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Targeting human 
progesterone receptor (PR), 
through pharmacophore‑based 
screening and molecular simulation 
revealed potent inhibitors 
against breast cancer
Muhammad Shahab 1,7, Peng Ziyu 2,7, Muhammad Waqas 3, Guojun Zheng 1*, 
Yousef A.  Bin Jardan  4, Gezahign Fentahun Wondmie 5* & Mohammed Bouhrhia 6

Breast cancer, the prevailing malignant tumor among women, is linked to progesterone and its 
receptor (PR) in both tumorigenesis and treatment responsiveness. Despite thorough investigation, 
the precise molecular mechanisms of progesterone in breast cancer remain unclear. The human 
progesterone receptor (PR) serves as an essential therapeutic target for breast cancer treatment, 
warranting the rapid design of small molecule therapeutics that can effectively inhibit HPR. By 
employing cutting‑edge computational techniques like molecular screening, simulation, and free 
energy calculation, the process of identifying potential lead molecules from natural products has 
been significantly expedited. In this study, we employed pharmacophore‑based virtual screening and 
molecular simulations to identify natural product‑based inhibitors of human progesterone receptor 
(PR) in breast cancer treatment. High‑throughput molecular screening of traditional Chinese medicine 
(TCM) and zinc databases was performed, leading to the identification of potential lead compounds. 
The analysis of binding modes for the top five compounds from both database provides valuable 
structural insights into the inhibition of HPR for breast cancer treatment. The top five hits exhibited 
enhanced stability and compactness compared to the reference compound. In conclusion, our study 
provides valuable insights for identifying and refining lead compounds as HPR inhibitors.
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Breast cancer (BC) is a deadly malignancy that profoundly affects the lives of millions of women and their fami-
lies  worldwide1. It stands as the second most prevalent cause of cancer-related fatalities among women. To date, 
breast cancer is currently the most common form of malignant tumor affecting women  globally2. Progesterone 
and the nuclear progesterone receptor have a critical role in controlling mammary gland  tumorigenesis3,4. In 
breast cancer, the estrogen receptor (ER) and the progesterone receptor (PgR) play a vital role in determining 
the responsiveness to endocrine  therapies5. In breast cancer, relying solely on the expression of ER and PgR is 
unlikely to determine the most suitable treatment approach for a patient. Instead, multifactorial techniques are 
required to analyze the expression of tumor biomarkers for making informed decisions regarding the optimal 
treatment  regimen6. Progestogen defines the category of hormone molecules that act like progesterone in the 
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 uterus7. Progesterone plays a crucial role in regulating cell proliferation and differentiation in female reproduc-
tive  processes8. The term "progestin" is commonly used to encompass both natural progesterone and a range 
of synthetic hormone molecules. The human progesterone receptor (HPR) functions as a ligand-induced tran-
scription factor (TF), directly interacting with specific progesterone response elements (PREs) located in the 
promoter region of target  genes9. Apart from its function as a transcription factor, the Human progesterone 
receptor (HPR) can activate signal transduction pathways through rapid or non-genomic mechanisms, leading 
to cellular  responses10. Progestin induces the expression of certain genes that are involved in promoting breast 
cancer growth. Interestingly, these genes do not contain progesterone response elements (PREs) in their pro-
moters, which are typical binding sites for progesterone receptor (PR) to directly regulate gene expression. A 
remarkable point is that Breast cancer is a clinically heterogeneous disease, associated with a large number of 
gene mutations. Detection of the mutated genes clarifies the genetic and molecular mechanisms of the disease; 
furthermore, it significantly increases the chances of finding a successful  treatment11. In other words, recent 
findings on the molecular mechanisms of Breast cancer could lead to the discovery of new drug  candidates12. 
When ligands bind to HPR, a conformational change is induced, activating HPR to bind to DNA and regulate 
transcription. Despite extensive research, the precise molecular mechanisms governing the action of progesterone 
in breast cancer remain incompletely  understood13. While it is known that progesterone plays a role in breast 
cancer growth and development, the specific molecular pathways and interactions involved in this process have 
not been completely elucidated. Mifepristone (RU-486) is a well-known progesterone inhibitor that is primar-
ily used for medical abortion and emergency contraception. It is also being studied for its potential in treating 
certain hormone-related conditions, including breast  cancer14, and Ulipristal Acetate is another progesterone 
receptor modulator used for emergency contraception and the management of uterine  fibroids15. The Existing 
progesterone inhibitors may have side effects that limit their use. These can include nausea, vomiting, and changes 
in menstrual bleeding patterns. For this purpose developing therapies with greater selectivity for specific tissues 
can help reduce side effects and improve the overall safety profile. Given the vital role of the Human progesterone 
receptor (HPR) in breast cancer, it represents a critical therapeutic target for the treatment of breast  cancer16. 
Thus, there is an imperative to expedite the design of small molecule therapeutics or drugs that can efficiently 
inhibit HPR. Throughout history, natural products have been utilized as natural remedies for the treatment of 
various diseases since the early identification of  disease17. The identification of these molecules is accelerated 
by employing state-of-the-art computational methods, which encompass molecular screening, simulation, and 
free energy calculation  techniques18. Keeping in view the pharmacological potential of natural products and the 
speed and accuracy, this study utilizes Pharmacophore-based virtual screening and molecular simulation to target 
the human progesterone receptor (HPR) in breast cancer  treatment19–21. High throughput molecular screening 
was conducted using Traditional Chinese Medicine (TCM) and zinc databases, leading to the identification of 
potential lead molecules. The top two compounds from each database were analyzed for their binding modes. 
As a result, this study offers a structural basis for the inhibition of HPR in breast cancer treatment.

Methodology
The overall mechanism and various tools used in this study for designing lead compound by rational drug design 
are depicted in Fig. 1.

Retrieval of the structure
In order to perform the docking studies, the 3-dimensional structure of proteins is one of the necessary require-
ments. Therefore, the protein data bank (PDB) database was used to download the structures of Human pro-
gesterone hormone (PBD ID: 1A28, Resolution: 1.80 Å and AA: 256)22. The ligand (progesterone) was taken 
as a control and residues interacting with the control compound were taken as active site residues. Following 
the structure retrieval, they were imported into the interface of Maestro and were subjected to an optimi-
zation pipeline using the LigPrep module of the same software. Noteworthy, the OPLS3 force field for the 
structure optimization. Missing hydrogen atoms were also incorporated at the standard protonation state pH 
 723,24. Docking studies were performed using AutoDock vina docking algorithms, and virtual screening was 
conducted using compound  databases25. Based on the position occupied by the identified active site residues, a 
grid box of size x = 15.5161166153 Å, y = 20.48523316176 Å, and z = 19.5651016016 Å, with a center dimension 
of x = 13.208380341, y = 49.523715066, and z =− 30.7726860376 were set to define the active site. The docking 
results were analyzed, including binding affinities and interaction  visualizations26.

Pharmacophore model generation & validation
To find the lead compound against Human progesterone receptor (HPR) Pharmacophore based virtual screening 
were created based on the protein complex with the ligand. The selected protein was analyzed using pharmaco-
phore tool in Molecular operating environment (MOE), for H-bond donors/acceptors, hydrophilicity, lipophilic 
features and ionizable  charges27–29. Seven best pharmacophore features, that is, three hydrogen bond acceptor 
(HBA), two hydrophobic, and, two aromatic features were prioritized for generation of pharmacophore model. 
The model was then validated by two methods; a test datasets called in-house dataset. With the help of the 
research of our collaborators, the three-dimensional structures of 1,600 compounds were put into a database 
called an In-house. These compounds have a wide range of structures, with many different core scaffolds and 
substitution patterns. Second set of thirty nine active compound were taken from the literature study and then 
screened against the generated pharmacophore  model30. This was used to assess the accuracy of our predicted 
model through protein–ligand interactions.
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Pharmacophore‑based screening of natural product compound libraries
The validated pharmacophore model was applied to search databases or compound libraries (TCM and ZINC) 
for potential hits or new molecules that matched the pharmacophores  features31,32. Based on docking interactions 
and score, the complex structure of most potential inhibitor was employed for the generation of ligand-based 
pharmacophore model accessed through MOE. Based on the screening, structurally diverse hits were recovered 
presenting a better fit to the generated pharmacophore model. Compounds with molecular weights > 500KD; 
H-bond donor > 5; H-bond Acceptor > 10; and Logp o/w > 5 were selected.

Molecular interaction study and selection of lead compounds
Molecular docking is a computational technique used to predict the preferred binding mode and binding affin-
ity of a small molecule (ligand) to a macromolecular target (receptor)33. In the context of drug discovery and 
development, molecular docking plays a crucial role in identifying potential lead compounds that can interact 
with a specific target protein, such as a receptor involved in a disease  process34. The molecular docking typically 
involves the several steps; (1) Preparation the 3D structure of the target receptor obtained from experimental 
data. This involves adding missing atoms, assigning charges, and optimizing the protein structure, (2) Define a 
3D grid around the active site or binding pocket of the target receptor, where ligands are expected to bind, (3) 
Preparation of the small molecule ligands (e.g. natural product compounds) by optimizing their geometry, add-
ing hydrogen atoms, and assigning partial charges. Finally, the top-scoring complexes were then run through a 
molecular dynamics simulation using Amber v22 package.

Molecular simulation
A molecular dynamic (MD) simulation was performed to investigate the dynamic behavior of proteins upon 
inhibitor binding at the atomic level. MD simulations were performed on the docked conformations of the chosen 
hits inside the HPR active pocket. A solvent box (OPC) optimal point charge was added around each system, and 
ions were added to neutralize the charge. Next, each system underwent energy minimization using a minimiza-
tion algorithm such as steepest descent and conjugate gradient. The minimization process continued until the 
system reached a convergence criterion, such as a maximum force or energy change threshold. To allow each 
system to reach the desired simulation temperature and equilibrate, a temperature coupling algorithm (such as 
Langevin Dynamics or Berendsen thermostat) was used to gradually heat the system from a low temperature. 
Long-range electrostatic interactions were calculated using the Particle Mesh Ewald (PME) method, while van 
der Waals forces were calculated using Lennard-Jone’s  potential35. Each system was equilibrated at the target 
temperature and pressure for a certain period of time in several stages, including positional restraint, slow heat-
ing, and equilibration without restraints. To maintain covalent bond lengths, the SHAKE algorithm was used to 
constrain bond lengths and angles. The pressure of the system was controlled using a barostat such as Berendsen 
or  Andersen36. After equilibration, each system was simulated for a production time of 1000 ns using a molecular 
dynamics algorithm such as NPT or NVT  ensemble37. In this step, simulation parameters including time step 
and cutoff distances were set. Finally, the trajectory obtained from the production simulation was analyzed 

Figure 1.  Workflow and tools used in this study for designing of potent lead drugs candidates. (Pro Lab v2018; 
https:// origi npro. infor mer. com/8. 5/).

https://originpro.informer.com/8.5/
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using CPPTRAJ or PTRAJ  modules38. For Structural visualization, and graphical representation, PyMol v1.7, 
and Origin Pro Lab v2018, were  used39,40.

Post trajectory analysis
In the post-trajectory analysis phase of our study, following molecular dynamics (MD) simulation, we conducted 
several analyses to investigate the behavior of the reference/PR complex and the lead hits. Root mean square 
deviation (RMSD) analysis provided insights into the stability and structural changes of the complex over time. 
Root mean square fluctuation (RMSF) analysis revealed the flexibility and local fluctuations of PR residues. 
Hydrogen Bonding (HB) analysis identified key residues involved in stabilizing the complex. Radius of Gyration 
(RoG) analysis assessed the compactness and overall shape of the  complex41. These comprehensive post-trajectory 
analyses provided valuable information about the dynamics, flexibility, intermolecular interactions, and overall 
behavior of the HPR-progesterone complex, contributing to a deeper understanding of its structural dynamics.

Binding free energy estimation through MM/GBSA analysis
Insights into the process of how a protein identifies its biologically significant ligand or a small molecule inhibitor 
significantly impact the discovery of effective small molecule treatments. This approach has the advantage over 
others as it is less time-consuming and computationally  inexpensive42,43. It has been widely used to determine 
the BFE for protein–protein and protein–ligand complexes.

The following equation was used to calculate each term in the total binding energy.

This equation can be used to determine the contribution of interaction in the complex and can be expressed as;

This equation can be further restructured to calculate the specific energy term.

The total binding energy is determined by the contribution of each of the terms mentioned above. Specifically, 
the free energy of ligand–protein/protein–protein or protein/nucleic acid total binding is represented by ΔGbind. 
The total gas phase energy, which is the sum of ΔEinternal, ΔEelectrostatic, and ΔEvdw, is reflected in ΔEMM. The sum 
of polar (ΔGPB/GB) and non-polar (ΔGSA) contributions to solvation is represented by ΔGsol. The conformational 
binding entropy, typically calculated through normal-mode analysis, is represented by − TΔS. The internal 
energy arising from various bonds, angles, and dihedral in molecular mechanics (MM) force field is reflected in 
ΔEinternal (in the MM/PBSA and MM/GBSA, this value is always zero as seen in the single trajectory of a complex 
calculation). ΔEelectrostatic and ΔEvdw are the electrostatic and van der Waals energies calculated using MM, while 
ΔGPB/GB represents the polar contribution to the solvation-free energy, calculated using Poisson–Boltzmann (PB) 
or generalized Born (GB) methods. ΔGSA is the nonpolar solvation-free energy, usually calculated using a linear 
function of the solvent-accessible surface area (SASA)44. The conformational entropy was not calculated as it is 
computationally expensive and subjected to more inaccuracies.

Pan assay interference
During the early stages of drug design, it is crucial to screen for compounds that possess the desired pharma-
cokinetic properties, such as ADMET. To ensure the selection of high-quality compounds, an electronic filter 
known as Pan Assay Interference Compounds (PAINS) is employed, which focuses on identifying compounds 
of superior quality in  databases45. The PAINS filter is designed to scrutinize compounds that have a higher prob-
ability of interfering with assays, displaying chemical reactivity, being frequently hit, and not being recognized by 
toxicophoric filters. To predict the ADMET characteristics of the compounds, we utilized an online PAINS server 
(https:// biosig. lab. uq. edu. au/ pkcsm/ predi ction). Those substances that passed the PAINS filter and exhibited 
superior ADMET characteristics.

Results and discussion
In the current study pharmacophore based virtual screening, molecular modeling, and all-atoms simulation 
approaches have been utilized computationally to design potential small molecular drug for breast cancer. Breast 
cancer, the most common malignant tumor in women, involves progesterone and its receptor (HPR) in tumo-
rigenesis and treatment sensitivity. We employed virtual screening and simulation methods to investigate the 
binding of final hits with HPR and further validated by using binding free energy approach. Through molecular 
docking and simulations, we gained valuable insights into the interactions between the selected lead compounds 

(1)�Gbind = G(complex, solvated) − G(protein, solvated) − G(ligand, solvated),

(2)G = EMolecular Mechanics − Gsolvated − TS,

(3)�Gbind = �EMolecular Mechanics +�Gsolvated −�TS = �Gvaccum +�Gsolvated ,

(4)�EMolecular Mechanics = �Eint +�Eelectrostatic +�EvdW ,

(5)�Gsolvated = �GGeneralized born +�Gsurface area,

(6)�Gsurface area = γ .SASA+ b,

(7)�Gvaccum = �EMolecular Mechanics − T�S.

https://biosig.lab.uq.edu.au/pkcsm/prediction
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and the active site of HPR, identifying critical amino acid residues involved in ligand-receptor binding. The 
docking results demonstrated that the TCM38057/HPR exhibit the best docking energy of − 9.76 kcal/mol 
followed by TCM30460/HPR with the docking score of − 9.65 kcal/mol. Moreover, the docking results for 
ZINC32957366/HPR exhibit − 9.54 kcal/mol and ZINC57487561/HPR complexes revealed to be − 9.37 kcal/mol 
respectively. This structural understanding of HPR inhibition lays the groundwork for the rational design and 
optimization of novel HPR inhibitors for breast cancer therapy. The use of natural product-based compounds 
in this study holds significant promise for breast cancer treatment. Natural products are known for their diverse 
chemical structures, which may offer unique advantages over conventional synthetic drugs. Additionally, natural 
product-based inhibitors may present reduced side effects, making them attractive candidates for therapeutic 
development. The observed interactions and binding affinities of the lead compounds indicate their potential as 
viable alternatives agents to existing endocrine therapies targeting ER and PgR. Overall, this study contributes 
valuable insights into the role of HPR inhibition in breast cancer treatment and highlights the potential of natural 
product-based compounds as a viable therapeutic strategy. The integration of computational methodologies and 
molecular simulations not only provides a robust platform for identifying lead compounds but also accelerates 
the drug discovery process. Nonetheless, further experimental validation and preclinical studies are warranted 
to establish the efficacy and safety of these lead compounds in breast cancer therapy, ultimately advancing the 
field of breast cancer research and treatment.

Pharmacophore based virtual screening
Pharmacophore modeling is a computational technique used in drug design and discovery to identify the essen-
tial features of a ligand that are critical for its interaction with a biological target (such as a protein). The underly-
ing principle of this approach is to schematically represent the essential components of molecular recognition, 
enabling the identification and differentiation of molecules with similar biological activity and interactions 
with the target protein. Pharmacophore models describe the 3D arrangement of functional groups crucial for 
biological interactions with protein active sites. In ligand-based modeling, the prediction is made that similar 
compounds will exhibit comparable biological activity and bind to the target protein. This prediction is possible 
because the pharmacophore model emphasizes the critical features of the molecule involved in interactions and 
binding, rather than its overall structure. Ligand-based pharmacophore modeling is commonly employed to 
discover novel and potent ligands/inhibitors by comparing their molecular similarity to known promising inhibi-
tors, without relying on protein structure information, which confers a significant advantage to this  technique46. 
In this case, the pharmacophore model for the ligand (progesterone) binding in the protein structure consists of 
seven features: F1-arro (aromatic), F2-ess and HydA (essential and hydrogen bond acceptor), F3-Don (hydrogen 
bond donor), F4-ess and don (essential and hydrogen bond donor), F5-ess and Acc (essential and hydrogen 
bond acceptor), F6-arro (aromatic), and F7-Acc (hydrogen bond acceptor) Fig. 2. The pharmacophore model 
was validated by testing against a database of anti-cancer drugs, including progesterone as a reference. Then we 
used the model can be used to screen chemical databases (ZINC & TCM) for potential new compounds with 
similar features, aiding in the design and optimization of ligands with improved binding affinity and selectivity 
for the target protein. The pharmacophore model underwent validation by being tested against a collection of 
anti-cancer drugs, with Progesterone as a reference compound. Subsequently, this validated model was utilized to 
screen compounds sourced from the ZINC and TCM libraries. As a result of this screening, a multitude of potent 
compounds with robust interactions with the target protein were identified. 1450 Out of 100,000 compounds 
from ZINC, and 642 out of 40,000 compounds from the TCM database, structurally diverse hits were retrieved 
that match the Extended Huckel Theory (EHT) pharmacophore model. Finally, after applying Lipinski’s Rule of 
Five (Ro5) for predicting oral bioavailability, 345 hits from the ZINC library and 137 hits from the TCM library 
were selected. These selected hits are likely to have better potential for oral absorption and may be promising 
candidates for further drug development.

Figure 2.  3-D pharmacophores features of the reference ligand containing total seven features. (PyMol v1.7, 
https:// pymol. org/2/; Pro Lab v2018; https:// origi npro. infor mer. com/8. 5/).

https://pymol.org/2/
https://originpro.informer.com/8.5/
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Molecular docking study of lead compounds
The docking results were then compared with the previously generated pharmacophore model (EHT phar-
macophore model) to identify compounds that not only demonstrated favorable oral bioavailability but also 
exhibited key interactions with the essential pharmacophores features. This combined approach allowed for 
the prioritization of hits that possess both desirable pharmacokinetic properties and the ability to interact with 
the target protein in a manner consistent with the pharmacophore hypothesis. Consequently, a subset of com-
pounds with strong docking scores and alignment with the pharmacophore model was identified, indicating their 
potential as promising candidates for further drug development. The potential anti-cancer compounds that were 
designed were seen to fit well within the human progesterone receptor drug target as shown in Fig. 3. Based on 
the combined results of Lipinski’s Rule of Five (Ro5) filtering, molecular docking, and alignment with the EHT 
pharmacophore model, four compounds have been selected for further study, with two compounds originating 
from the ZINC library and two compounds from the TCM library. These findings synergistically support the 
rational design and discovery of new drug leads, increasing the likelihood of successful translation from virtual 
screening to experimental validation and potential clinical applications.

Interaction details of final hits from TCM&ZINC datasets
In order to understand the binding interaction information the 2D structure of the final hits compound was 
drawn on Maestro to investigate the potential binding interactions. The interaction results revealed promising 
binding interactions between the compound and the protein’s active site. The compound was found to form 
key interactions, including hydrogen bonds, hydrophobic contacts, and electrostatic interactions. The docking 
analysis of TCM30460/HPR revealed the formation of three hydrogen bonds between the compound and residues 
Asn719, Gln735 and Arg766 with a bond distance 2.71 Å, 3.82 Å, and 4.00 Å respectively. These hydrogen bonds 
contribute to the stabilization of the compound within the active site and indicate potential key interactions for 
ligand binding Fig. 4a. Similarly, TCM38057/HPR demonstrated four hydrogen bond between the compound 
and residues, including Gln725, Met759, Leu887, and Asn719 with a bond distance 2.84 Å, 3.97 Å, 3.10 Å, and 
2.80 Å. In addition, two Pi-Pi stacking with the residues Phe778, and Tyr890 respectively. These Pi-Pi stacking 
further enhance the binding affinity of the compound within the protein’s pocket Fig. 4b. The interaction pattern 
of the TCM32702/HPR reported two hydrogen bonds which were also observed in the active site residues of HPR 
Fig. 4c. In case of ZINC32957366/HPR complex demonstrated three hydrogen bond with the residues Leu887, 
Leu718, and Asn719 with a bond distance 3.14 Å, 3.32 Å, and 2.95 Å. In addition, one Pi-Pi stacking with Phe778 
Fig. 5. Similarly, ZINC57487561/HPR represents the total number of two hydrogen bond with the active site 
residues Gln725, and Arg766 with a bond distance 3.23 Å, and 2.90 Å Fig. 5. Overall, the docking analysis of the 
2D structure drawn on Maestro provided insights into the potential binding interactions between the compound 
and the target protein. The observed hydrogen bonds, Pi-Pi stacking interactions highlight specific residues that 
are critical for binding. These findings serve as a starting point for further drug design studies against the breast 
cancer target. Table 1 represents docking result of the final hits are given below.

Protein structural stability analysis
Assessing the dynamic stability of a protein bound to a ligand is essential to demonstrate the pharmacological 
activity of that particular compound. The stabilities of the five selected complexes, along with the reference 
complex, were determined by calculating the root mean square deviation (RMSD) of the backbone atoms. The 
ZINC57487561/HPR reported stable dynamic behavior with no significant structural perturbation. At the begin-
ning, the RMSD gradually increased over time. From 20 ns to the end, the RMSD graph maintains a stable trend 
without significant fluctuations, so the complex demonstrated stable dynamics with an average RMSD of 1.20 Å, 
because when RMSD ≤ 2 Å can prove the reliability of the docking method. In contrast, the ZINC32957366/
HPR reported significant structural perturbation until 600 ns. The RMSD continues to increase with abrupt 

Figure 3.  An illustration of the molecular surface of the human progesterone receptor (HPR) with all active 
hits superimposed, including the reference compound in red within the binding pocket. The ZINC57487561, 
ZINC32957366, TCM38057, TCM32702 and TCM30460 active ligands were represented by Green, Blue, Yellow, 
and Orange colors, respectively (PyMol v1.7, https:// pymol. org/2/; Pro Lab v2018; https:// origi npro. infor mer. 
com/8. 5/).

https://pymol.org/2/
https://originpro.informer.com/8.5/
https://originpro.informer.com/8.5/


7

Vol.:(0123456789)

Scientific Reports |         (2024) 14:6768  | https://doi.org/10.1038/s41598-024-55321-0

www.nature.com/scientificreports/

increase and decrease between 10 and 600 ns. And the maximum value appeared at 550 ns, with a maximum 
value of 1.70 Å. The complex demonstrated a uniform RMSD pattern from 20 ns to the end. Although there are 
fluctuations in the RMSD image but its average value is 1.4 Å, and a uniform straight RMSD was demonstrated 
and thus behave stably during the simulation. In general, ZINC32957366/HPR and ZINC57487561/HPR are 
relatively stable. The RMSD for the top hits from TCM database were also computed to reveal the stability profiles 
of these molecules. Among the top hits such as TCM30460/HPR and TCM38057/HPR complex were subjected 
to RMSD analysis. These three compounds i.e. TCM30460/HPR, TCM38057/HPR, and TCM32702/HPR dem-
onstrated alike behavior with no significant perturbation during the simulation and stabilized at 1.30 Å each. 
And the RMSD graph of these three compounds showed an upward trend before 150 ns. The TCM38057/HPR 
demonstrated a uniform RMSD pattern between 600 and 1000 ns with the gradual increasing trend but then 
significant perturbations were seen in the complex at the end of the simulation, and the RMSD graph shows a 
downward trend. In contrast, The RMSD graph of TCM30460/HPR shows no significant fluctuations between 
400 and 1000 ns. But the RMSD had large fluctuations and continues to increase with abrupt increase and 
decrease between 0 and 300 ns. Similarly, the significant perturbations were seen in the complex at the end of the 
simulation. In general, the average RMSD of these three compounds i.e. TCM30460/HPR, TCM32702/HPR and 
TCM38057/HPR are 1.30 Å, because when RMSD ≤ 2 Å can prove the reliability of the docking method (Fig. 6).

Residual flexibility analysis
In molecular dynamics (MD) simulations, the root mean square fluctuation (RMSF) is a useful metric and can 
be used to compare the flexibility of different regions within a molecule or between different molecules. This can 
help identify flexible regions that may be important for ligand binding or protein–protein interactions. RMSF is 
also an important parameter for validating MD simulations. Experimental measurements of RMSF can be used 
to validate the accuracy of the simulation and the force field used. Both the ZINC32957366 and ZINC57487561 

Figure 4.  2-Dimensional binding interaction of selected hits from TCM database. (PyMol v1.7, https:// pymol. 
org/2/; Pro Lab v2018; https:// origi npro. infor mer. com/8. 5/).

https://pymol.org/2/
https://pymol.org/2/
https://originpro.informer.com/8.5/
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presented higher flexibility are shown in Fig. 7. In case of ZINC compound ZINC32957366 demonstrated sig-
nificantly higher residues flexibility in the regions 25–50 and 150–200. At the same time, it also maintains a 
certain level of flexibility in other regions. The RMSF graph of ZINC32957366 exhibits significant fluctuations 
but overall maintains high flexibility. In contrast, the RMSF graph of ZINC57487561 is relatively stable, demon-
strated significant higher flexibility in residues within the regions 100–150 and 180–250. The minimum value of 
RMSF graph is higher than 6 Å. The RMSF graph of the TCM30460, TCM32702 and TCM38057 have similar 
trends, and their graph trajectories are similar. The RMSF value of TCM30460 is generally smaller than that of 
TCM38057, so the flexibility of TCM30460 is also smaller than that of TCM38057. The RMSF value of TCM38057 
is generally high, because the minimum value of RMSF graph is higher than 6 Å. And TCM38057 demonstrated 
significantly higher residues flexibility in the regions 20–40, 75–150 and 170–200. Similar to TCM38057, the 
TCM30460 also demonstrated significantly higher residues flexibility in the regions 20–40, 75–150 and 170–200. 
However, in other regions, the RMSF value of TCM30460 is relatively low. Overall, TCM30460 is also have a 
high flexibility. In general, both the TCM30460 and TCM38057 have a certain level of flexibility, and the RMSF 
value of TCM38057 is generally more than that of TCM30460.

Radius of gyration (Rg) analysis
The Radius of Gyration (Rg) analysis was performed to characterize the compactness and overall size of the 
protein throughout the simulation trajectory. The Rg values were calculated for each frame of the simulation. 
Figure 8 shows the Rg profile of the protein over time. The x-axis represents the simulation time (ns), while the 
y-axis represents the Rg values in angstroms. The average Rg values for ZINC32957366/HPR were recorded 
18.2 Å with a little fluctuation throughout the all simulation. Similarly, ZINC57487561/HPR the average value 
was recorded 18.3 Å thus convey a stable binding of the ligand with no significantly increase or decrease in 
the protein size during simulation Fig. 8a. And the Rg value of the reference/HPR is not very stable, show-
ing significant fluctuations. The Rg for the TCM30460/HPR complex started to decrease initially and reached 
18.20 Å at 30 ns and then equilibrated. A straight uniform Rg was seen from 40 ns until the last simulation time. 
Overall initially, at the beginning of the simulation, the protein exhibited a relatively low Rg value, indicating a 
less extended conformation. Moreover, the Rg for TCM38057/HPR started to increase initially and reached to 
18.4 Å, however after it decrease gradually and attained the tighter structural packing at 800 ns, which continues 
to follow the same pattern until 1000 ns Fig. 8b. These analyses revealed that the regions with a higher Rg value 
corresponded to more flexible and disordered regions, such as loops and coil regions. In contrast, regions with 
lower Rg values were associated with more structured elements, including alpha-helices and beta-sheets. These 
findings suggest that the protein undergoes conformational changes during the simulation, transitioning from a 
more extended state to a more compact and structured state. This compactness might be crucial for the protein’s 
stability, folding, and interactions with ligands or other biomolecules.

Hydrogen bond analysis
Hydrogen bond analysis was performed to identify potential hydrogen bonding interactions within the pro-
tein. Hydrogen bonds were calculated based on distance and angle criteria using a cutoff of 3.5 Å for the 

Figure 5.  2-Dimensional binding interaction of selected hits from ZINC database. (PyMol v1.7, https:// pymol. 
org/2/; Pro Lab v2018; https:// origi npro. infor mer. com/8. 5/).

https://pymol.org/2/
https://pymol.org/2/
https://originpro.informer.com/8.5/
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donor–acceptor distance and 30 degrees for the donor-hydrogen-acceptor angle. The analysis revealed the pres-
ence of several hydrogen bonds within the protein structure. Figure 9a–d shows a graphical representation 
of the hydrogen bond network. Each line represents a hydrogen bond, with the donor and acceptor residues 
labeled accordingly. Interestingly, residues involved in hydrogen bonding interactions were found to be consistent 
with the regions of high flexibility identified through the RMSF analysis. Residues 150–200 and 80–130, which 
exhibited higher RMSF values, also showed a higher propensity for forming hydrogen bonds with neighbor-
ing residues. The presence of hydrogen bonds in these flexible regions suggests their involvement in stabilizing 
local conformations and facilitating structural rearrangements. Additionally, the hydrogen bond network also 
extended to other regions of the protein, contributing to the overall stability and structural integrity. These 
combined findings from the RMSF and hydrogen bond analyses provide a comprehensive understanding of the 
dynamic behavior and intermolecular interactions within the protein structure. The identified flexible regions 
and hydrogen bond networks can guide further investigations into the protein’s function, ligand binding, and 
potential drug targeting strategies.

Binding free energy calculation
Molecular Mechanics/Generalized Born Surface Area (MM/GBSA) analysis was performed to assess the binding 
free energy and contribute to our understanding of the protein–ligand interactions. The MM/GBSA calculations 
were carried out for the protein–ligand complexes sampled during the molecular dynamics simulations. The 
binding free energy (ΔG_bind) is represented as the sum of the contributions from different terms, including 
the molecular mechanic’s energy (ΔG_MM), the solvation energy (ΔG_GBSA), and the entropy contribution 
(ΔS) are shown in Table 2. The standard deviation (SD) of the calculated values is also provided to indicate the 
reliability of the results. The calculated ΔG_bind values indicate the overall binding affinity of the ligands to the 
protein. Negative ΔG_bind values suggest favorable binding, while positive values indicate unfavorable binding. 

Table 1.  2D structures, database ID, toxicity, and docking scores of the top final five hits.

2D structures TCM ID Toxicity Docking score kcal/mol

TCM38057 None  − 9.76

TCM30460 None  − 9.65

TCM32702 None  − 9.23

ZINC32957366 None  − 9.54

ZINC57487561 None  − 9.37
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In our study, ZINC32957366/HPR, ZINC57487561/HPR, TCM30460/HPR, and TCM38057/HPR displayed 
ΔG_bind values of − 67.6065 ± 2.6532 kcal/mol, − 60.3815 ± 2.6222 kcal/mol, − 46.1585 ± 2.4538 kcal/mol, and 
− 48.3541 ± 2.6340 kcal/mol respectively, indicating strong binding affinities. Overall, the MM/GBSA analysis 
provided valuable insights into the binding free energy and the key molecular interactions between the protein 
and ligands. These findings enhance our understanding of the structure–activity relationships and guide future 
drug design efforts targeting the protein of interest.

The pan assay interference compounds (PAINS) filter assay
PAINS electronically filters quality compounds in the database targeting substances that could potentially disrupt 
assays due to their higher chemical reactivity, leading to a higher incidence of false positive hits. All the four 
compounds from both database were passed from the electronic filter as well as their ADMET properties were 
studied using online pain server Table 3. During drug design, it is always recommended to subject compounds 
to multiple filtrations for desirable pharmacokinetic features, such as ADMET characteristics.

Conclusion
Summarily, this study attempted to search for potential inhibitors of Human progesterone receptor using phar-
macophore based virtual screening, and MD simulation techniques. To this end, the crystal structure of HPR 
were retrieved from protein databank along with the reference ligand (progesterone) and subjected to a screening 
against ZINC and TCM datasets aimed at determining their binding potentials to the HPR and assessing their 
potential to serve as drugs based on following Ro5. The results derived from the screening pipeline revealed 
ZINC32957366, ZINC57487561, TCM30460, TCM32702 and TCM38057 as the most viable compounds that are 
worthy of exploration in future efforts. Ultimately, this study could serve to provide a scientific basis for the explo-
ration of novel therapeutic modalities for combating breast cancer therapy, upon further experimental validation.

Figure 6.  (a–f) Dynamic stability assessment of the control/HPR, and five top hits complexes.
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Figure 7.  (a–f) Residual flexibility assessment of the control/HPR, and five top hits complexes.
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Figure 8.  (a–f) Radius of gyration (Rg) of the control/HPR, and five top hits complexes.
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Figure 9.  Hydrogen bonding analysis for the control and top five hits identified through pharmacophore based 
screening.

Table 2.  Binding free energy results calculation using MM/GBSA approach.

Parameters ZINC32957366/HPR ZINC57487561/HPR TCM30460/HPR TCM38057/HPR TCM32702/HPR Control/HPR

ΔTotal  − 67.60 ± 2.65  − 60.38 ± 2.62  − 46.15 ± 2.45  − 48.35 ± 2.63  − 44.21 ± 1.10  − 40.23 ± 2.09

ΔEvdw  − 69.99 ± 2.64  − 64.82 ± 2.55  − 50.87 ± 2.30  − 48.35 ± 2.63  − 44.83 ± 2.17  − 49.69 ± 2.10

ESURF  − 7.43 ± 0.15  − 7.03 ± 0.13  − 6.72 ± 0.15  − 7.21 ± 0.19  − 3.42 ± 0.51  − 5.62 ± 0.51
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