEI) were used to study 
drought in Iran. The bivariate (duration and severity) drought analysis was performed using the copula functions 
(Clayton, Frank, and Gumbel) to calculate the drought return periods.

Methods and materials
Study area
Iran is a vast country with varied topography in the Middle East, covering an area of about 154 million hectares 
between latitudes 23°–41.5° and longitudes 41.5°–67.5°. It is bordered by the Caspian Sea from the north and 
the Persian Gulf, and the Sea of Oman from the south. Its two main mountain ranges are Alborz in northern 
Iran, beginning in the Republic of Azerbaijan and extending to eastern Iran and reaching Turkmenistan and 
Afghanistan and Zagros beginning from the coastal band of Lake Van in southeastern Turkey, crossing several 
Iranian provinces and reaching southeastern Iran (Fig. 1). These two mountain ranges cause the varied weather 
conditions throughout Iran. The Zagros Mountain range prevents the advance of rain-producing air masses 
that mainly enter from the west and cause rains, and its western parts receive more rain than the average annual 
precipitation in Iran. In addition, the Alborz Mountain range traps the humidity and air currents of the Caspian 
Sea and prevents them from advancing; hence, its northern parts have more humid climates, but its southern 
part and also the eastern part of the Zagros Mountain range, which form most of the area in Iran, have arid- and 
semi-arid climates. The coasts of the Persian Gulf and the Sea of Oman are also influenced and have warm and 
humid climates. Consequently, Iran can generally be divided into four main climate zones: (1) warm and humid 
(the southern Iranian coasts), (2) humid temperate (the coasts of the Caspian Sea), (3) cold and mountainous 
(the slopes of the Zagros and Alborz Mountain ranges) and (4) hot and dry (the central part of Iran).

Models and scenarios
Three CMIP6 models (CanESM5, GFDL-ESM4, and IPSL-CM6A-LR) were used in this study to determine the 
impact of climate change on drought in Iran for the period 2022–2100. Table 1 presents the details of the men-
tioned models. In this research, two SSP scenarios (SSP1 and SSP5) along with the precipitation and minimum 
and maximum temperatures were used.

The Shared Socioeconomic Pathways (SSPs) are a group of new scenarios developed by the climate change 
research community to facilitate the integrated analysis of future climate change impacts, vulnerabilities, adapta-
tion, and mitigation. SSP scenarios state how socioeconomic factors will influence the world. They have various 
aspects such as population, economic growth, education, urbanization, and the rate of technological develop-
ment. Representative Concentration Pathways (RCPs) are another group of scenarios that consider the volume 
of emitted greenhouse gases and radiative forcing that may occur in the future but do not purposefully consider 
any socioeconomic  narratives19. The present research uses a combination of SSP1 with RCP2.6 and SSP5 with 
RCP8.5. Table 1 shows the abbreviations used for each state to facilitate the presentation of the results obtained 
from employing the various scenarios. In addition to the data related to the mentioned models, the historical 
data on precipitation and the maximum and minimum temperatures from 92 synoptic stations in Iran during 
the base period (1990–2018) have been used as observation data for downscaling and correcting biases of large- 
scale data of the models.

Downscaling
The quantile mapping method was used for correcting bias and downscaling the historical observations data in 
the models. For this purpose, the cumulative distribution function (CDF) for the predictions and empirical data 
(historical data) were determined. Finally, when there was a new prediction, the value of the predicted quantile 
was obtained from the CDF of historical predictions, and the obtained number equivalent to the quantile was 
then factored in as the corrected data in the CDF of  predictions20–22. If  Yi and  Zi are the raw and corrected data, 
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 FSi and F−1
Oi  represent CDFs of the raw and observation predictions. Eq. (1) shows the quantile mapping for cor-

recting the predicted variable:

Clustering
Delaunay triangulation clustering was used to classify the data obtained from the synoptic stations. In mathemat-
ics and computational geometry, a Delaunay triangulation for a set of points “S” is the triangular plate D(S) so 

(1)Zi = F
−1

Oi
(FSi(Yi))

Figure 1.  The study area; the study area (Iran) and the synoptic stations used in this research. Moreover, 
regarding the clustering process carried out in this study, the stations located in the same cluster are marked by 
the same color. Map created by authors using ESRI ArcGIS Desktop v10.7 (www. esri. com).

Table 1.  Description of three CMIP6 models and abbreviations for models and scenarios used in the research. 
Since the results obtained from the models (CanESM5, GFDL-ESM4, and IPSL-CA6A-LR) and the scenarios 
(SSP1-2.6 and SSP5-8.5) were used in this research, Table 1 presents the abbreviations considered for them 
to facilitate referring to the results of the models under each scenario. Furthermore, it is noteworthy that 
descriptions pertaining to the scenarios are provided in SI Table S1, details of the models used in this study 
are presented in SI Table S2, and the performance of each model in each cluster is depicted in SI Figure S11 
to S15 of the Supplementary Information 1. G1S1 (CanESM5: SSP1-2.6), G1S4 (CanESM5: SSP5-8.5), G2S1 
(GFDL-ESM4: SSP1-2.6), G2S4 (GFDL-ESM4: SSP5-8.5), G3S1 (IPSL-CM6A-LR: SSP1-2.6) and G3S4 (IPSL-
CM6A-LR: SSP5-8.5).

Model Institute Spatial Resolution Scenarios State

CanESM5 Canadian Centre for Climate Modelling and Analysis (Canada) 2.8 × 2.8 SSP1-2.6, SSP5-8.5 G1S1, G1S4

GFDL-ESM4 Geophysical Fluid Dynamics Laboratory (United States) 1.0 × 1.3 SSP1-2.6, SSP5-8.5 G2S1, G2S4

IPSL-CM6A-LR L’Institute Pierre-Simon Laplace (France) 1.3 × 2.5 SSP1-2.6, SSP5-8.5 G3S1, G3S4

http://www.esri.com
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that no point in the set S is inside any of the peripheral circles of the D(S)  triangles23. This triangulation, devel-
oped by Delaunay, is widely used in various geographic information systems (GIS)24. The pseudo-F statistic was 
then used to determine the optimal number of clusters. One of the main and best methods for determining the 
optimal number of clusters is to use the pseudo-F  statistic25, which is calculated from Eq. (2):

where N is the number of observations, k is the number of clusters, “GSS” is the between-group sum of 
squares, and “WSS” is the within-group sum of squares.

Standardized precipitation Index (SPI)
Various methods are available for monitoring drought. In this research, the SPI method was used which is a 
powerful index that can be easily used to monitor  drought26. SPI can be calculated using the long-term precipi-
tation data in a region. To this end, a suitable probability distribution function was first fitted to the long-term 
precipitation data. In this study, the Pearson type III distribution was selected as the probability function, and 
the density distribution function was obtained from Eq. (3):27

Here, μ, σ, and γ represent the location (average value of the series), the scale, and the shape parameters, 
respectively. Since this function is not defined for x < µ−2σ

γ
 , the cumulative distribution function was obtained 

from Eq. (4):28

Here, qp is the empirical probability x <
µ−2σ
γ

 , and PE was obtained from Eq. (5):27

Here, G is the incomplete gamma function. After calculating the cumulative probability function, the cumu-
lative probability is transformed to the standard normal variable based on Eq. (6), with an average of zero and 
a standard deviation of  126:

where p is the average monthly precipitation, σ the standard deviation, and  pi is the amount of precipitation at 
the ith time step. This index can be calculated at any time  scale29. According to this scale, drought will happen 
when the SPI at a specific period is constantly ≤ − 1. However, the drought duration ends once its value becomes 
 positive30.

Standardized precipitation evapotranspiration index (SPEI)
Multiple indices exist to assess drought, which also consider the temperature variable. In this study, in addition 
to the SPI index, the Standardized Precipitation Evapotranspiration Index (SPEI) is also used, as in many other 
studies to investigate the impact of temperature on drought in  Iran17,31–36 (Liu et al. 2021). The SPEI drought index 
is calculated based on the relationship between precipitation and evapotranspiration. Unlike precipitation-based 
drought indices, such as the Standardized Precipitation Index (SPI), this index takes into account the water bal-
ance. To calculate the SPEI index, potential evapotranspiration (PET) is first calculated for the period of interest. 
Then, to calculate the SPEI index, the difference between precipitation and PET is calculated at the desired time 
scale. There are also multiple methods for calculating potential evapotranspiration, such as Penman–Monteith, 
Thornthwaite, Hargreaves, Priestley and Taylor, and Jensen and Haise. In this study, due to the simplicity and 
applicability of the Thornthwaite method and the availability of the required variables, this method is used to 
calculate PET. The Thornthwaite equation for calculating PET is shown in Eq. (7):37

where PET is potential evapotranspiration ( mm ), T is mean monthly temperature ( ◦C) , U  is the number of days 
per month, N is month average sunshine time (h/d) and the empirical coefficient k is 16.

(2)
PseudoF = (GSS)/(k − 1)

(wss)/(N − K)

(3)
Pe(x) =

(

x − µ−2σ
γ

)α−1
exp

[
(

−x+ µ−2σ
γ

)

β

]

βαŴ(α)

(4)Hρ (x)=qp +
(

1− qp
)

PE3(x)

(5)
PE(x) =

G

[

α,
x− µ−2σ

γ

β

]

Ŵ(α)

(6)SPI = z =
Pi − P

σ

(7)

PET = k

(

10T

I

)a

×
uN

360

I =
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ij = 0.09× T1.5

∝= 0.026× I + 0.5
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After calculating PET using Eq. (7), the difference between precipitation and potential evapotranspiration 
for each month is calculated using Eq. (8), which is indicated by WB (Water Balance):

where i represents the precipitation on a certain month, Pi is the precipitation on a certain month ( mm ) and PET 
is the calculated potential evapotranspiration on a certain month ( mm).

The WBi time series are aggregated at the required time scales ( k ) as follows based on Eqs. (9–10):

where j is the month and i is the year.
Based on the precipitation and PET, the log-logistic probability distribution is then used to fit the difference 

between the two ( WB ) and the SPEI value corresponding to each WB value is calculated. By applying the same 
distribution function parameters established for the observed period (1990–2018) and future period (2022–2100), 
the dry/wet condition of future SPEI can be assessed based on Eqs. (11–13). When the cumulative probability 
p < 0.5 , the SPEI is calculated as:

However, when p > 0.5,

where the constants c0 , c1 , c2 , d1 , d2 , and d3 are 2.515517, 0.802853, 0.010328, 1.432788, 0.189269, and 0.001308, 
respectively.

The WB standardization and SPEI calculation is done for the observed and projection periods independently. 
And finally, the drought severity obtained from the SPEI index is classified as the SPI index.

Copulas
A Copula is a function forming a bivariate or multivariable distribution based on two or more univariate marginal 
distribution  functions38. If X and Y are assumed to be two dependent random variables such as drought severity 
and duration with a bivariate distribution function  Fxy and univariate marginal distribution functions  Fx and  FY, 
the bivariate copula function (C) is then defined as in Eq. (14):39

Copula functions provide a great deal of flexibility in modeling because the marginal distributions can be 
selected independently from each other in building a multivariate model. Unlike bivariate distribution functions, 
there is no need for the marginal distributions to follow a specific  distribution40. Archimedean and elliptical 
copulas are widely used in drought analysis. This research used three Archimedean copulas (Frank, Clayton, and 
Gumbel). Three Archimedean copulas were fitted to drought severity and duration data for bivariate analyses. 
The equations and their parameters are listed in Eqs. (15–17), Respectively:

The general shape of copula functions in Archimedean copulas is defined in Eq. (18):

where u and v are the marginal functions of drought severity and duration, φ the generator function for copula, 
φ : I → [0,∞) is a continuous convex function (φ

′ ′

(u) > 0) and strictly decreasing function (ϕ1 = 0, ϕu <). In 
all functions, θ is the parameter of the copula function showing the dependence between the variables. Three 

(8)WBi = Pi − (PET)i

(9)WBki,j =

12
∑

I=13−k+j

WBi−1,l +

j
∑

l=1

WBi,l ifj < k

(10)WBki,j =

j
∑

l=j−k+1

WBi,l ifj ≥ k

(11)w =
√

−2ln(p)

(12)SPEI = w −
c0 + c1w + c2w

2

1+ d1w + d2w2 + d3w3

(13)SPEI = −(w −
c0 + c1w + c2w

2

1+ d1w + d2w2 + d3w3
)

(14)FXY (X, Y) = C(FX(X), FY (Y))

(15)C(u, v) =
(

u
−θ

+ ν−θ
− 1

)

−1

θ

(16)C(u, v) = −
1

θ
log

(

1+

(

e−θu
− 1

)(

e−θv
− 1

)

e−θ − 1

)

(17)C(u, v) = e
−

[

(−log(u))
θ
+(−log(v))

θ
]
1
θ

(18)C(u, v) = φ−1(φ(u),φ(v))0 < u, v ≤ 1
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Archimedean copula functions were fitted to the data on drought duration and severity index for bivariate 
analyses. The condition for using the copula function is a correlation between drought variables, and it is not 
suitable to use these functions if the variables are not correlated. Kendall, Pearson, and Spearman correlation 
coefficients were used to study the correlation between the two drought characteristics (severity and duration). 
Estimations of the parameters of all three functions are necessary to fit Clayton, Frank, and Gumbel functions to 
the drought data. The nonparametric function of the maximum likelihood estimation (MLE)41, which is obtained 
from Eq. (19), is used to estimate parameter θ41:

Here,  cθ is the copula density function, F the marginal distribution function and x1k , x2k , . . . , xpk(k = 1, . . . , n) 
the dependent random variables. Drought can be studied in a bivariate analysis and based on the characteristics 
of these variables by using the most suitable copula function that has been fitted to the data on drought severity 
and  duration9,42–46.

Drought return period
As hydrological events, droughts include the severity and duration variables expressing their behavior. In com-
mon analyses, the variables of various hydrological events are assumed to be independent, increasing the inac-
curacy of statistical estimation for these  events47. The use of multivariate distributions that take the dependence 
of the variables is a more correct method. In this regard, using copula functions allows simultaneously calculat-
ing the probability of occurrence of droughts and their durations and severity indices. Equation (20) is used to 
simultaneously calculate the probability of the occurrence of droughts and their durations and severity indices 
so that the values of both variables exceed the threshold  levels48.

After calculating the simultaneous probability using Eq. (20), the return period is calculated from Eq. (21):

where  TSD is the return period together with drought duration and severity index, L is the interval between the 
beginning of one drought and the beginning of the following one, which is equal to the sum of the successive 
drought and wet periods, and E (L) is the average of these intervals.

Results
Effects of climate change on precipitation
The results indicated that under near future climate (2022–2050), the average annual precipitation in Iran would 
exhibit an uptrend in G1S1, G1S4, and G2S1 and a downtrend in G2S4, G3S1, and G3S4. The largest increase 
in the average annual precipitation in Iran will happen in G1S4 (62 mm), and the largest decline in the average 
annual precipitation in Iran will occur in G3S1 (9 mm). The highest increase in the annual precipitation (233 mm) 
will be recorded in Cluster 1 (northern Iran) in G1S4, followed by Cluster 3 in G3S1 (188 mm). In addition, 
the greatest reduction in the annual precipitation (179 mm) in Cluster 1 (northern Iran) will be in G3S1. In the 
distant future (2051–2100), the average annual precipitation in Iran will increase for all states reaching its maxi-
mum value (115 mm) in G1S4. The largest increase in the annual precipitation (331 mm) will also be observed 
in Cluster 4 (southwest Iran) in G1S4, and the greatest reduction in annual precipitation (137 mm) will occur 
in Cluster 3 (northwestern Iran) in G3S4.

The changes in the average, minimum, and maximum precipitation in Iran under climate change conditions 
in 2021–2050 and 2051–2100 in CanESM5, GFDL-ESM4, and IPSL-CM6A-LR models for two scenarios (SSP1-
2.6 and SSP5-8.5) are presented in detail in Table 2 and Fig. 2.

Effects of climate change on the minimum and maximum temperatures
According to the results, in the near future (2022–2050), the average minimum temperature in Iran will increase 
in all states except for G2S1. The largest increase in average minimum temperature will be recorded for G1S4 
and G3S4 (1.55 ℃ and 1.45 ℃, respectively). The average minimum temperature in Iran will decline in G2S1 
by 0.02 ℃. The highest increase in average minimum temperature (2.82 ℃) will be recorded in cluster 5 (the 
Central Iranian Plateau) in G1S4, followed by cluster 5 in G3S4 (2.56 ℃). The largest decrease in average mini-
mum temperature (0.57 ℃) will be observed in cluster 5 in G2S1. In the distant future (2051–2100), the average 
minimum temperature in Iran will increase with the highest increase (5.63 ℃ and 4.85 ℃) recorded in G1S4 
and G3S4, respectively. The largest increase in average minimum temperature (8 ℃) will happen in cluster 5 (the 
Central Iranian Plateau) in G1S4 and the greatest decrease (0.65 ℃) will occur in cluster 5 (the Central Iranian 
Plateau) in G2S1.

Also, the average maximum temperature in Iran will increase for all states except for G2S1 in the near future 
(2022–2050). The largest increase in the average maximum temperature in Iran will happen in G3S4 and G1S4 
(1.37 ℃ and 1.2 ℃, respectively), and the reduction in average maximum temperature (0.4 ℃) will occur in G2S1. 
The highest increase in the average maximum temperature (4.13 ℃) will be observed in Cluster 4 (southwest 
Iran) in G3S4, followed by Cluster 4 in G1S4 (3.97 ℃). The greatest decrease in the average maximum tempera-
ture (0.92 ℃) will be recorded in Cluster 3 (western Iran) in G2S1, followed by Cluster 3 (northwestern Iran) 

(19)L(θ) =

n
∑

k=1

log
[

cθ
{

F1(Xik), . . . , Fp
(

Xpk

)}]

(20)
PSD = P(d ≤ Dands ≤ S) = FDS(∞,∞)− FDS(d,∞)− FDS(∞, s)+ FDS(d, s) = 1− FD(d)− FS(s)+ C(FD(d), FS(s))

(21)TSD = T(S ≥ s,D ≥ d) =
E(L)

P(S ≥ s,D ≥ d)
=

E(L)

1− FD(d)− FS(s)+ C(Fs(s), FD(d))
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in G2S4 (with 0.25 ℃). Similarly, in the distant future (2051–2100), the average maximum temperature in Iran 
will increase in all states except for G2S1. The largest increase in the average maximum temperature in Iran 
(4.9 ℃) will occur in G3S4, followed by G1S4 (with 4.87 ℃). G2S1 is the only state where the average maximum 
temperature will decline (by 0.1 ℃). The greatest increase in the average maximum temperature (7.79 ℃) will 
be observed in Cluster 3 (western Iran) in G3S4, and the largest decrease in the average maximum temperature 
(0.56 ℃) will also be recorded in Cluster 3 (western Iran) in G2S1.

The changes in the average, minimum, and maximum temperatures in Iran under climate change conditions 
in 2021–2050 and 2051–2100 in CanESM5, GFDL-ESM4, and IPSL-CM6A-LR models for two scenarios (SSP1-
2.6 and SSP5-8.5) are presented in detail in Table 3 and Figs. 3–4.

Bivariate drought analysis using copulas, SPI and SPEI
Delaunay triangulation clustering was used to cluster the synoptic stations and study drought in the clusters. 
The input vector included 39 members: elevation, longitude, latitude, average monthly precipitation (12 mem-
bers), average monthly minimum temperature (12 members), and average monthly maximum temperature (12 
members). Optimal number of clusters was determined in ArcGIS. Five clusters were selected as the optimal 
clusters using the pseudo-F statistic. Synoptic stations 24, 83, 46, 69, and 55 were selected as the representatives 
of Clusters 1–5, respectively. Figure 1 shows the synoptic stations and the clusters.

After ensuring a suitable correlation between the drought variables and determining the number of clusters, 
three functions (Clayton, Frank, and Gumbel) were used in the bivariate drought analysis. The important steps 
in using copula functions are selecting an appropriate marginal distribution function for the variables, followed 
by selecting the superior copula function. If the same marginal distribution is not used for the variables, criteria 
such as the Akaike information criterion (AIC) or the Bayesian information criterion (BIC) are used. However, 
since the same marginal function and the same number of estimated parameters were used in this research, the 
copula function that found the highest maximum likelihood estimation (MLE) was selected as the superior  one49. 
Table 4 lists the superior copula functions for each cluster and state.

Joint drought returns periods (years) and meteorological drought index (SPI) on a 12-month scale in the 
observation period (1990–2018) for each of the five clusters in Iran presented in Fig. 5. This research shows 
that the most severe droughts are expected to happen in Iran, considering the SPI index. Based on the results 
presented in Fig. 6, on average, 51% of the future period (2022–2100) will be under drought conditions in each 
cluster. Under future climate change, the longest and most severe drought will occur in Cluster 5, lasting for 6 
years (2026–2032) with a severity index of 85 (G1S4). The climate change will have its most severe impact on 
the central and eastern Iran. In contrast, the most severe drought in the base period in this region lasted for 

Table 2.  The effect of climate change on annual precipitation changes.

Annual precipitation 
(Future—BP) (mm)

(2022–2050) (2051–2100)

G1S1

 Average 34 57

 Maximum 125 159

 Minimum − 39 − 19

G1S4

 Average 62 115

 Maximum 233 331

 Minimum − 66 − 35

G2S1

 Average 35 14

 Maximum 145 85

 Minimum − 13 − 38

G2S4

 Average − 4 3

 Maximum 132 145

 Minimum − 143 − 79

G3S1

 Average − 9 8

 Maximum 188 171

 Minimum − 179 − 112

G3S4

 Average − 4 8

 Maximum 157 174

 Minimum − 120 − 137
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52 months with a severity index of 59. The second most severe drought will occur in Cluster 1 (northern Iran), 
and this region (considered a high precipitation region in Iran) will face a severe drought lasting for 5 years with 
a severity index of 73 (G1S4). However, the most severe score in this region in the base period lasted 23 months 
with a severity index of 26. The most severe drought in Cluster 2 during the base period lasted 3 years with a 
severity index of 30; however, in the future and under climate change conditions, the most severe drought will 
last for 5 years with a severity index of 60 (G3S1). Also, in Cluster 3 the most severe drought in the based period 
lasted for 3 years with a severity index of 38; however, will last for 3 years with a severity index of 59 (G1S4) 
and in Cluster 4, the most severe drought in the base period continued for 35 months with a severity index of 
34, but it will last for 5 years with a severity index of 67 (G2S1) under climate change. It is worth mentioning 
that only the most severe droughts based on the SPI index are illustrated in Fig. 6, and all results of this index 
under different states are depicted in SI Figure S1 to S5 of the Supplementary Information 2. Figure 7 present the 

Figure 2.  Changes in the long-term average precipitation in Iran under climate change in the near future; 
changes in the long-term average precipitation in Iran under climate change during 2022–2050 (a–f) and 
2051–2100 (g–l) determined by the CanESM5, GFDL-ESM4, and IPSL-CM6A-LR models under the SSP1-2.6 
and SSP5-8.5 scenarios. (a) G1S1, (b) G2S1, (c) G3S1, (d) G1S4, (e) G2S4 and (f) G3S4 for 2022–2050 and (g) 
G1S1, (h) G2S1, (i) G3S1, (j) G1S4, (k) G2S4 and (l) G3S4 for 2051–2100. Map created by authors using ESRI 
ArcGIS Desktop v10.7 (www. esri. com).

http://www.esri.com
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simultaneous probability distribution of severity-duration and the return period for the base period and each 
of the clusters and states. As shown, the longest drought return period will increase from 250 years in the base 
period (1990–2018) in Cluster 2 (southeastern Iran) in G1S4, G3S1, and G3S4, and in Cluster 4 (southwestern 
Iran) in G1S4 and G2S1 to 1000 years in the future (2022–2100). However, for Cluster 1 (Caspian Sea coasts), 
Cluster 3 (western and northwestern Iran), and Cluster 5 (central and eastern Iran), the longest drought return 
period will remain 1000 years. Moreover, the results indicate that climate change causes drought severity and 
duration to increase throughout Iran in a similar return period. For example, for droughts with a return period 
of 25 years, drought duration was 32 months with a severity index of 39 in Cluster 1 in the observation period, 
but for the future period, the drought period will increase by 18 months and reach 50 months, and its severity 
index will increase by 55% and reach to 60.8 in state G3S4. In Cluster 2, the drought duration was 50 months 
with a severity index of 54.4 in the observation period, but the drought duration will increase by 17 months and 
reach 67 months and its severity by 26% and reach 72.5 in the future in G1S4. In Cluster 3, the drought duration 
was 42 months, with a severity index of 43.2 in the observation period. However, its duration will increase by 
18 months to 60 months and its severity index by 59% and 68.8 in the future in G3S1. For Cluster 4, drought 
duration was 43 months with a severity index of 52 in the base period, but the drought duration will increase 
by two months to 45 months and its severity index by 10% to 58 in the future in G3S4. In Cluster 5, the drought 
duration was 52 months with a severity index of 48.7 during the observation period. However, the drought 
duration will increase by eight months to 60 months and its severity index by 26% to 61.5 in the future in G3S1.

Many researchers have emphasized the importance of temperature on drought conditions. With increasing 
temperatures, water demand and evaporation and transpiration rates increase, resulting in more severe and 
longer-lasting droughts. In Iran, which is considered a dry and semi-arid country, the potential evapotranspira-
tion rate in various regions is very high and the temperature variable is of particular importance to the water 
balance. In this study, in addition to the SPI index, the Standardized Precipitation Evapotranspiration Index 
(SPEI) was also investigated, which requires precipitation and temperature data to calculate. As mentioned, 
using the average temperature data and using the Thornthwaite method, the evaporation and transpiration rate 
for each month was obtained and by subtracting it from the corresponding monthly precipitation and form-
ing the WB time series, the SPEI index in a 12-month scale was obtained for the base period (1990–2018) and 
the future period (2022–2100). Like the SPI index, the return period of droughts for each cluster and state was 
calculated using copula functions.

Joint drought returns periods (years) and Standardized Precipitation Evapotranspiration Index (SPEI) on a 
12-month scale in the observation period (1990–2018) for each of the five clusters in Iran presented in Fig. 8. In 

Table 3.  The effects of climate change on annual temperature changes.

Annual temperature (future—BP) (c)

Minimum temperature Maximum Temperature

(2022–2050) (2051–2100) (2022–2050) (2051–2100)

G1S1

 Average 0.86 1.44 0.76 1.26

 Maximum 1.92 2.67 3.47 4.03

 Minimum 0.51 0.88 0.14 0.48

G1S4

 Average 1.55 5.63 1.2 4.87

 Maximum 2.82 8 3.97 7.79

 Minimum 1.01 4.03 0.5 3.01

G2S1

 Average − 0.06 0.07 − 0.4 − 0.1

 Maximum 0.7 0.78 2.19 2.39

 Minimum − 0.57 − 0.65 − 0.92 − 0.56

G2S4

 Average 0.21 2.12 0.09 2.09

 Maximum 1.07 3.12 2.66 4.55

 Minimum − 0.51 1.33 − 0.25 0.87

G3S1

 Average 1.12 1.56 1.13 1.57

 Maximum 2.27 2.72 3.74 4.29

 Minimum 0.83 1.19 0.63 0.87

G3S4

 Average 1.45 4.85 1.37 4.9

 Maximum 2.56 6.51 4.13 7.73

 Minimum 1.14 3.69 0.81 2.8
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comparison to the observational period, the most severe droughts expected in the future for each of the clusters 
under each of the states are shown in Fig. 9. It is observed that, similar to the results of the SPI index (Fig. 6), the 
most severe drought expected in clusters 1 and 3 will occur in state G1S4, and the most severe drought expected 
for cluster 5 will occur in state G2S4. In general, it is shown in Figs. 3 and 4 that the mean minimum and maxi-
mum temperatures in Iran will increase under states G1S4, G2S4, and G3S4 in the period 2051–2100. This will 
lead to an increase in potential evapotranspiration in Iran. Therefore, with the increase in potential evapotran-
spiration, the severity of SPEI drought will also increase, which is well shown in Fig. 9. The most severe droughts 
expected in different regions of Iran have occurred in states G1S4, G2S4, and G3S4. By comparing Figs. 8 and 9, 
it is clear that the most severe drought expected will occur in cluster 2, which will last for 20 years (2080–2100) 
with a severity index of 183 (G3S4). Based on this, southeastern Iran will face the most severe drought. This is 
while the longest drought that occurred in the base period lasted for 56 months and its severity was 55. After 

Figure 3.  Changes in the long-term average of minimum temperatures in Iran under climate change in the 
near future; changes in the long-term average of minimum temperatures in Iran under climate change during 
2022–2050 (a–f) and 2051–2100 (g–l) determined by the CanESM5, GFDL-ESM4, and IPSL-CM6A-LR models 
under the SSP1-2.6 and SSP5-8.5 scenarios. (a) G1S1, (b) G2S1, (c) G3S1, (d) G1S4, (e) G2S4 and (f) G3S4 for 
2022–2050 and (g) G1S1, (h) G2S1, (i) G3S1, (j) G1S4, (k) G2S4 and (l) G3S4 for 2051–2100. Map created by 
authors using ESRI ArcGIS Desktop v10.7 (www. esri. com).

http://www.esri.com
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that, the most severe drought expected will occur in cluster 4, which will last for 15 years (2085–2100) and with 
a severity index of 155 (G1S4). The longest drought that occurred in this cluster in the base period lasted for 
39 months and its severity was 48. The most severe drought expected in the future for cluster 1 will last for 5 years 
(2094–2099) with a severity index of 99. The longest drought that occurred in this cluster in the base period 
lasted for 2 years and its severity was 24. In cluster 3, the most severe drought expected will occur under state 
G1S4, which will last for 5 years (2095–2100) with a severity of 101. The longest drought that occurred in the 
base period lasted for 12 months and its severity was 16. Finally, the most severe drought expected for cluster 
5 will occur under state G2S4, which will last for 6 years (2094–2098) with a severity index of 118. The longest 
drought that occurred for this cluster in the base period lasted for 30 months and its severity was 31. It should 
be noted that Fig. 9 displays only the most severe droughts as indicated by the SPEI index, while all outcomes 
of this index across various states are demonstrated in SI Figure S6 to S10 of the Supplementary Information 2.  

Figure 4.  Changes in the long-term average of maximum temperatures in Iran under climate change in the 
near future; changes in the long-term average of maximum temperatures in Iran under climate change during 
2022–2050 (a–f) and 2051–2100 (g–l) determined by the CanESM5, GFDL-ESM4, and IPSL-CM6A-LR models 
under the SSP1-2.6 and SSP5-8.5 scenarios. (a) G1S1, (b) G2S1, (c) G3S1, (d) G1S4, (e) G2S4 and (f) G3S4 for 
2022–2050 and (g) G1S1, (h) G2S1, (i) G3S1, (j) G1S4, (k) G2S4 and (l) G3S4 for 2051–2100. Map created by 
authors using ESRI ArcGIS Desktop v10.7 (www. esri. com).

http://www.esri.com
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Figure 10 present the simultaneous probability distribution of severity-duration and the return period for the 
base period and each of the clusters and states (based on SPEI). As shown, the longest drought return period 
will increase from 500 years in the base period (1990–2018) in Cluster 1 (Caspian Sea coasts) in G1S1 and 
G2S4, and in Cluster 2 (southeastern Iran) in G1S1, G1S4, G2S4, G3S1, and G3S4, and in Cluster 3 (western 
and northwestern Iran) in G2S1, G2S4, G3S1, and G3S4, and in Cluster 5 (central and eastern Iran) in G2S1 to 
1000 years in the future (2022–2100). However, for Cluster 4 (southwestern Iran), the longest drought return 
period will remain 1000 years. Moreover, the results indicate that climate change causes drought severity and 
duration to increase throughout Iran in a similar return period. For example, for droughts with a return period 
of 25 years drought duration was 26 months with a severity index of 29 in Cluster 1 in the observation period, 
but for the future period, the drought period will increase by 5 months and reach 31 months, and its severity 
index will increase by 34% and reach to 39 in state G1S4. In Cluster 2, the drought duration was 34 months 
with a severity index of 39 in the observation period, but the drought duration will increase by 6 months and 
reach 40 months and its severity by 3% and reach 40 in the future in G2S4. In Cluster 3, the drought duration 
was 14 months, with a severity index of 21 in the observation period. However, its duration will increase by 
16–30 months and its severity index by 67% and 35 in the future in G3S4. For Cluster 4, drought duration was 
49 months with a severity index of 46 in the base period, but the drought duration will increase by two months 
to 51 months but its severity index decreases by 19% to 38 in the future in G3S4. In Cluster 5, the drought dura-
tion was 35 months with a severity index of 38 during the observation period. However, the drought duration 
will increase by 5–40 months and its severity index by 32% to 50 in the future in G1S4. Also, Table 5 lists the 
superior copula functions for each cluster and state (based on SPEI).

Discussion
This research intended to answer the question: what impact will climate change have on Iranian meteorological 
drought? For this purpose, as in the studies by Su et al.11, Li et al.12, Nashwan and  Shahid13, and Almazroui et al.14, 
the outputs from three CMIP6 models (CanESM5, GFDL-ESM4, and IPSL-CM6A-LR) and two scenarios from 
the Sixth Global Climate Change Assessment Report (SSP1-2.6 and SSP5-8.5) were used to determine the impacts 
of climate change on Iranian weather and evaluate droughts for the near future (2022–2050) and the distant future 
(2051–2100). The results demonstrated that in the near future (2022–2050), the average annual precipitation 
will increase in G1S1, G3S1, and G3S4, and the most significant increase (62 mm) will be observed in G1S4. 
The average annual precipitation will decrease in G2S4, G3S1, and G3S4, and the greatest decrease (9 mm) will 
be recorded in G3S1. The average minimum and maximum temperatures will increase in all states except for 

Table 4.  The results of selecting the best copula function (based on SPI). Table 4 shows the results of 
evaluating the copula functions for each cluster in each state (G1S1 to G3S4). The superior copula functions 
had the highest MLE values.

Models and their scenarios with copulas

Cluster

1 2 3 4 5

G1S1

 Clayton 29.21 28.31 38.32 27.35 28.99

 Frank 43.18 50.66 32.81 43.65 34.57

 Gumbel 41.71 55.27 33.78 44.17 35.37

G1S4

 Clayton 27.62 32.7 28.97 38.86 22.29

 Frank 38.91 45.85 38.88 40.94 36.18

 Gumbel 37.85 44.1 36.19 35.72 35.48

G2S1

 Clayton 31.90 28.87 31.73 33.83 26.14

 Frank 59.03 52.90 36.79 40.85 39.96

 Gumbel 65.15 56.88 26.64 40.12 43.19

G2S4

 Clayton 29.28 24.00 35.35 32.60 29.17

 Frank 53.23 43.45 39.01 45.10 43.73

 Gumbel 50.50 43.45 38.45 46.04 44.07

G3S1

 Clayton 22.55 27.56 28.50 20.67 29.65

 Frank 36.13 45.34 45.15 34.03 39.55

 Gumbel 38.62 46.15 42.63 34.12 37.28

G3S4

 Clayton 25.62 30.31 16.61 20.60 35.59

 Frank 41.00 56.66 30.94 35.34 37.02

 Gumbel 42.19 57.70 32.27 37.06 33.37
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G2S1, and the highest increases in average minimum and maximum temperatures (1.55 ℃ and 1.37 ℃) will be 
recorded in G1S4 and G3S4, respectively. In the distant future (2051–2100), the average annual precipitation 
will increase in all states, and the maximum increase (115 mm) will be recorded in G1S4. The average minimum 
temperature will increase in all states, and the largest increase (5.63 ℃) will be observed in G1S4. The average 
maximum temperature will increase in all states except for G2S1, and the largest increase (4.9 ℃) will be observed 
in G3S4. In G2S1, the average maximum temperature will decline by 0.1 °C.

In addition, as in the studies by Su et al.11, Li et al.12, Ukkola et al.15, Shrestha et al.16, Li et al.18, and Supharatid 
and  Nafung17 the outputs from CMIP6 models were used to analyze droughts in the distant future in Iran. This 
study used the Standardized Precipitation Index (SPI) and Standardized Precipitation Evapotranspiration index 
(SPEI) on a 12-month scale to monitor drought. However, contrary to the mentioned studies, Delaunay Tri-
angulation Clustering and analysis of drought severity and duration variables employing the copula functions 
Clayton, Frank, and Gumbel were used to calculate the drought return period for each state and each cluster. 
According to the various scenarios and models, based on SPI index, 47–51% of the land area in Iran will face 
drought conditions. The longest drought period will be 6 years and will happen in Cluster 2 from 2022 to 2032. 
The highest drought severity index (85) during these 6 years will occur in G1S4. The results show that, in identical 
return periods, droughts with greater severity and longer duration will happen in Iran. Also, based on SPEI index, 
Droughts across Iran are projected to intensify, becoming more severe and enduring than currently experienced. 

Figure 5.  Joint drought returns periods (years) and meteorological drought index (SPI) on a 12-month scale in 
the observation period (1990–2018) for each of the five clusters in Iran. (a) Cluster 1, (b) Cluster 2, (c) Cluster 3, 
(d) Cluster 4 and (e) Cluster 5.
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Southeastern Iran (cluster 2) will bear the brunt of this change, facing a devastating 20-year (2080–2100) drought 
with a severity index of 183 under state G3S4. Compared to the 1990–2018 baseline, all regions will witness an 
increase in both drought severity and duration. Furthermore, under various future climate scenarios, the long-
est drought return period for most clusters is expected to jump from 500 to 1000 years, underlining the dire 
situation. That is why, in general, climate change will have adverse effects on Iran, and this country will face 
more difficult and drier conditions. Su et al.11 showed that more severe and longer droughts will occur in China. 
Consequently, suitable management decisions must be adopted beforehand to prevent the destructive effects of 
climate change in Iran in the distant future and reduce and adapt to the damages inflicted on agriculture, the 
environment, and the socioeconomic aspects as much as possible. Furthermore, the results of Li et al.18 show 

Figure 6.  The most severe drought based on meteorological drought index (SPI) on a 12-month scale in the 
future period (2022–2100) for each of five clusters in Iran. (a) Cluster 1, (b) Cluster 2, (c) Cluster 3, (d) Cluster 4 
and (e) Cluster 5.
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that, based on the SPEI index, more severe but shorter droughts are projected to occur in northwest China and 
western parts of Uzbekistan and Kazakhstan. Additionally, the results of Supharatid and  Nafung17 show that the 
projected drought characteristics show relatively longer durations, higher peak intensities, and more severities 
under SSP5-8.5, while the higher number of events are projected under SSP2-4.5. Overall, the SPEI-12 over SEA 
displays significant regional differences with decreasing dryness trend toward the twenty-first century. In line 
with this, the results of the present study showed that the results of all three models under the SSP5-8.5 scenario 
show that the average minimum and maximum temperatures in Iran will increase during 2051–2100. This 
increase is well reflected in the results of the SPEI index. With the increase in temperature during this period, 
the potential evapotranspiration rate in Iran will increase, and it is expected that droughts with higher intensity 
and duration will occur. As shown in the results of Fig. 9, severe droughts will occur in Iran during the period 
2080–2100. This study investigates the projection of drought conditions across Iran (located in the Middle East) 
in terms of duration and intensity. While this research primarily focuses on climate change impact analysis, it 

Figure 7.  Joint drought returns periods (years) in the future period (2022–2100) for each of the five clusters 
in Iran under climate change; simultaneous drought severity and duration distribution probability and drought 
return period under climate change during that determined by the models CanESM5, GFDL-ESM4, and IPSL-
CM6-LR and the two scenarios SSP1-2.6 and SSP5-8.5 for each of the five clusters (based on SPI).
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Figure 8.  Joint drought returns periods (years) and Standardized Precipitation Evapotranspiration Index (SPEI) 
on a 12-month scale in the observation period (1990–2018) for each of the five clusters in Iran. (a) Cluster 1, (b) 
Cluster 2, (c) Cluster 3, (d) Cluster 4 and (e) Cluster 5.
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Figure 9.  The most severe drought based on Standardized Precipitation Evapotranspiration Index (SPEI) on a 
12-month scale in the future period (2022–2100) for each of five clusters in Iran. (a) Cluster 1, (b) Cluster 2, (c) 
Cluster 3, (d) Cluster 4 and (e) Cluster 5.
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Figure 10.  Joint drought returns periods (years) in the future period (2022–2100) for each of the five clusters 
in Iran under climate change; simultaneous drought severity and duration distribution probability and drought 
return period under climate change during that determined by the models CanESM5, GFDL-ESM4, and IPSL-
CM6-LR and the two scenarios SSP1-2.6 and SSP5-8.5 for each of the five clusters (based on SPEI).
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is crucial to consider various sources of uncertainty. Although CMIP6 provides finer resolution compared to 
CMIP5 projections, certain inevitable factors still contribute to uncertainties. These factors include These factors 
include population growth rate, inequality, international trade, globalization, consumption patterns, environ-
mental policies, development transfers, energy technology changes, fossil fuel constraints, land use alterations, 
and  agriculture50. Consequently, there are numerous uncertainties to address in future regional projections. 
Calculating these uncertainties could warrant a separate research effort, akin to the studies conducted by Atha-
nasiou et al.51 and Shiogama et al.52.

Data availability
The datasets generated and/or analyzed during the current study are available in the ESGF repository, https:// 
esgf- node. llnl. gov/ search/ cmip6/.
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 Clayton 46.12 44.47 41.43 38.86 49.2

 Frank 76.68 66.64 62.91 56.4 76.06

 Gumbel 73 63.1 67.98 52.51 74.56

G1S4

 Clayton 47.06 32.18 46.77 28.64 34.07

 Frank 79.34 50.19 69.69 46.06 53.56

 Gumbel 84.35 58.1 70.94 55.75 59.52

G2S1

 Clayton 35.33 44.84 51.72 46.48 46.52

 Frank 68.21 63.98 81.91 72.3 66.83

 Gumbel 73.78 69.9 78.51 72.5 64.37

G2S4

 Clayton 45.84 41.33 43.89 46.53 26.02

 Frank 67.82 55.63 71.94 67.31 42.33

 Gumbel 67.09 60.28 71.47 66.99 49.97

G3S1

 Clayton 31.9 47.55 52.73 43.38 50.97

 Frank 55.24 71.11 86.55 62.18 80.31

 Gumbel 62.82 63.05 80.45 58.6 86.61

G3S4

 Clayton 34.87 33.93 44.32 34.32 37.76

 Frank 58.85 40.61 65.58 47.79 59.86

 Gumbel 62.38 44.21 62.51 46.54 66
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