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An improved sparrow search 
algorithm and CNN‑BiLSTM neural 
network for predicting sea level 
height
Xiao Li 1,2, Shijian Zhou 3*, Fengwei Wang 4 & Laiying Fu 5

Accurate prediction of sea level height is critically important for the government in assessing 
sea level risk in coastal areas. However, due to the nonlinear, time‑varying and highly uncertain 
characteristics of sea level change data, sea level prediction is challenging. To improve the accuracy 
of sea level prediction, this paper uses a new swarm intelligence algorithm named the sparrow search 
algorithm (SSA), which can imitate the foraging behavior and antipredation behavior of sparrows, to 
determine optimal solutions. To avoid the algorithm falling into a local optimal situation, this paper 
integrates the sine–cosine algorithm and the Cauchy variation strategy into the SSA to obtain an 
algorithm named the SCSSA. The SCSSA is used to optimize the parameter values of the CNN‑BiLSTM 
(convolutional neural network combined with bidirectional long short‑term memory neural network) 
model; finally, a combined neural network model (named SCSSA‑CNN‑BiLSTM) is proposed. In this 
paper, the time series data of seven tidal stations located in coastal China are used for experimental 
analysis. First, the SCSSA‑CNN‑BiLSTM model is compared with the CNN‑BiLSTM model to predict 
the time series data of SHANWEI Station. With respect to the training and test sets of data, the 
SCSSA‑CNN‑BiLSTM model outperforms the other models on all the evaluation metrics. In addition, 
the remaining six tide station datasets and five neural network models, including the SCSSA‑CNN‑
BiLSTM model, are used to further study the performance of the proposed prediction model. Four 
evaluation indices including the root mean squared error (RMSE), mean absolute error (MAE), mean 
absolute percentage error (MAPE) and coefficient of determination  (R2) are adopted. For six stations, 
the RMSE, MAE, MAPE and  R2 of SCSSA‑CNN‑BiLSTM model are ranged from 20.9217 ~ 27.8427 mm, 
9.4770 ~ 17.8603 mm, 0.1322% ~ 0.2482% and 0.9119 ~ 0.9759, respectively. The experimental analysis 
results show that the SCSSA‑CNN‑BiLSTM model makes effective predictions at all stations, and 
the prediction performance is better than that of the other models. Even though the combination 
of SCSSA algorithm may increase the complexity of the model, indeed the proposed model is a new 
prediction method with good accuracy and robustness for predicting sea level change.

In the context of global warming, sea level rise has become a major global environmental problem, and the study 
of global and regional sea level changes is a hot topic in marine science at home and abroad. Direct observations 
of modern climate change show that the global climate system is undoubtedly warming. The sea level continues 
to rise due to the expansion of ocean heat and the loss of glacier material caused by global  warming1. Global sea 
level rise will increase the vulnerability of low-lying coastal urban populations and ecosystems, which are often 
affected by natural disasters such as floods, tides and saltwater intrusion.

To actively cope with the social and economic impacts of sea level rise on coastal areas in the context of cli-
mate change, countries need the ability to make reasonable predictions of the sea level rise trends. An artificial 
neural network (ANN) can learn and capture trends in sea level change very effectively. As a data-driven model, 
an ANN can establish the relationship between inputs and outputs through repeated training. Moreover, the 
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larger the amount of data, the better the training effect will be. Therefore, many scholars apply ANNs to sea level 
predictions. Röske2 first applied a neural network to sea level prediction for the North Sea coast of Germany, pro-
viding a new way of thinking in the sea level prediction field. Since then, neural networks have been widely used 
by relevant researchers in ocean predictions. For example, O. Mackarynskyy et al.3 have used neural networks to 
predict hourly sea level changes measured by tide gauges in Boat Harbor, Hillarys, Western Australia; half-day, 
one-day, 5-day and 10-day mean sea levels were also measured. Huang et al.4 developed a regional water level 
neural network for predicting water levels at coastal inlets, and successfully predicted water levels at local sta-
tions at coastal inlets using a series of water levels at NOAA stations at a certain distance. Karimi et al.5 used the 
adaptive neuro-fuzzy inference system (ANFIS) model, ANN model and autoregressive moving average (ARMA) 
model to predict and compare the sea level data series of tidal gauges in Darwin Harbor. The experimental results 
showed that the prediction effects of the ANFIS model and ANN model were similar and superior to that of the 
ARMA model. Muslim et al.6 used two neural networks, the ANFIS and multilayer perceptron neural network 
(MLP-ANN), to explore the effects of different meteorological parameters on sea level rise predictions in different 
periods and found that the ANFIS model had a better prediction performance than the MLP-ANN model. Guil-
lou et al.7 used multiple regression methods and multilayer perceptrons to predict regional sea levels in western 
Brittany, France. Makarynska et al.8 used a feedforward neural network to predict the sea level and compared it 
with the actual value; the authors concluded that the method in the paper could be used for sea level prediction 
through evaluation indicators. Nieves et al.9 used Gaussian processes and recurrent neural networks to predict 
coastal sea level changes at regional locations on different time scales. ANNs have also been applied in storm 
surge  forecasting10–12. The least squares estimation (LSE) model, multiple linear regression (MLR) model and 
several single neural networks were used to predict the daily mean sea level  height13. Other scholars have used 
neural network models to construct ocean temperature anomaly  predictions14,15.

All the above studies used a single neural network model to make predictions. However, every single model 
was not perfect and had its own limitations. With the deepening of related research, many people have combined 
other methods and neural networks, or a variety of neural networks, to form hybrid models for prediction. In 
this way, the advantages of various neural networks can be used simultaneously. Fourier transforms and wavelet 
transforms are the most widely used methods for denoising signal  data16. Wang et al.17 proposed a method that 
combines wavelet decomposition and an adaptive neural fuzzy inference system (ANFIS) to construct a hybrid 
model capable of predicting multi-hour sea level. In 2007, researchers combined harmonics with BP neural 
networks to forecast  tides18. Han et al.19 predicted SST by combining CNN and gated recurrent units (GRU) 
together with frequency analyses, and others used a network model that combines the CNN model with the 
long short-term memory (LSTM) model in ocean  prediction20,21. A hybrid model can combine the advantages 
of several models, so the prediction ability is greatly improved.

However, whether a single model or a mixed model is used, many parameters involved in the model need 
to be determined by experience or trial and error, which adds subjective factors. Therefore, several researchers 
have turned their attention to optimization algorithms, which can be used alone or can optimize the parameters 
of the traditional methods and obtain more reasonable parameter settings, greatly improving the predictive 
performance of the model. The most widely used optimization algorithms are the genetic algorithm (GA) and 
particle swarm optimization (PSO). In 2004, Alvarez et al.22 successfully constructed a prediction model for 
the Ligurian Sea SST and sea level anomalies using the GA algorithm. You et al.23 used a GA to optimize the 
parameters of a two-dimensional storm surge calculation model, thereby improving the sea level prediction 
results. Wang et al.24 used a GA to optimize the parameters of a wavelet neural network for non-astronomical 
tide forecasting. Cheng et al.25 proposed an improved genetic algorithm and applied it to the optimization of 
reservoir systems with good results. Wang et al.26 proposed a hybrid genetic algorithm that combines chaos 
and simulated annealing methods, and the experimental results showed that the proposed hybrid algorithm is 
superior to both genetic algorithms and chaotic genetic algorithms. Some scholars use PSO and support vec-
tor machines to find the best  value27. Nagappan et al.28 used the PSO algorithm to optimize ANN weights and 
predict faults in systems. Many other optimization algorithms have been applied in practice. Examples include 
the artificial bee colony (ABC) algorithm and ant colony optimization (ACO)  algorithm29, the cuckoo search 
(CS)  algorithm30 and the imperialist competition algorithm (ICA)31. Alizadeh et al.32 applied GA, ICA, CS and 
the bee algorithm (BA) to ANN training to optimize its weight and deviation values and compared them with 
the traditional Levenberg–Marquardt (LM) algorithm. The results show that the CS, ICA and BA algorithms are 
more effective than the GA and LM algorithms.

The various examples above show that a combination algorithm can improve the prediction accuracy, and the 
prediction performance can be further enhanced if the parameters are optimized by an optimization algorithm. 
Therefore, this paper combines the improved sparrow search optimization algorithm (SCSSA) with a CNN model 
and a BiLSTM model to propose a combination model named SCSSA-CNN-BiLSTM. The prediction ability of 
the model proposed in this paper is verified by using the data from multiple tide stations and comparing the 
results with those of four other models. The main innovations and contributions of the paper are as follows:

(1) In this paper, the CNN-BiLSTM combined with a neural network model is applied to sea level time series 
predictions. A prediction experiment of sea level time series data from multiple tide stations shows that 
the combined CNN-BiLSTM model outperforms the single models in this field.

(2) In this paper, a new optimization algorithm combining the sparrow search algorithm with sine–cosine and 
the Cauchy variation (SCSSA) is proposed and used to optimize the learning rate, the number of hidden 
layer nodes and the parameter values of the regularization coefficient of the CNN-BiLSTM neural network 
model, which avoids the unsatisfactory parameter settings caused by the artificial selection of parameter 
values according to experience. By comparing and analyzing the measured time series data of tide stations, 
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it is concluded that the SCSSA-CNN-BiLSTM model is better than the CNN-BiLSTM model for sea level 
time series predictions.

(3) In prediction analysis cases, this paper takes the measured sea level time series of six tide stations in China 
as the dataset and uses the single neural network models LSTM, CNN and BiLSTM and the combined 
models CNN-BiLSTM and SCSSA-CNN-BiLSTM for prediction and comparison. The accuracy and robust-
ness of the SCSSA-CNN-BiLSTM model for sea level prediction are verified, and the results of this study 
may lead to new ideas for sea surface-related research in coastal areas.

The rest of this paper is organized as follows. The “Theory and methods” section describes the basic principles 
used in the experiment. The “Results” section contains predictive comparison experiments between the model 
proposed in this paper and the model before optimization. The proposed model and various prediction models 
are discussed and compared in the “Discussions” section, and finally, the concluding remarks are provided in 
the “Conclusions” section.

Theory and methods
Study area
The study area is the coastal waters of China. To verify the reliability and applicability of the method proposed 
in this paper, monthly mean sea level data from 7 tide stations located in the coastal waters of China were used. 
The study area is shown in Fig. 1. The specific information of the data of each tide station is shown in Table 1. The 
missing data for each station are shown in Table 2. These missing values are supplemented by linear interpolation.

In this paper, we use China’s coastal tide station’s MMSL data from the Permanent Service for Mean Sea 
Level (https:// www. psmsl. org/ data/ obtai ning/). The entire prediction process was completed in MATLAB 2021b 
software using a personal computer configured with an Intel(R) Core(TM) i5-8300H CPU, 8.00 GB of RAM, an 
NVIDIA GeForce GTX 1050 Ti graphics card and a Windows 10 operating system. The prediction method of 
this paper is single step prediction, and the lag is selected as 12. The first 12 data points of each station data in 
Table 1 serve as startup input variables to predict the subsequent sea level data. The first 70% of the remaining 
data is divided into a training set for training the model, and the last 30% is divided into a test set for testing the 
prediction effect of the trained model.

Figure 1.  Study area map.

https://www.psmsl.org/data/obtaining/
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Bidirectional long short‑term memory neural network (BiLSTM)
The LSTM model is a variant of a recurrent neural network (RNN) in which information from each time step is 
no longer passed on to the next time step but rather via an additional “memory” unit. This allows LSTM to better 
handle long-term dependencies without the problem of disappearing gradients. LSTM introduces three gating 
mechanisms, namely, an input gate, forget gate and output gate, to choose to forget or retain  information33. The 
BiLSTM model is further improved based on the LSTM model using a forward and reverse bidirectional LSTM 
so that its output results can not only use past data but can also connect with future data, which is highly suitable 
for processing time series data. The structure of the BiLSTM model is shown in Fig. 2, where ht and h′t are the 
reverse and forward LSTM hidden layers, respectively. xt is the input value, yt is the final output value, t  is the t  
th time step and σ is the sigmoid function.

Table 1.  Information about each tide station.

Station ID Country Latitude Longitude Time span

SHANWEI 1406 China 22.750 115.350 1975.01–1994.12

DALIAN 723 China 38.867 121.683 1978.01–2022.12

KANMEN 934 China 28.083 121.283 1959.01–2022.12

LUSI 979 China 32.133 121.617 2000.01–2020.08

NANSHA 1730 China 9.550 112.880 2004.01–2015.12

XISHA 1745 China 16.833 112.333 1990.01–2018.12

ZHAPO 933 China 21.583 111.817 1959.01–2022.12

Table 2.  Missing data for each station.

Station Missing data (YYYY. MM)

SHANWEI –

DALIAN 1979.01, 1979.02, 1996.11, 1998.09, 2000.12, 2005.03, 2006.01, 2021.03–2021.06

KANMEN 1962.09, 1993.11, 1998.09, 1999.08–1999.09, 2000.11–2000.12, 2005.03, 2006.01, 2021.03–2021.06

LUSI 2000.02, 2000.11, 2000.12, 2001.02–2001.04, 2003.08–2003.12, 2004.11–2004.12, 2005.01–2005.03, 2006.01

NANSHA 2005.03, 2006.01

XISHA 1998.09, 1999.08, 2005.03, 2006.01

ZHAPO 1998.09, 1999.08, 2005.03, 2006.01, 2021.03–2021.06

Figure 2.  BiLSTM model structure.
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CNN‑BiLSTM
Convolutional neural network (CNN) is a class of feedforward neural networks that include convolutional 
computations and have deep structures. The essence of the CNN model is to build multiple convolutional filters 
that can extract data features and use hierarchical convolutional structures to gather input data to extract hidden 
topological features in the  data34. With the increase in the number of network layers, the features extracted by 
the model will become increasingly abstract, and these abstract features will be integrated through the fully con-
nected layer and then processed by the softmax or sigmoid activation function for classification or  regression35.

CNN and BiLSTM are two important deep learning models. The CNN model performs well in extracting 
local features from the data and combining these features to form advanced features. In contrast, BiLSTM is 
more suitable for time expansion and has good long-term memory  functions36. When the advantages of both 
methods are fully combined, the processing of the time series will improve. The structure of the CNN-BiLSTM 
model is shown in Fig. 3.

A sparrow search algorithm combining sine–cosine and the Cauchy variation
The sparrow search algorithm (SSA)37 is an optimization algorithm proposed in 2020 that divides sparrows into 
three categories, discoverers, followers and observers. The discoverers can preferentially find food for the colony 
and guide the follower to forage. The position of sparrows can be represented in the following matrix:

where n is the number of sparrows and d represents the dimension of the variables of the problems to be opti-
mized. Then, the fitness value of all sparrows can be expressed by the following matrix:

where n is the number of sparrows , d represents the dimension of the variables of the problems to be optimized, 
and the value of each row in FX represents the fitness value of the individual.

Sparrows with better fitness values have the priority to find food and become discoverers, leading the entire 
population to find the source of food. The discoverers’ position update equation is:

where Xt
i,j is the position of the ith sparrow in dimension j under the iteration number t  , α ∈ rand(0, 1] , Itermax 

is the maximum number of iterations, R2 ∈ (0, 1) , it is the warning level, ST ∈ [0.5, 1] , represents a safe value, Q 
is a random number that follows a normal distribution and L is a matrix with a row of d-dimensional elements 
that are all one.
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Figure 3.  Structural diagram of the CNN-BiLSTM model.
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The equation for updating the followers’ positions is as follows:

where Xt
Worst is the overall worst position, n is the total number of sparrows, and i > n/2 indicates that the ith 

sparrow has a poor fitness value and needs to fly to other locations to feed. Xp is the optimal location for the 
discoverers, A is a matrix with a row of d-dimensional elements that are randomly 1 or -1 and A+ = AT (AAT )−1.

Considering the need for safe predation for the entire population, with 10% to 20% of the sparrows in the 
population acting as observers, the position update equation is:

where Xt
best is the overall optimal position, β is the step size correction coefficient following the normal distri-

bution, fi is the fitness value of the sparrow, and fω and fg are the worst and best overall fitness, respectively. 
When fi > fg , it indicates that the sparrows are at the edge of the pack and are prone to danger; when fi = fg , 
it indicates that the sparrows in the pack feel the danger of the enemy and should immediately move toward 
the other sparrows. k ∈ [−1, 1] is a random number, and ε is an extremely small constant that prevents the 
denominator from being zero.

During the process of hunting a sparrow, the food source may be different, as may the location. When the 
food found by the discoverers is locally optimal, a large number of followers will flock to the location, causing 
the discoverers and the entire group to stagger and lose positional diversity, thereby increasing the probability 
of falling into local extremes. Therefore, the sine–cosine algorithm (SCA)38 was introduced into the SSA in this 
paper, and the oscillating change characteristics of the sine and cosine models were used to determine the loca-
tion of the discoverers and maintain the individual diversity of the discoverers, thereby improving the global 
search ability of the SSA to avoid falling into local optima.

The step search factor in the sine–cosine algorithm is as follows:

where a is a constant, t  is the number of iterations, and Itermax is the maximum number of iterations. The step 
search factor shows a linear decreasing trend, which is not conducive to balancing the global search and local 
development capabilities of the SSA. Therefore, the step search factor is improved. The new nonlinear decreas-
ing search factor is shown in Eq. (7). In addition, the update of the population individual position of the SSA is 
often affected by the current position, so a nonlinear weight factor ω is added to adjust this situation, and the 
mathematical equation of ω is Eq. (8).

where η is the adjustment factor, η ≥ 1 , and a = 1.

The new discoverers’ mathematical equation then becomes:

where r2 ∈ [0, 2π] and r3 ∈ [0, 2π] control the movement distance of the sparrow and the influence of the optimal 
individual on the next position of the sparrow population, respectively.

To avoid the local optimal solution, this paper also introduces the Cauchy variation strategy into the original 
follower equation to obtain a new follower equation:

where cauchy(0, 1) is the standard Cauchy distribution function.
The Cauchy distribution is similar to the normal distribution, however, the shape of the whole distribution 

is flatter, and the speed of approaching the zero value is slower. Therefore, perturbation of the sparrow position 
update in the population with the Cauchy distribution can expand the search range of the algorithm so that it is 
not easy for the algorithm to fall into a local optimal situation.

After improvement, the the SCSSA algorithm procedure is as follows:
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Step 1: Initialize the population.
Step 2: Calculate the fitness value of each sparrow to find the best and worst individuals.
Step 3: Update the discoverer position with the new discoverers equation.
Step 4: Update the followers’ positions with the new followers equation.
Step 5: Update the observers’ positions using the original equation.
Step 6: Check whether the number of iterations reaches the termination condition. If yes, go to the next step. 
If not, go back to Step 2.
Step 7: The calculation is complete, and the optimal position and fitness value are displayed.

SCSSA‑CNN‑BiLSTM
Considering that many parameters in the CNN-BiLSTM model are manually and subjectively set, there may be 
unreasonable parameters. Therefore, this paper optimizes the parameters of the CNN-BiLSTM model via the 
SCSSA algorithm and proposes the SCSSA-CNN-BiLSTM sea-level time series prediction model. A structural 
diagram of the SCSSA-CNN-BiLSTM model in this paper is shown in Fig. 4. The optimization and prediction 
process of the entire model is shown in Fig. 5 and is divided into the following steps:

Figure 4.  Structural diagram of the SCSSA-CNN-BiLSTM model.

Figure 5.  Prediction flow chart of the SCSSA-CNN-BiLSTM model.
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Step 1: Divide the original data into a training set and a test set.
Step 2: The training set is input into the model to train the model, the CNN-BiLSTM model is optimized 
through the SCSSA algorithm, and the optimized SCSSA-CNN-BiLSTM model is built.
Step 3: The test set is input into the constructed SCSSA-CNN-BiLSTM model to obtain the predicted values.
Step 4: Compare and verify the measured real values with the predicted values to evaluate the prediction effect.

Evaluation indices
To evaluate the prediction effect of the monthly mean sea level time series of tide stations, this paper adopts four 
evaluation indices commonly used in the prediction field, namely, the square root error (RMSE), mean absolute 
error (MAE), mean absolute percentage error (MAPE) and coefficient of determination  (R2). The equations for 
the four evaluation indices are as follows.

where xi is the measured value, x̂i is the predicted value, xi is the mean measurement and N is the number of 
samples.

Results
Data analysis
Statistical indicators for seven stations, including the mean and standard deviation (SD), were calculated. The 
minimum (Min), maximum (Max) and skewness (Skew) are shown in Table 3.

Optimization process
In this section, the SCSSA algorithm is used to optimize the parameters of the CNN-BiLSTM model to obtain 
reasonable parameter values. The CNN-BiLSTM model contains two convolutional layers and three BiLSTM 
layers. The training epochs of all the models were set to 300, and the initial learning rate was 0.01. The convolu-
tion kernel of the two convolutional layers is 3 times 1, the stride is 1, the activation function of the convolution 
layer uses the ReLU function, the pooling window size of the pooling layer is 2 times 1, and the stride is 1. The 
number of nodes in the BiLSTM layer is 10, both the forward and reverse LSTM gate structures in the BiLSTM 
layer uses sigmoid and tanh activation functions, the dropout rate is 0.2 and the regularization coefficient is set 
to 0.002. The initial learning rate, regularization coefficient and number of neurons in the BiLSTM hidden layer 
of the SCSSA-CNN-BiLSTM model are obtained by the optimization algorithm, and the other parameter settings 
are the same as those of the CNN-BiLSTM model. The population of the SSA is 10, the number of iterations is 
6 and the selected data of the tide station are the monthly mean sea level data of the SHANWEI Station. In the 
optimization process, the minimum RMSE is used as the objective function. When the number of iterations 
was completed, each parameter value corresponding to the minimum fitness value was saved as the optimized 
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Table 3.  Statistical information for each tide station.

Station Mean (mm) SD (mm) Min (mm) Max (mm) Skew

SHANWEI 7035 101 6824 7394 0.8204

DALIAN 7063 183 6667 7445 0.0043

KANMEN 6981 124 6709 7368 0.5544

LUSI 7074 144 6787 7387 0.1605

NANSHA 6987 78 6768 7198 0.0978

XISHA 6978 105 6772 7382 0.4999

ZHAPO 7012 124 6722 7520 0.5632
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parameter value. The fitness value curve in the optimization is shown in Fig. 6, and the range of each parameter 
to be optimized and the optimal parameters obtained are shown in Table 4.

Prediction comparison
To reflect the improvement of the prediction accuracy of the optimized CNN-BiLSTM model, the CNN-BiLSTM 
model and SCSSA-CNN-BiLSTM model were adopted to predict the monthly mean sea level data of the SHAN-
WEI Station. The prediction diagram of the SHANWEI station data is shown in Fig. 7. As shown in the left dia-
gram, both models better predicted the size and trend of the data in the prediction of the training set. However, 
the data predicted by the SCSSA-CNN-BiLSTM model are more consistent with the data of the original training 
set than are those predicted by the CNN-BiLSTM model. On the right, both models predict the general trend of 

Figure 6.  SCSSA fitness curve.

Table 4.  Values of the optimization parameters.

Parameters Initial learning rate Regularization coefficient
The number of BiLSTM 
neurons in layer 1

The number of BiLSTM 
neurons in layer 2

The number of BiLSTM 
neurons in layer 3

Range of each Parameters 0.01–0.0001 0.01–0.0001 1–300 1–300 1–300

Optimum values 0.003808 0.0001 208 27 13

Figure 7.  Prediction comparison between the two models at the SHANWEI station. (a) Training set prediction 
comparison and (b) test set prediction comparison.
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the data, however, the data values predicted by the CNN-BiLSTM network model exhibit many obvious devia-
tions from the original data values. The data predicted by the SCSSA-CNN-BiLSTM network model are in good 
agreement with the original data both in terms of value size and data trend, and the prediction effect is better.

Four evaluation indices were used to quantitatively evaluate the prediction effects of the two models, and the 
specific values are shown in Table 5. All the evaluation indices indicated that the SCSSA-CNN-BiLSTM model 
achieved the most accurate predictions, and the prediction accuracy was significantly improved by parameter 
optimization.

Discussions
Comparison of prediction results of various models
In the previous section, the prediction performances of the CNN-BiLSTM model and the SCSSA-CNN-BiLSTM 
model were compared. To better explore the prediction ability and universality of the SCSSA-CNN-BiLSTM 
model, a variety of network models are used to forecast the monthly mean sea level time series of six tide stations 
and compare the predicted results. Considering that SCSSA-CNN-BiLSTM and CNN-BiLSTM are combinations 
of the CNN model and BiLSTM model, and that the BiLSTM model evolves on the basis of the LSTM model, 
the models selected for comparison in this section are LSTM, BiLSTM, CNN, CNN-BiLSTM and SCSSA-CNN-
BiLSTM. The parameters of the various models have been obtained through multiple tests. The training epochs 
of all the models were set to 300, and the initial learning rate was 0.01. The LSTM model and BiLSTM model have 
two hidden layers, and the number of hidden layer nodes is 10. The gate structures in BiLSTM and LSTM uses 
sigmoid and tanh activation functions. The convolution kernel of the two convolutional layers of the CNN model 
is 3 times 1, the stride is 1, the activation function of the convolution layer uses the ReLU function, the pooling 
window size of the pooling layer is 2 times 1 and the stride is 1. The parameter settings of the CNN-BiLSTM 
model and the SCSSA-CNN-BiLSTM model are the same as those in the previous section.

The test set prediction results for the data from the six tide stations are shown in Fig. 8. The figure shows 
that the five neural network models used at the six tide stations can all predict the test set of the data to a certain 
extent. Among them, the SCSSA-CNN-BiLSTM model has the best prediction effect and best fits the data of the 
test set; this result is more obvious for tide stations with a large amount of data. In addition, the CNN-BiLSTM 
model has good performance and is similar to the test set in terms of the data trend and value size. The LSTM, 
BiLSTM and CNN models can predict approximate data trends and values but they all have some deviations. 
The NANSHA, XISHA and LUSI stations have relatively large prediction deviations; the deviation is particularly 
prominent at the NANSHA station because this station has less data and because the model has limited data to 
learn during training. Due to insufficient learning, the prediction accuracy is low.

As shown in Fig. 6, the scatter plot predicted by the five models on the test dataset of the six tide stations 
clearly reveals that most of the data points predicted by the SCSSA-CNN-BiLSTM model are concentrated near 
the fitting oblique line, and the best results are obtained, which are followed by those obtained by the CNN-
BiLSTM model. Some values predicted by the BiLSTM model, LSTM model and CNN model differ greatly from 
the real values, and obvious differences are shown for the NANSHA station and XISHA station. In general, the 
five models are more fully trained and have more accurate prediction results at stations with more data, while the 
prediction results are more biased at stations with less data, which is consistent with the results shown in Fig. 9.

Model prediction performance indicator analysis
The predicted performance indicators of the five models used are shown in Table 6. Specifically, there are rela-
tively small gaps between the CNN model and LSTM model indicators at the DALIAN station, LUSI station, 
XISHA station and ZHAPO station, however, the accuracy is slightly lower at these stations. The prediction 
accuracy of the CNN model at the NANSHA station is relatively low. The BiLSTM model is better than the previ-
ous two indicators, however, the predicted values of these three models are biased relative to the real values. The 
prediction performance index of the CNN-BiLSTM model is better than that of the first three models, which 
shows that the prediction ability of the combined model improved substantially. The SCSSA-CNN-BiLSTM 
model has the strongest prediction ability among the five models; all the indicators are greatly improved based 
on the CNN-BiLSTM model, and the prediction error is relatively low.

Table 5.  Statistics of the predictive performance indicators of the two models.

Indicator CNN-BiLSTM SCSSA-CNN-BiLSTM

Training set

RMSE (mm) 24.8506 9.1066

MAE (mm) 13.9162 5.6804

MAPE (%) 0.1963 0.0804

R2 0.9349 0.9913

Test set

RMSE (mm) 32.1004 10.7267

MAE (mm) 19.2108 7.8483

MAPE (%) 0.2688 0.1105

R2 0.8993 0.9888
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Conclusions
In this paper, a combined prediction model named SCSSA-CNN-BiLSTM is proposed with the use of the spar-
row search algorithm, and it combines sine–cosine and a Cauchy variation to optimize the parameters of the 
CNN-BiLSTM model. Based on the monthly sea level time series of seven tide stations and five kinds of neural 
network models, a prediction experiment was constructed for a comparative analysis. By comparing the predic-
tion performance of the SCSSA-CNN-BiLSTM model with that of the other models (LSTM, CNN, BiLSTM and 

Figure 8.  Prediction charts of various models. (a) DALIAN station, (b) KANMEN station, (c) LUSI station, (d) 
NANSHA station, (e) XISHA station and (f) ZHAPO station.
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CNN-BiLSTM) through a variety of comparison graphs and error evaluation indicators, the following conclu-
sions can be drawn:

(1) The quantity, regularity and stationarity of data used are crucial for neural network training, and the 
prediction performance maybe moderate for the stations with less available data, such as LUSI, NANSHA 
and XISHA stations. The predicted waveform of the DALIAN station is more consistent with the real value 
than that of the ZHAPO station, due to the more regular and stable data series of DALIAN station.

Figure 9.  Scatter plots of the various models. (a) DALIAN station, (b) KANMEN station, (c) LUSI station, (d) 
NANSHA station, (e) XISHA station and (f) ZHAPO station.
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(2) The BiLSTM model is equipped with a reverse LSTM network, and there is a forward and reverse bidi-
rectional network, which enables the model to better understand and model the contextual information 
in the series, which is highly helpful for improving the time series prediction capabilities. Therefore, the 
performance of this model is better than that of the LSTM model. For the DALIAN station, the BiLSTM 
model improved the RMSE, MAE, MAPE and  R2 by 2.42%, 4.64%, 4.37% and 0.74%, respectively, with 
respect to the LSTM model. Especially for tide stations with less data, the advantages of the BiLSTM model 
are more prominent because of the use of the reverse LSTM network; for example, at the NANSHA station, 
the BiLSTM model improved by 4.16%, 11.34%, 11.28% and 16.94% compared to the LSTM model on the 
four evaluation indices, respectively. Moreover, it is a good method for time series prediction.

(3) The CNN-BiLSTM model is a combination of CNN and BiLSTM that combines the ability to extract fea-
tures from the CNN model and the strong learning ability of the BiLSTM model. Based on the sea level 
time series prediction experiments at each tide station, the CNN-BiLSTM model yields a higher prediction 
accuracy and better evaluation indices. The CNN-BiLSTM model is superior to the CNN model and the 
BiLSTM model in terms of four evaluation indices at all the stations. Compared with those of the BiLSTM 
model, for the four evaluation indices of RMSE, MAE, MAPE and  R2, the CNN-BiLSTM model can achieve 
maximum improvements of 45.52%, 62.99%, 63.56% and 84.23%, respectively. This shows that the CNN 
and BiLSTM combination model has a better prediction performance than their single models.

(4) Compared with the traditional empirical method and trial and error method used to determine model 
parameters, the CNN-BiLSTM model, optimized by the SCSSA algorithm, can obtain more reasonable 
parameter values, which greatly improves the ability of the model to predict time series. With respect to 
the data prediction at each site, the SCSSA-CNN-BiLSTM model is far better than the other models in 
terms of both sequence fit and performance evaluation indicators, which effectively indicates the powerful 
prediction performance and high robustness of the SCSSA-CNN-BiLSTM model and provides a new way 
of thinking about time series prediction research.

Although the SCSSA-CNN-BiLSTM model proposed in this paper achieves excellent prediction performances 
in experiments, it still has limitations. For example, the combination of the SCSSA algorithm maybe more 

Table 6.  Statistics of the predicted performance indicators of the five models at each site.

Station Model RMSE (mm) MAE (mm) MAPE (%) R2

DALIAN

LSTM 65.8084 54.2766 0.7593 0.8654

CNN 72.6586 59.1265 0.8304 0.8359

BiLSTM 64.2177 51.7603 0.7261 0.8719

CNN-BiLSTM 58.6970 39.9762 0.5491 0.8930

SCSSA-CNN-BiLSTM 27.8427 17.8603 0.2482 0.9759

KANMEN

LSTM 77.5563 60.2562 0.8486 0.5866

CNN 90.8139 71.1800 1.0066 0.4332

BiLSTM 75.7951 58.4640 0.8238 0.6052

CNN-BiLSTM 43.4644 25.1598 0.3504 0.8702

SCSSA-CNN-BiLSTM 22.4493 9.4770 0.1322 0.9654

LUSI

LSTM 77.1150 60.5206 0.8483 0.7232

CNN 80.0454 63.6957 0.8948 0.7017

BiLSTM 70.5125 51.8428 0.7272 0.7685

CNN-BiLSTM 54.7238 40.2122 0.5571 0.8606

SCSSA-CNN-BiLSTM 22.8211 17.4561 0.2451 0.9758

NANSHA

LSTM 58.2285 47.8243 0.6810 0.3251

CNN 87.3598 69.3962 0.9893 -0.5192

BiLSTM 55.8033 42.4020 0.6042 0.3801

CNN-BiLSTM 39.3599 23.9795 0.3382 0.6916

SCSSA-CNN-BiLSTM 21.0399 13.5152 0.1916 0.9119

XISHA

LSTM 89.8478 70.8346 1.0010 0.2558

CNN 93.4580 74.2625 1.0533 0.1948

BiLSTM 83.7694 65.4709 0.9251 0.3531

CNN-BiLSTM 61.5742 36.6266 0.5118 0.6505

SCSSA-CNN-BiLSTM 23.3156 11.1850 0.1574 0.9499

ZHAPO

LSTM 74.0674 57.0148 0.8088 0.6169

CNN 79.0561 63.3405 0.8938 0.5635

BiLSTM 72.2430 55.7241 0.7845 0.6355

CNN-BiLSTM 39.3553 20.6215 0.2859 0.8918

SCSSA-CNN-BiLSTM 20.9217 9.5832 0.1340 0.9694
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time-consuming due to the increasing model complexity. Many factors affect sea level rise, such as the sea water 
temperature, salinity and glacial ablation. An artificial neural network model is more effective for large-scale 
data and systems with complex structures; the larger the amount of data and the more types of data there are, 
the more accurate the prediction will be. However, in this paper, only a single time series is used for prediction, 
and the amount of data is small. Moreover, the article does not cover predictions of the future part of the time 
series; and the optimization effect of the SCSSA optimization algorithm can be compared with that of other 
optimization algorithms. These aspects also need further research in the future.

Data availability
The tide gauge datasets used in this research are freely available at https:// www. psmsl. org/ data/ obtai ning/.
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