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Extracting interpretable features 
for pathologists using weakly 
supervised learning to predict p16 
expression in oropharyngeal cancer
Masahiro Adachi 1,2, Tetsuro Taki 1, Naoya Sakamoto 1,3, Motohiro Kojima 1,3, Akihiko Hirao 3, 
Kazuto Matsuura 4, Ryuichi Hayashi 4, Keiji Tabuchi 2, Shumpei Ishikawa 3,5, Genichiro Ishii 1,6 & 
Shingo Sakashita 1,3*

One drawback of existing artificial intelligence (AI)-based histopathological prediction models is the 
lack of interpretability. The objective of this study is to extract p16-positive oropharyngeal squamous 
cell carcinoma (OPSCC) features in a form that can be interpreted by pathologists using AI model. We 
constructed a model for predicting p16 expression using a dataset of whole-slide images from 114 
OPSCC biopsy cases. We used the clustering-constrained attention-based multiple-instance learning 
(CLAM) model, a weakly supervised learning approach. To improve performance, we incorporated 
tumor annotation into the model (Annot-CLAM) and achieved the mean area under the receiver 
operating characteristic curve of 0.905. Utilizing the image patches on which the model focused, 
we examined the features of model interest via histopathologic morphological analysis and cycle-
consistent adversarial network (CycleGAN) image translation. The histopathologic morphological 
analysis evaluated the histopathological characteristics of image patches, revealing significant 
differences in the numbers of nuclei, the perimeters of the nuclei, and the intercellular bridges 
between p16-negative and p16-positive image patches. By using the CycleGAN-converted images, 
we confirmed that the sizes and densities of nuclei are significantly converted. This novel approach 
improves interpretability in histopathological morphology-based AI models and contributes to the 
advancement of clinically valuable histopathological morphological features.

Oropharyngeal squamous cell carcinoma (OPSCC) is a cancer that affects the tonsils, root of the tongue, soft 
palate, and  uvula1. Human papillomavirus (HPV) infection has recently emerged as an important risk factor for 
 OPSCC1. The most recent American Joint Committee on Cancer (AJCC) staging system separates HPV-positive 
and HPV-negative OPSCC because of their different tumor characteristics and  outcomes1,2.

p16 overexpression, as assessed by p16 immunohistochemistry (IHC), has emerged as a surrogate marker for 
HPV-mediated carcinogenesis and, therefore, as a way to identify HPV-positive oropharyngeal  cancer2. While 
p16 IHC is considered a sufficient standalone test for HPV status, there remains discordance between the results 
of p16 IHC and DNA in situ hybridization or polymerase chain  reaction3, with discordance rates ranging from 4 
to 20%3. For this reason, in addition to p16 IHC, the American Society of Clinical Oncology (ASCO) guidelines 
state that HPV-specific testing may be performed at the discretion of the pathologist and/or treating  clinician3. 
Therefore, recognizing the typical histopathological features of p16-positive cases is important for pathologists.

Clinically, HPV-positive OPSCC is associated with a more favorable prognosis than HPV-negative  OPSCC1,4. 
Some trials are examining the potential for de-escalating the intensity of OPSCC treatments to improve qual-
ity of life while maintaining an acceptable survival  rate1. However, clinical trials using HPV status as a single 
stratification biomarker cannot show the utility of such de-escalation  treatments4. This is because HPV-positive 
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patients cannot be considered a single group, as the characteristics of patients and the disease can  vary5. For this 
reason, further stratification of OPSCC has been  proposed6,7.

In recent years, artificial intelligence (AI) has been applied to various types of medical images, including 
histopathological images, to achieve largely improved diagnostic accuracy over human  assessment8. In the field 
of histopathology, deep learning algorithms have been applied for tasks such as tumor detection, grading, subtyp-
ing, and biomarker  prediction9–15. For HPV-positive OPSCC, some AI-based approaches have been developed 
for HPV infection prediction and  prognosis4,16,17. Klein et al. reported a model for predicting the association of 
HPV infection with OPSCC using hematoxylin eosin (HE)-stained slides and indicated the utility of their model 
for stratifying patient  prognosis4. However, attempts have been made to understand the histopathologic features 
that are important for AI prediction, but they are not clear.

The interpretability of AI prediction models is significant in the context of AI development and model 
 evaluation18. The ability to interpret the basis for the model’s decisions facilitates an assessment of whether the 
predictions rely on clinically relevant features. Furthermore, such interpretability enables the model to uncover 
novel  features18. Various methods, such as gradient class activation mapping (Grad-CAM), have been proposed to 
visualize regions crucial for  prediction8,18. These existing methods do not directly approach the important feature 
for prediction. Cycle-consistent generative adversarial network (CycleGAN) is an approach for unpaired image-
to-image  translation19. Specifically, when converting images, CycleGAN captures the features of one image group 
and translates the features of another image  group20. In histopathological images, the utility of CycleGAN has 
been reported for stain normalization and stain transformation to special  stains20–22. However, the effectiveness 
of CycleGAN in enhancing the interpretability of the AI model by employing it for the visualization of features 
on which the AI model focused has not been evaluated.

One problem with existing deep learning algorithms for making predictions from histopathological images 
is the heterogeneity of the tissue contained in a single  slide13. That is, a single tissue slide usually contains an 
abundance of nontumor tissue in addition to tumor tissue, which dilutes the overall information  content13. Two 
main approaches are available for handling the heterogeneity of tissue samples: fully supervised and weakly 
supervised approaches (Supplementary Table 1)23. Fully supervised approaches require the tumor region to be 
manually annotated on all slides used for training and testing, which imposes a heavy burden on the  annotator23. 
In contrast, weakly supervised approaches reduce the annotation burden by labeling each slide with a single label 
instead of manually annotating the tumor  region11. This type of approach also makes it possible to understand 
the predictive basis of the model by using images that the model focused on when making its  predictions18. Using 
this predictive basis, we can confirm whether the trained model had captured reasonable features.

There is a drawback to the use of weakly supervised approaches, however. For small cancer datasets, weakly 
supervised approaches are uncapable of fully capturing the morphological variability of tumor  tissue24. Indeed, 
the advantage of weakly supervised approaches over fully supervised approaches is that they enable training to 
be performed on large-scale  datasets18,24. For example, in the weakly supervised learning of pathology images, 
Lu et al. reported clustering-constrained attention-based multiple-instance learning (CLAM)9,10. The CLAM 
model uses an attention mechanism to extract representative images for prediction, aiding in the interpretation 
of the features on which the AI model  focused15. In one study using the CLAM model, a large-scale dataset 
with 22,833 slides was used for training, and the utility of the model for assessing the tumor origin for cancer of 
unknown origin was  demonstrated9.

In this study, we aimed to extract interpretable histopathologic morphological features of p16-positive OPSCC 
by using an AI prediction model (Fig. 1, Supplementary Fig. 1). We used the weakly supervised CLAM model 
for the prediction. To improve the performance of CLAM on small datasets, we modified the model to use the 
annotated tumor area (Annot-CLAM). Furthermore, to confirm the predictive features in a form that is easy 
for pathologists to understand, we attempted to visualize the features that our prediction model focused on by 
utilizing CycleGAN image translation. Then, to examine the reason for the discrepancy in the p16 IHC results 
and our model prediction results, we evaluated histopathologic morphology and gene expression using the 
Cancer Genome Atlas (TCGA)-Head and Neck Squamous Cell Carcinoma (HNSC) dataset. Here, we describe 
a novel approach for interpreting the predictive basis of weakly supervised prediction models for histopatho-
logical images. This approach introduces a new direction to utilize generative adversarial network (GAN) for 
model interaction.

Results
CLAM model performance and generated heatmaps
To predict p16 expression, we attempted to construct a model based on CLAM using the tissues of patients 
with OPSCC using the National Cancer Center Hospital East dataset. The dataset consisted of 116 whole-slide 
images (WSIs) from 114 primary OPSCC biopsy cases (50 p16-positive cases and 64 p16-negative cases). We 
first extracted 256 × 256 pixel patches at × 10,  × 20, and × 40 magnification levels and trained CLAM with images 
from each magnification level separately (Supplementary Fig. 2). We evaluated the slide-level prediction per-
formance using tenfold cross-validation; for each fold, the performance was evaluated using a test set after the 
training process was completed.

The mean area under the receiver operating characteristic (ROC) curve (AUC) in predicting p16 expression 
in OPSCC tissue ranged from 0.802 to 0.834 for CLAM models using patches with different magnifications from 
the whole tissue area (Table 1). The CLAM model produced interpretable heatmaps based on the contribution 
of each patch to the prediction process, examples of which are shown in Fig. 2a.
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Annot-CLAM model performance and generated heatmaps
We assumed that the predictable patches would be mainly in the tumor cell areas. Thus, improve the perfor-
mance of the model, we developed the Annot-CLAM model to use regions of interest (ROIs) in those areas. 
A pathologist manually annotated the tumor areas for all WSIs. The mean AUC of the Annot-CLAM models 
constructed with images of different magnifications using the annotated tumor areas ranged from 0.900 to 0.905, 
an improvement over the CLAM model results obtained using the whole tumor tissues (Table 1). The model 
using 20 × magnification was the best AUC. Thus, the model with magnification of 20 × was used for the rest of 
the study. The heatmaps indicate the differences between the levels of attention given to the tumor areas by the 
CLAM and Annot-CLAM models. Specifically, in the CLAM model, attention was focused on the tumor as a 
whole, whereas in the Annot-CLAM model, attention further stratified importance for prediction within the 
tumor area (Fig. 2b). Of note, the model performance improved by using the annotated tumor ROIs.

Figure 1.  Overview of the study The Annot-CLAM model, a version of the CLAM model modified to use 
annotated ROIs, was applied. Two analysis approaches were used to interpret the features that the prediction 
model focused on.

Table 1.  Area under the receiver operating curve and accuracy of each model. ACC, accuracy; AUC, area 
under the receiver operating characteristic curve; SD, standard deviation.

Magnification

Whole Tissue Area Annotated Tumor Area

Best fold AUC Mean AUC ± SD Best fold ACC Mean ACC ± SD Best fold AUC Mean AUC ± SD Best fold ACC 
Mean 
ACC ± SD

10x 1.000 0.802 ± 0.065 0.833 0.675 ± 0.087 1.000 0.900 ± 0.062 0.833 0.733 ± 0.062

20x 1.000 0.834 ± 0.101 0.833 0.725 ± 0.091 1.000 0.905 ± 0.072 0.917 0.775 ± 0.065

40x 1.000 0.817 ± 0.124 0.833 0.708 ± 0.100 1.000 0.900 ± 0.092 1.000 0.783 ± 0.093
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Comparison between the Annot-CLAM model and a review performed by pathologists
Given the performance of the Annot-CLAM model described above, we next sought to compare this perfor-
mance with that of pathologists in predicting p16 IHC result using HE slides. We first created a dataset contain-
ing 30 cases (15 p16-negative cases and 15 p16-positive cases) distinct from the cases used for model training 
and testing. The Annot-CLAM model developed with the × 20 magnification images yielded an AUC of 0.871, 
accuracy (ACC) of 0.800, sensitivity of 0.800, and specificity of 0.800 in this new dataset; on the other hand, 
the pathologist assessment of the cases yielded an average ACC of 0.692, sensitivity of 0.633 and specificity of 
0.750 (Supplementary Table 2). The ACC, sensitivity, and specificity of the Annot-CLAM model were higher 
than those of the pathologists.

External validation of the Annot-CLAM model
To validate our model, we used WSIs from the TCGA- HNSC project as an external and independent  dataset25. 
A total of 22 oropharyngeal cancer cases used in this project underwent p16 IHC; among them, 17 yielded WSIs 
that were suitable for use in the model. The TCGA-datasets consisted of 12 p16-positive cases and 5 p16-negative 
cases. Similar to the steps performed in the comparison with the pathologists, we annotated the tumor areas of 
the slides and evaluated them using the Annot-CLAM model developed with the × 20 magnification images, 
yielding an AUC of 0.874, ACC of 0.824, and F1 score 0.889 (Supplementary Table  3). This result indicates that 
our Annot-CLAM prediction model can make predictions with external datasets.

Histopathologic morphological feature analysis of highly predictive patches
The CLAM and Annot-CLAM models calculate an attention score for each patch depending on its contribution 
to the prediction. We extracted the highly predictive patches—those that achieved high attention scores—using 
the Annot-CLAM models developed with the × 20 magnification images that achieved the best performance 
among the models (Fig. 2c,d). From each of the test cases predicted correctly using the top three models, 5 highly 

Figure 2.  Heatmaps and highly predictive patches (a, b), Heatmaps obtained using the CLAM (a) and Annot-
CLAM models (b). The heatmaps were generated by computing the attention score for the model prediction. 
The levels of attention given to the tumor areas by the CLAM and Annot-CLAM models differed. (c), Patches 
from p16-negative cases at 20 × magnification. The patches have low nuclear density and intercellular bridges. 
(d), Patches from p16-positive cases at 20 × magnification. The patches demonstrate high nuclear density and 
small nucleus size.
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predictive patches were extracted, yielding a total of 140 patches (95 p16-negative patches and 45 p16-positive 
patches), whose characteristics were subsequently determined. The numbers of nuclei, the perimeters of the 
nuclei, and the intercellular bridges of the p16-negative and p16-positive patches were significantly different 
(all P < 0.001) (Table 2).

Feature evaluation using CycleGAN
Although the previous set of findings demonstrated the patch characteristics that were assessed by pathologists 
differed between p16-positive and p16-negative tissues, the features used by our model itself for prediction 
remain unknown. To interpret the features that our prediction model focused on, we evaluated the feature dif-
ferences between p16-positive and p16-negative patches using CycleGAN image translation. The generator for 
converting between p16-positive and p16-negative patches was trained using the 1266 highly predictive patches 
(785 p16-negative patches and 481 p16-positive patches) extracted from the training cases predicted correctly 
using the top three models, and 5 highly predictive patches were extracted from each case. The feature-converted 
images obtained after 50 epochs of training are shown in Fig. 3. To evaluate the features changed in the patches 
converted using CycleGAN, we reviewed the converted features in the 140 patches used earlier for histopathologic 
morphological feature analysis. When p16-negative patches were converted to fake p16-positive-like patches, the 
mean numbers of nuclei (P < 0.001), the calipers of the nuclei (P < 0.001), the circularity of the nuclei (P < 0.001), 
the numbers of distinct nucleoli (P < 0.001), the intercellular bridges (P = 0.029), and the keratin pearls (P = 0.023) 
significantly differed. There were no significant differences in the mean numbers of nuclei, the calipers of the 
nuclei (P = 0.253), the circularity of the nuclei (P = 0.066), and the keratin pearls (P = 0.242) between the original 
p16-positive patches and the fake p16-positive-like patches (Table 3). When the original p16-positive patches 
were converted to fake p16-negative-like patches, the mean number of nuclei and the calipers of the nuclei were 
significantly changed (all P < 0.001), but these features were not significantly different between the original 
p16-negative patches and the fake p16-negative-like patches (Table 4). The mean number of nuclei and the 
calipers of the nuclei changed significantly in both directions of image conversion.

Analysis of the incorrectly predicted cases using pathological review and clustering
The Annot-CLAM model was unable to correctly predict the labels for five cases (four p16-positive cases and 
one p16-negative case) in the National Cancer Center Hospital East test set. Compared to those of the correctly 
predicted cases, the numbers of nuclei, the perimeters of the nuclei, and the intercellular bridges of the incorrectly 
predicted p16-positive cases significantly differed (Supplementary Fig. 3, Supplementary Table 4). A previous 
report indicated the utility of the HPV prediction result using deep learning as a single biomarker with a favorable 
 prognosis4. We assumed that our prediction result would correlate with prognostic factors such as gene expres-
sion. To determine the correlations between Annot-CLAM model prediction and gene expression, we performed 
clustering using the RNA sequence results obtained for the TCGA dataset. Three cases were found in which 
our model predicted false labels, all of which were p16 negative; of these, one was HPV positive. The result of 
hierarchical clustering is demonstrated in Fig. 4a. The p16-negative cases that the Annot-CLAM model correctly 
predicted were clustered into one cluster, while the p16-negative cases incorrectly predicted by the Annot-CLAM 
model as p16 positive were clustered separately. Principal component analysis (PCA) indicated that the cases 
were separated into two clusters by the Annot-CLAM model prediction method (Fig. 4b). PCA also showed that 
the p16-negative cases and those incorrectly predicted by the Annot-CLAM model were among the cluster of 
p16-positive cases. That is, the cases with a distinct histopathological morphology and which showed discrepan-
cies between the p16 IHC results and Annot-CLAM predictions, showed different patterns of gene expression.

Table 2.  Comparison of histopathologic morphological characteristics between p16-negative and p16-positive 
OPSCC. P values for continuous variables are based on the t test. P values for categorical variables are based on 
Fisher’s exact test of association.

p16-negative n = 95 p16-positive n = 45 P value

Mean number of nuclei, n (range) 68.85 (5.00–216.00) 185.13 (12.00–459.00)  < 0.001

Mean circularity of the Nuclei (range) 0.76 (0.62–0.88) 0.76 (0.40–0.88) 0.973

Mean Maximum nucleus caliper, pixels (range) 20.64 (12.83–31.79) 15.46 (10.48–21.50)  < 0.001

Mean minimum nucleus caliper, pixels (range) 12.82 (7.86–21.52) 9.69 (6.13–13.40)  < 0.001

Perinuclear halo, n (%) Negative 21 (22.1) 14 (31.1) 0.297

Positive 74 (77.9) 31 (68.9)

Distinct nucleoli, n (%) Negative 56 (58.9) 30 (66.7) 0.458

Positive 39 (41.1) 15 (33.3)

Intercellular bridges, n (%) Negative 58 (61.1) 45 (100.0)  < 0.001

Positive 37 (38.9) 0 (0.0)

Keratin pearls, n (%) Negative 87 (91.6) 43 (95.6) 0.501

Positive 8 (8.4) 2 (4.4)

Necrosis, n (%) Negative 95 (100.0) 45 (100.0) 1.000
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Discussion
In this study, we aimed to extract features for predicting p16 expression in OPSCC tissue by using an AI model. 
To improve model performance, we constructed Annot-CLAM by modifying CLAM to use annotated ROIs. We 
interpreted the features that our prediction model focused on with two analytic approaches: a histopathologic 
morphological analysis of the patches with high attention scores and CycleGAN image translation analysis. Our 
analysis suggested that our prediction model possibly used the morphological features from histopathological 
images, especially the nucleus size and the number of nuclei, for p16 IHC prediction. CycleGAN could then 
be used to visualize these features. This visualization process is a novel and simple method for pathologists to 
visualize the features that the weakly supervised model focused on.

Nonkeratinizing squamous cell carcinoma has been reported as a histopathological feature of HPV-positive 
 OPSCC26,27. However, it is difficult to predict HPV infections by using keratinization because only approximately 
30% of HPV-positive OPSCC cases demonstrate  keratinization27,28. In our study, the highly predictive patches 
indicated that the presence of an intercellular bridge, a feature of keratinization, was a significant factor in predict-
ing p16 IHC. On the other hand, keratin pearls, another typical feature of keratinization, were not a significant 
factor. Our results revealed that the nuclear size and the density of the tumor cells were also important pathologi-
cal features for p16 IHC prediction. Consistent with our findings, previous reports have stated that the nucleus 
size of HPV-related SCC is significantly smaller than that of non-HPV-related SCC, which is in accordance with 
the DNA ploidy of these  tumors29,30. Overall, our results suggest that in addition to keratinization, nuclear size 
and density are key features for predicting p16 expression in IHC.

In this study, in addition to an attention network, we used CycleGAN to visualize the features that our 
prediction model focused on. Previous studies have reported methods for interpreting the reasons underlying 
model  predictions8,15.Grad-CAM was reported as the method for revealing the factors that contribute to model 
 prediction8,31. Grad-CAM highlights the important region for prediction, allowing CNN-based model to become 

Figure 3.  Image conversion results using CycleGAN. (a), Image conversion from p16-negative patches to 
p16-positive patches. The first row shows the original patches, and the second row shows the corresponding 
CycleGAN-converted patches. Small and dense nuclei were produced in the fake patches. (b), Image conversion 
from p16-positive patches to p16-negative patches. The number of nuclei decreased and the size increased in the 
fake patches.
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more transparent by producing visual  explanations27. The output of the important parts for prediction is different 
between CycleGAN and Grad-CAM, with Grad-CAM extracting important regions and CycleGAN extracting 
the important features themselves, not the regions. By using CycleGAN with feature translation, we confirmed 
the features itself extracted in the histopathologic morphological analysis. In addition, by showing the differences 
in features through visual information, pathologists, who routinely use visual information for diagnosis, will find 
it easier to recognize the differences. The use of the images produced using CycleGAN facilitates recognition 
of features and may improve pathologists’ diagnosis; in other words, pathologists may be able to learn from the 
findings discovered by AI and improve their own diagnostic abilities.

Table 3.  Comparison of pathological characteristics following image conversion from p16-negative patches to 
p16-positive patches. For the comparison between p16(−) and fake p16( +) patches, P values were calculated 
using the paired t test for continuous variables and the McNemar test for categorical variables. For the 
comparison between fake p16( +) and p16( +) patches, P values were calculated using the t test for continuous 
variables and Fisher’s exact test for categorical variables.

p16 (−) n = 95 Fake p16 ( +) n = 95 p16 ( +) n = 45
P value p16 (−) vs. Fake 
p16 ( +)

P value p16 ( +) vs. Fake 
p16 ( +)

Mean number of nuclei, n 
(range)  68.85 (5.00–216.00)  168.91 (36.00–275.00)  185.13 (12.00–459.00) < .001  .253

Mean circularity of nuclei 
(range)  0.76 (0.62–0.88)  0.78 (0.66–0.87)  0.76 (0.40–0.88) < .001  .066

Mean maximum nucleus 
caliper, pixel (range)  20.64 (12.83–31.79)  15.62 (12.81–25.99) 15.46 (10.48–21.50) < .001  .717

Mean minimum nucleus 
caliper, pixel (range)  12.82 (7.86–21.52)  9.61 (8.12–16.02) 9.69 (6.13–13.40) < .001  .773

Perinuclear Halo, n (%) Negative 21 (22.1) 19 (20.0) 14 (31.1) .838 .200

Positive 74 (77.9) 76 (80.0) 31 (68.9)

Distinct nucleoli, n (%) Negative 56 (58.9) 86 (90.5) 30 (66.7)  < .001 .001

Positive 39 (41.1) 9 (9.5) 15 (33.3)

Intercellular bridge, n (%) Negative 58 (61.1) 69 (72.6) 45 (100.0) .029  < .001

Positive 37 (38.9) 26 (27.4) 0 ( 0.0)

Keratin pearl, n (%) Negative 87 (91.6) 94 (98.9) 43(95.6) .023 .242

Positive 8 (8.4) 1 (1.1) 2 (4.4)

Necrosis, n (%) Negative 95 (100) 95 (100) 45 (100.0) 1.00 1.00

Table 4.  Comparison of pathological characteristics following image conversion from p16-positive patches to 
p16-negative patches. For the comparison between p16( +) and fake p16(−) patches, P values were calculated 
from the paired t test for continuous variables and the McNemar test for categorical variables. For the 
comparison between fake p16(−) and p16(−) patches, P values were calculated from the t test for continuous 
variables and Fisher’s exact test for categorical variables.

p16 ( +) n = 45 Fake p16 (−) n = 45 p16 (−) n = 95
P value p16 ( +) vs. Fake 
p16 (−)

P value p16 (−) vs. Fake 
p16 (−)

Mean number of nuclei, n 
(range)  185.13 (12.00–459.00)  56.98 (17.00–138.00) 68.85 (5.00–216.00) < .001 .152

Mean circularity of nuclei 
(range)  0.76 (0.40–0.88)  0.76 (0.68–0.84) 0.76(0.62–0.88) .882 .903

Mean maximum nucleus 
caliper, pixel (range)  15.46 (10.48–21.50)  21.72 (15.40–30.94)  20.64 (12.83–31.79) < .001 .145

Mean Minimum Nucleus 
caliper, pixel (range)  9.69 (6.13–13.40)  13.53 (9.08–18.48)  12.82 (7.86–21.52) < .001 .161

Perinuclear halo, n (%) Negative 14 (31.1) 9 (20.0) 21 (22.1) .302 .829

Positive 31 (68.9) 36 (80.0) 74 (77.9)

Distinct nucleous, n (%) Negative 30 (66.7) 37 (82.2) 56 (58.9) .146 .007

Positive 15 (33.3) 8 (17.8) 39 (41.1)

Intercellular bridge, n (%) Negative 45 (100.0) 44 (97.8) 58 (61.1) 1.00  < .001

Positive 0 ( 0.0) 1 (2.2) 37 (38.9)

Keratin pearl, n (%) Negative 43(95.6) 44 (97.8) 87 (91.6) 1.00 .271

Positive 2 (4.4) 1 (2.2) 8 (8.4)

Necrosis, n (%) Negative 45 (100.0) 45 (100) 95 (100) 1.00 1.00
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From the results of our study, the histopathologic and morphologic features of incorrectly predicted p16-pos-
itive cases differed from those our model used for prediction, suggesting that there were histopathologic mor-
phologically distinct cases. In addition, using TCGA datasets, we showed that cases with discrepancies between 
our predictions and the p16 IHC results had different gene expression levels from those of the correctly predicted 
cases. This result suggests that our histopathologic morphology-based prediction model likely focuses on features 
that are correlated with gene expression changes, which cannot be identified by IHC. Other studies have also 
investigated the relationship between histopathological morphology and molecular  profile15,32; for example, Chen 
et al. reported a change in the highly predictive area when the molecular profile was combined with a WSI-based 
prognostic  model15. Their findings indicated that histopathological morphology is correlated with the molecular 
profile, similar to the findings of our study. We believe that the advantage of AI-based histopathological evalua-
tion lies in its ability to compare histopathological morphology with molecular features by objectively evaluating 
morphological features.

In this study, we employed CLAM model, a method of weakly supervised learning. Several methods of weakly 
supervised learning have been reported in the context of histopathological  images18,33,34. Most weakly supervised 
learning models utilize methods such as multiple-instance learning and vision  transformer18. Ghaffari Laleh 
et al. compared six weakly supervised learning pipelines, including the CLAM method, and reported that the 
accuracy of predictions varied depending on the task, with some models demonstrating superior accuracy to 
 CLAM34. It is possible that other prediction models may yield more accurate results, and changes to the model 
may alter the important features for prediction. In many weakly supervised models, the relative importance of 
each image patch can be  calculated18. Therefore, CycleGAN visualization used in this study could be applied 
to other weakly supervised learning models, potentially contributing to the improvement of interpretability of 
weakly supervised learning models for histopathological images.

This study had several limitations. First, the labels used for our model were the p16 IHC results, which, 
although suitable for clinical use, were in some instances incorrect, leading to false-negative and false-positive 
cases that affected the prediction results. For example, in the predictions obtained for the TCGA dataset, Annot-
CLAM predicted positivity for p16 IHC-negative but HPV-positive cases. This means that our model was trained 
not on features related to p16 expression but on those related to HPV infection, which most p16-positive cases 
have. Labeling HPV results may therefore increase the accuracy of the model. Second, the slide images that we 
used were not color normalized, and therefore, we excluded features related to the color information. By using 

Figure 4.  RNA sequence data from the TCGA dataset. (a), Hierarchical clustering and heatmaps. The top 100 
variance genes were used for heatmap generation. The Euclidean distance and average variance methods were 
used to generate a hierarchical clustering dendrogram. (b), PCA plots presenting clusters of samples based on 
p16 IHC and Annot-CLAM prediction. p16-negative cases and those incorrectly predicted by the Annot-CLAM 
model were among the cluster of p16-positive cases.



9

Vol.:(0123456789)

Scientific Reports |         (2024) 14:4506  | https://doi.org/10.1038/s41598-024-55288-y

www.nature.com/scientificreports/

color-normalized images in the future, we may be able to improve the prediction models and identify useful 
color features in tissue slides.

In conclusion, we demonstrated important features for predicting p16 expression using interpretation of 
the AI mode. In the analysis approach using CycleGAN, features can be presented in an easily recognized form 
by pathologists through visualization. This is a novel approach for interpreting the predictive basis of weakly 
supervised prediction models for histopathological images by utilizing GAN for model interaction. This approach 
improves the interpretability of AI models that focus on histopathological morphology and contributes to the 
advancement of clinically valuable histopathological morphological features.

Methods
Patients and WSI datasets
We included 116 slides from 114 primary OPSCC samples for model training. These samples were obtained 
from patients who underwent biopsies between January 2018 and March 2021 at the National Cancer Center 
Hospital East. The inclusion criteria were as follows: histologically diagnosed squamous cell carcinoma from 
the biopsy sample and p16 IHC. The HE slides from the biopsy samples were scanned at 40 × magnification into 
digital slides using a NanoZoomer2.0HT digital slide scanner (Hamamatsu Photonics, Hamamatsu, Japan) and 
used as WSIs of this study.

p16 IHC was performed using mouse monoclonal anti-p16 antibody clone E6H4 (Roche Diagnostics, Man-
nheim, Germany). Subsequent steps were performed with the OptiView DAB IHC detection kit (Roche Diag-
nostics, Mannheim, Germany). We assessed the p16 status of each patient based on the nucleic p16 expression 
levels in 70% of the tumor cells in p16  IHC2. The p16 expression was evaluated by one pathologist and then 
double-checked by another pathologist. The p16 status was used for the label of this study.

The study was performed according to the Declaration of Helsinki and was approved by the institutional 
review board (IRB) of the National Cancer Center Hospital East (approval number 2022–142). Informed consent 
was waived by IRB of the National Cancer Center Hospital East. An overall flowchart of the study is presented 
in Fig. 1 and Supplementary Fig. 1.

Deep learning model
To verify model performance using a weakly supervised learning approach, we implemented the CLAM model, 
which is easy to use and performs digital pathology on WSIs (code available at https:// github. com/ mahmo odlab/ 
CLAM)10. The CLAM model can make predictions using a dataset of slide images and their labels. It also uses 
an attention mechanism to produce the images on which the model focuses when making its predictions. For 
this reason, this model was used in this study.

When preprocessing the slide images, CLAM segments the tissue area, which is then cropped into small 
patches. To create the patches, in this study, each slide is cropped into nonoverlapping 256 × 256 pixel regions 
from segmented images at 10x, 20x, and 40 × magnification. The training was performed separately for each 
magnification patch. After patch creation, CLAM extracts features from each patch by encoding into a 1024 
length one-dimensional feature vector. When encoding the patches, CLAM uses a convolutional neural network 
(CNN) of the imagenet pretrained ResNet50 architecture. During training, the model examines and ranks all 
patches, assigning an attention score to each patch, which informs its contribution or importance to the collective 
slide-level representation for  prediction10. The attention score is reflected in the rule of attention-based pooling 
for slide-level prediction, which computes the slide-level representation as the average of all patches in the slide 
weighted by their respective attention  score10. During training, CLAM learns from an additional learning task 
of clustering the top high- and bottom low-attention scored patches into distinct  clusters10. The total loss for 
a slide is calculated by summing both the slide-level prediction loss and the patch-level clustering  loss10. For 
model development and evaluation purposes, a tenfold Mote Carlo cross-validation strategy was implemented 
in which the training/validation/testing subsets were randomly derived from the entire cohort. Specifically, for 
each fold, the dataset was randomly split into training (60% of cases)/validation (10%)/testing (10%) sets. Per-
formance was assessed using the AUC and ACC. The model was trained using the adaptive moment estimation 
(Adam) optimizer with a learning rate of 2 ×  10–4. We used the default algorithm for the other parameters and 
did not perform data  augmentation10. The training process ended at the 200th epoch if the validation loss did 
not decrease from its previous minimum for 20 consecutive epochs.

Attention heatmaps
The CLAM model calculates an attention score for each patch, allowing slide-level predictions. The attention 
scores are calculated by the attention branches that contribute to the prediction process and then converted 
between 0 and 1, with 1 being most predictive and 0 being least  predictive10. Based on the attention scores, 
CLAM then produces heatmaps that allow the interpretation of the contribution of the tissue area to the model 
prediction  process10. The attention scores are converted to RGB colors; patches that receive high attention scores 
are displayed in red (highly predictive), and patches with low attention scores are displayed in blue (less predic-
tive). We tiled the slides into 256 × 256 pixel patches at the magnification level used for model  development10.

Annot-CLAM model
When training on relatively small datasets, which is an issue for weakly supervised approaches, we considered 
that incorporating annotations could improve the performance of the model. Therefore, we developed a CLAM 
model with annotations (Annot-CLAM) to extract interpretable features more efficiently. In this study, we con-
structed the deep learning model using the ROIs of annotations based on the CLAM model. In the segmentation 
and patch image generation part, we modified the CLAM model. The segmentation process was modified to 

https://github.com/mahmoodlab/CLAM)
https://github.com/mahmoodlab/CLAM)
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use the ROI of the annotated tumor area on each slide. The tumor area was annotated by one pathologist using 
QuPath version 0.3.2, a publicly available annotation tool for digital  slides35.We used the same algorithm for the 
parameters as the CLAM model when developing Annot-CLAM.

Comparison of the performances of the annot-CLAM model and pathologists
We used 30 primary OPSCC biopsy cases (30 slides) from the National Cancer Center Hospital East as the dataset 
to compare the performance of Annot-CLAM with that of pathologists in identifying p16 expression from HE 
slides. The dataset consisted of 15 p16-positive cases and 15 p16-negative cases, all distinct from the cases used 
for model development. The HE slides were scanned into digital slides using a NanoZoomer2.0HT digital slide 
scanner and cropped into patches at 20 × magnification. The digital slides were assessed by the Annot-CLAM 
developed with 20 × magnification images with the top AUC. Eight pathology residents reviewed the slides 
contained in the dataset under a microscope. The analysis was performed blindly, and the assessment was based 
on the histopathologic morphological features of HPV-positive oropharyngeal cancer, as reported in the WHO 
 classification26: (i) distinctive nonkeratinizing morphology, (ii) little surface dysplasia, (iii) growth beneath the 
surface epithelium lining as nests and lobules with central necrosis, (iv) tumor nests embedded in the lymphoid 
stroma, and (v) a high nuclear/cytoplasmic (N/C) ratio and high mitotic and/or high apoptotic ratios.

External validation of the model
To externally validate the performance of the model with the highest AUC—the one developed with 20 × magni-
fication images—we used the data from the public TCGA-HNSC dataset. The inclusion criteria were as follows: 
oropharyngeal carcinoma; available p16 IHC; and available digital histological slides. The p16 IHC data were 
obtained from the work published by the TCGA  network25. WSIs of HE-stained tissue were obtained from the 
TCGA-HNSC dataset. Each WSI was reviewed and annotated to create the ROI of its tumor area using QuPath 
version 0.3.235. The annotated tumor area was split into patches of 256 × 256 pixels at 20 × magnification. If the 
20x-magnified image was not found in the dataset, 512 × 512 pixel patches were instead split from the 40x-mag-
nified image and downscaled to 256 × 256 pixel patches.

Histopathologic morphological feature analysis of highly predictive patches
To compare the histopathological features between the highly predictive patches of p16-positive and p16-negative 
samples, the five highly predictive patches with the highest attention scores were extracted from each of the 
slides. We used the slides that were correctly predicted by the three models with the highest AUCs in the test 
dataset used for tenfold cross-validation. These patches were reviewed by pathologists, and the features that were 
objectively assessable and useful for predicting the p16 IHC results were selected. The following features were 
systematically recorded for each patch: the number of nuclei, the circularity of the nuclei, the maximum and 
minimum nucleus calipers, perinuclear halos, the number of distinct nucleoli, intercellular bridges, keratin pearls, 
and necrosis (Supplementary Fig. 4). The number of nuclei, the circularity of the nuclei, and the maximum and 
minimum nucleus calipers were measured using QuPath version 0.3.235. We also compared the patch features 
between correctly and incorrectly predicted slides.

Feature evaluation using CycleGAN
We applied CycleGAN to translate p16-negative and p16-positive  patches19. CycleGAN is an approach for 
unpaired image-to-image  translation19. Specifically, when converting images, CycleGAN captures the features 
of one image group and translates them into the features of another image  group20. CycleGAN is a GAN method 
that relies upon an unsupervised  approach19. We applied CycleGAN to capture the features from the highly 
predictive patches of p16-positive and p16-negative samples and visualize these features by translating them. 
To build the training dataset for CycleGAN, we first made predictions and calculated attention scores for all 
slides in the dataset using the three models with the top AUC values. We then extracted the five patches with the 
highest attention scores from the correctly predicted slides. Duplicate extracted patches were removed to create 
a dataset consisting of a total of 785 p16-negative patches and 481 p16-positive patches. Finally, we applied this 
dataset to the CycleGAN  model19. The model is trained for 50 epochs, and the number of epochs is chosen based 
on model loss and learning efficiency. We evaluated the differences between the original images and the images 
produced by CycleGAN using the highly predictive patches extracted from each of the correctly predicted slides 
in the test dataset, which were used for the pathological review discussed above. We also compared the changes 
in the histopathological features between the original and artificially produced images.

RNA sequence data processing and clustering analysis
Read count data were obtained from the TCGA-HNSC dataset. We used single-stranded first RNA count data 
for the analysis. Normalization and analysis were performed using iDEP 0.9636. The read counts for all samples 
were normalized using EdgeR. Weakly expressed genes were excluded if they did not have more than 0.5 reads 
per million in at least three samples. We performed heatmap production, hierarchical clustering, and PCA using 
RNA count data. The top 100 variance genes were used for heatmap generation. The Euclidean distance and 
average variance methods were used to generate a hierarchical clustering dendrogram.

Environmental and statistical analysis
The analysis of this study was executed on an Ubuntu 20.04 Linux system with an A100 GPU (NVIDIA, Santa 
Clara, CA). All statistical analyses were performed using EZR (Saitama Medical Center, Jichi Medical University, 
Saitama, Japan), a graphical user interface for R (The R Foundation for Statistical Computing, Vienna, Austria)37. 
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A P value < 0.05 was considered to indicate statistical significance. We performed between-group comparisons 
using Fisher’s exact test and the t test for categorical and continuous variables, respectively. Image patches before 
and after CycleGAN conversion were statistically compared using the McNemar and paired t tests for categorical 
characteristics and continuous variables, respectively.

Data availability
The authors declare that the data supporting the findings of this study are available within the article and that 
the source data for the figures are provided with this paper. The raw patient data are under restricted access for 
privacy reasons. Data from the TCGA, including digital histology and RNA sequence data, are available from 
https:// portal. gdc. cancer. gov. The HPV infection and p16 IHC results are available from the published work of 
The Cancer Genome Atlas  Network19 (https:// doi. org/https:// doi. org/ 10. 1038/ natur e14129). All other results in 
support of this manuscript are available from the corresponding author upon reasonable request.

Code availability
Our code used for the CLAM prediction and CycleGAN image translation processes is available from https:// 
github. com/ epoca ipath/ Annot- CLAM- Cycle GAN.
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