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Mathematical modeling of cholera 
dynamics with intrinsic growth 
considering constant interventions
Kewani Welay Brhane 1, Abdulaziz Garba Ahmad 2, Hina Hina 3 & Homan Emadifar 4,5,6*

A mathematical model that describes the dynamics of bacterium vibrio cholera within a fixed 
population considering intrinsic bacteria growth, therapeutic treatment, sanitation and vaccination 
rates is developed. The developed mathematical model is validated against real cholera data. A 
sensitivity analysis of some of the model parameters is also conducted. The intervention rates are 
found to be very important parameters in reducing the values of the basic reproduction number. The 
existence and stability of equilibrium solutions to the mathematical model are also carried out using 
analytical methods. The effect of some model parameters on the stability of equilibrium solutions, 
number of infected individuals, number of susceptible individuals and bacteria density is rigorously 
analyzed. One very important finding of this research work is that keeping the vaccination rate fixed 
and varying the treatment and sanitation rates provide a rapid decline of infection. The fourth order 
Runge–Kutta numerical scheme is implemented in MATLAB to generate the numerical solutions.

Keywords  Basic reproduction number, Cholera dynamics, Intervention rates, Mathematical modeling, 
Stability analysis

The infectious disease cholera, which is an acute intestinal illness, continues to pose a serious risk to public 
health in nations with limited resources. From its initial reservoir in the nineteenth-century Ganges delta in 
India, it expanded around the world. An estimated 1.3–4.0 million cases of cholera and 21,000–143,000 fatalities 
globally are attributed to the disease each year1–12. The dynamics of the infection involve multiple interactions 
between the human host, the pathogen, and the environment, which contribute to both human to human and 
environment to human transmission pathways1–11. The most common pathways of contracting the germs are by 
eating food cooked by infected people, drinking contaminated water, and shaking hands with infected people. 
The main symptom of cholera is severe acute watery diarrhoea that lasts for three to seven days. If treatment is 
delayed, this can lead to excessive and fast dehydration and possibly death1–12,14–20.

In the effort of fighting against cholera, multifaceted approach, such as surveillance, water, sanitation, and 
hygiene (WaSH) measures, social mobilization, treatment, and oral cholera vaccines are have been implement-
ing. A worldwide plan for cholera control, “Ending Cholera: a global roadmap to 2030,” was introduced in 2017 
with the goal of lowering cholera mortality by 90%13,21. In the developed countries, cholera has been effectively 
eliminated through investments in proper environmental health solutions, such as water supply, treatment, 
sanitation infrastructure, and hygiene-related behavior change13,21. However, cholera is still challenging the 
developing countries due to factors such as poor water supplies, worsening sanitation, socioeconomic condi-
tions, climate change, and humanitarian crises. In Africa, cholera has persisted due to worsening hygiene and 
sanitation in urban areas, with the burden likely to worsen without measures to improve water and hygiene 
infrastructure21–24. The World Health Organization (WHO) reports that drivers for current cholera outbreaks 
include widespread floods, droughts, humanitarian crises, political instability, and conflict, all of which are more 
prevalent in developing countries23,24.

For an extended period, mathematical modelling has yielded valuable insights for a more profound com-
prehension of the intricate dynamics of cholera. In an effort to understand the fundamentals of the spread of 
cholera and to quantify effective control strategies, a large number of mathematical models for the dynamics 

OPEN

1Department of Mathematics, Mekelle University, Mekelle, Tigray, Ethiopia. 2Department of Applied Mathematics, 
Federal University of Technology, Babura, Jigawa State, Nigeria. 3Department of Mathematics and Statistics, 
Women University Swabi, Swabi, KP, Pakistan. 4Department of Mathematics, Saveetha School of Engineering, 
Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai  602 105, Tamil Nadu, 
India. 5MEU Research Unit, Middle East University, Amman, Jordan. 6Department of Mathematics, Hamedan 
Branch, Islamic Azad University of Hamedan, Hamadan, Iran. *email: homan_emadi@yahoo.com

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-024-55240-0&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |         (2024) 14:4616  | https://doi.org/10.1038/s41598-024-55240-0

www.nature.com/scientificreports/

of bacterial spreading have been created. To more properly depict the pattern of the disease infection spread, 
a few of these models included two types of infection routes1–11,14,16,25. However, a significant drawback of the 
modelling studies that are currently being conducted on the transmission of cholera is the lack of attention given 
to the intrinsic dynamics of the bacteria, which results in an inadequate comprehension of the development 
of the bacteria and how it affects the dynamics of infection. The majority of mathematical models of cholera 
often make the premise that bacteria cannot survive without human assistance. In2–11,17,18,20,25,28,30, mathematical 
models that do not consider bacterial intrinsic growth are presented. This is predicated on a cholera ecological 
early hypothesis documented in27. A straightforward depiction of the rate of change for the bacterial density is 
made possible by the assumption. Regretfully, new ecological studies have provided compelling evidence that the 
bacteria may reproduce and thrive on their own in a variety of aquatic habitats. These ecological findings require 
more modelling effort to better understand the internal dynamics of cholera diseases and the connection between 
environmental persistence and disease outbreaks16. In14,16, efforts are done to develop and analyze mathematical 
models considering bacterial intrinsic growth. However, the main gap in the existing mathematical models of 
cholera are there is no mathematical model that incorporated both bacterial intrinsic growth and intervention 
strategies. This gap is also available in the recent publications by14,16.

Our goal in this work is to develop and analyze a mathematical model that incorporates both bacterial 
intrinsic growth and intervention strategies with an intention to fill the gap in14,16. Such kind of mathematical 
model will provide valuable advice for efficient preventive and intervention techniques against cholera outbreaks. 
The current mathematical model examines cholera dynamics using intrinsic bacterial growth rate and control 
measures that are integrated into the mathematical model of14,16,25,28 in order to achieve this goal. In addition to 
the inherent bacteria growth rate, we modify the existing models1–11,14,16,25 by including three controlling mecha-
nisms, Namely; immunization, therapeutic treatment, and water sanitation. Rigorous mathematical theories are 
applied to examine the impacts of intrinsic bacteria growth rate, various control measures, and several cholera 
transmission channels26.

This article contains seven sections and is organized as follows. A detailed introduction to cholera modeling 
is presented in section "Mathematical model formulation". In section "Mathematical model formulation", model 
assumptions are presented and a corresponding mathematical model is formulated. The positivity of the domain 
of biological interest is also analyzed in this Section. The mathematical model is validated against a WHO real 
cholera data in section "Model validation". In section "Mathematical analysis of equilibrium solutions", is rigor-
ously presented. The existence and stability of epidemic and endemic equilibrium solutions are examined in this 
Section. Section "Numerical test problems for stability of equilibrium solutions" provides information on how 
model parameters affect the presence and stability of equilibrium solutions. Furthermore, in section "Model 
parameter sensitivity analysis", sensitivity analysis of a few model parameters is given. Lastly, Section presents 
the conclusion and subsequent actions. Section "Conclusion and future works".

Mathematical model formulation

We have taken into account the following hypotheses when creating the mathematical model.1.	 Because the 
infection phase is brief, there is a low risk of death and births. This assumption leads us to classify the total 
human population (N) into susceptible number (S), infective number (I), and recovered number (R) so that 

 where t represents time.
2.	 Individuals are born susceptible.
3.	 The bacteria has an intrinsic rate of growth of r and a weight capacity of κ . Its concentration in the environ-

ment is always there, and we represent it as B.
4.	 The bacterium can spread from person to person, from environment to environment, and from human to 

environment at rates of α , ξ , and β , respectively.
5.	 The susceptible population is vaccinated at a rate of v, resulting in the removal of vS(t) people from the 

susceptible class and their addition to the recovered class each time.
6.	 In order to remove aI(t) persons from the affected class and add them to the recovered class, therapeutic 

treatment is administered to those who have been infected at a rate of a.
7.	 A recovered individual is assumed to develop immunity.
8.	 Bacteria perish as a result of water sanitation at a rate of w.

Figure 1 provides a graphical depiction of the model.
Based on the previous supposition, we derive the subsequent dynamic system:

(1)N(t) = S(t)+ I(t)+ R(t), ∀ t ≥ 0,

(2)
dS

dt
=µN − (αI + βB)S − µS − vS,

(3)
dI

dt
=(αI + βB)S − µI − (δ + a)I ,

(4)
dR

dt
=(δ + a)I − µR + vS,
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The rates of birth, infection recovery, natural death, and contribution from infected individuals to the envi-
ronmental bacterial population are represented by the variables µ , γ , and ξ in Eqs. (2)–(5). Positive values are 
assumed for each of these parameters. To evaluate the following system of differential equations in our math-
ematical analysis, we will first utilise R = N − I − S to remove Eq. (4).

Lemma 1  For any time t ≥ 0 , all solutions of the dynamical system in Eqs. (2)–(5) with positive initial conditions 
are non-negative within the region of biological interest.

Additionally, Ŵ exhibits positive invariance.

Proof  Suppose that

If τ = ∞ , then S(τ ), I(τ ),R(τ ),B(τ ) > 0 and the claim of Lemma 1 is satisfied. If τ is finite, then we have to 
go farther to prove the claim. Defining η(t) := αI(t)+ βB(t)+ µ+ v , Eq. (2) of the dynamical system can be 
written as

An expression for the aforementioned equation is

The particular solution to Eq. (12) at t = τ is derived to be

(5)
dB

dt
=ξ I + rB

(

1−
B

κ

)

− γB− wB.

(6)
dS

dt
=µN − (αI + βB)S − µS − vS,

(7)
dI

dt
=(αI + βB)S − µI − (δ + a)I ,

(8)
dB

dt
=ξ I + rB

(

1−
B

κ

)

− γB− wB.

(9)Ŵ =
{

(S, I ,R,B) ∈ R
4
+ : S, I ,R,B ≥ 0, S + I + R = N

}

.

(10)τ = sup{t ≥ 0 : S(t), I(t),R(t),B(t) > 0}.

(11)
dS

dt
+ ηS = µN .

(12)
d

dt

[

S(t) exp

{
∫ t

0
η(s)ds

}]

= µN exp

{
∫ t

0
η(s)ds

}

.

Figure 1.   Flow diagram of the mathematical model.
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Through the same procedure, it can be easily verified that I(τ ),R(τ ),B(τ ) > 0 . Now, adding Eqs. (2)–(4) , we 
have that

Integrating the above equation with respect to time , we have that

where c is a constant real number. Now, let S(0), I(0),R(0) > 0 be initial values in Ŵ , then

Thus, Ŵ is positively invariant.

Model validation
The importance of the developed mathematical model is validated against the WHO cholera data for Bangla-
desh recorded from 1950 to 200029. The model solution of infected individuals is compared with the real data of 
number of reported cases of cholera, see Fig. 2 and Table 1. The difference between the real data and the model 
solution is calculated by the relative error (RE) formula given as31,32

where I is model solution for the infected individuals, Ĩ is the real data of infected individuals and || × || is a 
vector norm . Thus, it is calculated that RE = 0.5365 which indicates a good fit between the model solution and 
the real data, see Fig. 2.

Mathematical analysis of equilibrium solutions
In this Section, the general properties of equilibrium solutions to the dynamical system in Eqs. (6)–(8) are 
presented.

General properties of epidemic cholera dynamics
Equations (6)–(8) in the model provide a disease-free state as follows:

(13)S(τ ) = exp

{

−

∫ t

0
η(s)ds

}[

S(0)+ µN

∫ τ

0

{

exp

{
∫ t

0
η(s)ds

}}

dt

]

> 0.

(14)
dS

dt
+

dI

dt
+

dR

dt
= 0.

(15)S(t)+ I(t)+ R(t) = c, ∀t,

(16)S(t)+ I(t)+ R(t) = S(0)+ I(0)+ R(0) = N , ∀t.

(17)RE =
||I − Ĩ||

||Ĩ||
,

(18)E0 = (S∗, I∗,B∗) =

(

µN

µ+ v
, 0, 0

)

.

Figure 2.   Real data (see Table 1) fitted with a model solution.
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For the derivation of the basic reproduction number(ℜ0 ), we have followed the procedures presented in20,33,34. 
We considered the infective compartments to be I and B so that the infective subsystem of the mathematical 
model to be

The linearized system of the Eqs. (19)–(20) about the DFE is given as

From Eqs. (21)–(22), the matrix of transmissions and matrix of transsission are, respectively given as

The basic reproduction number is the spectral radius of −T�−1 . The eigenvalues of −T�−1 are

Therefore, the basic reproduction number is

provided that r − w − γ <
βξ
α

 . Moreover, the expression r − w − γ < 0 must hold. Epidemiologically, this 
relation is meant the bacterium growth rate is lesser than the sum of the natural death rate of the bacterium 
and sanitation rate. The equation for the basic reproduction number’s denominator demonstrates how heavily 

(19)
dI

dt
=(αI + βB)S − µI − (δ + a)I ,

(20)
dB

dt
=ξ I + rB

(

1−
B

κ

)

− γB− wB.

(21)
dI

dt
=

αµN

µ+ v
I +

βµN

µ+ v
B− (µ+ δ + a)I ,

(22)
dB

dt
= ξ I + (r − γ − w)B.

(23)T =

[

α
µN
µ+v β

µN
µ+v

0 0

]

and � =

[

−(µ+ δ + a) 0
ξ r − (w + γ )

]

.

(24)�1 = 0, �2 =
µN(α(r − w − γ )− βξ)

(r − γ − w)(µ+ v)(µ+ δ + a)
.

(25)ℜ0 =
µN(α(r − w − γ )− βξ)

(r − γ − w)(µ+ v)(µ+ δ + a)
,

Table 1.   WHO cholera data for Bangladesh, see29.

Year Case number Death number CFR Year Case number Death number CFR

2000 1021 16 1.57 1972 1059 201 18.98

1999 3440 63 1.83 1971 2342 386 16.48

1998 1067 26 2.44 1970 7419 1889 25.46

1997 1959 95 4.85 1969 7411 1556 21

1996 418 0 0 1968 3156 614 19.46

1995 2297 61 2.66 1967 664 369 55.57

1994 562 41 7.3 1966 3154 1234 39.12

1993 78 0 0 1965 1123 683 68.82

1992 479 29 6.05 1964 3333 2419 72.58

1991 8 0 0 1963 3975 1248 31.4

1990 82 4 4.88 1962 2524 1304 51.66

1989 94 2 2.13 1961 2663 1703 63.95

1988 571 43 7.53 1960 15618 6272 40.16

1987 523 23 4.4 1959 16915 11056 65.36

1979 2154 21 0.97 1958 15631 10119 64.74

1978 5576 81 1.45 1957 8054 5134 63.74

1977 10403 354 3.4 1956 23699 15310 64.6

1976 957 62 6.48 1955 16642 9802 58.9

1975 4888 117 2.39 1954 15617 9443 60.47

1974 5614 173 3.08 1953 27631 16904 61.18

1973 1969 369 18.74 1952 21154 12884 60.91

1951 20894 12372 59.21 1950 29809 12947 43.43
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the values of the control factors affect it. The fundamental reproduction number’s weight can be decreased by 
raising the control parameter settings.

Theorem 1  (Local equilibrium point stability in the absence of illness) The dynamical structure in Eqs. (6)–(8) has 
an unaffected by illness equilibrium point E0 that is locally asymptotically stable if ℜ0 < 1 , and unstable if ℜ0 > 1.

Proof  Theorem 2 in33 indicates that when ℜ0 < 1 , the disease-free equilibrium is locally asymptotically stable. 
On the other hand, if the controls are insufficiently robust to ensure that ℜ0 > 1 , the disease breakout happens 
and the DFE becomes unstable.

Theorem 2  (Global stability of the equilibrium point devoid of illness) The dynamical system in Eqs. (6)–(8) has 
a cholera-free equilibrium point E0 that is globally asymptotically stable if ℜ0 < 1 , and unstable if ℜ0 > 1.

Proof  To demonstrate that the disease-free equilibrium E0 is globally asymptotically stable for ℜ0 < 1 and unsta-
ble for ℜ0 > 1 , we will employ the LaSalle invariance principle30,35. Let L(t) := B(t) be a Lyapunov function 
defined. The following Eqs. are thus valid.

Setting dIdt = 0 in Eq. (7), we have that

Substituting Eq. (27) into Eq. (26), we have that

Evaluating Eq. (28) at S =
µN
µ+v , we obtained the following inequality.

From the above equation, the function dLdt  is negative semi-definite for ℜ0 ≤ 1 provided that N <
(µ+δ+a)(µ+v)

αµ
 . 

From the definition of ℜ0 , we saw that r − γ − w < 0 . Therefore, the largest compact invariant set in Ŵ such 
that dLdt = 0 whenever ℜ0 < 1 is the singleton disease-free equilibrium. Thus, the global asymptotically stability 
of the disease-free equilibrium in Ŵ is guaranteed by the LaSalle invariance principle35 whenever ℜ0 ≤ 1 and 
globally unstable for ℜ0 > 1 .

General properties of endemic cholera dynamics
As previously stated, the DFE becomes unsustainable and the sickness will persist if the effects of the constraints 
are insufficient to bring ℜ0 below unity. Now let’s examine the endemic balance in order to understand the 
dynamics of cholera over the long run.

Theorem 3  (Existence of endemic equilibrium) If and only if ℜ0 > 1 , there is a unique positive endemic equilib-
rium for the dynamical system in Eqs. (6)–(8).

Proof  The following nonlinear algebraic system has solutions, which are the endemic equilibrium solutions to 
the dynamical system in Eqs. (6)–(8).

After defining θ =
µN

µ+δ+a and taking into account Eqs. (30)–(31), we obtain the following quadratic equation.

The function I = f (B) , defined as follows, is the answer to the problem above.

(26)
dL

dt
=
dB

dt
= ξ I + rB

(

1−
B

κ

)

− γB− wB ≤ ξ I + (r − (γ + w))B.

(27)I =
βBS

µ+ δ + a− αS
.

(28)
dL

dt
≤

(

ξβS

µ+ δ + a− αS
+ (r − (γ + w)

)

B.

(29)
dL

dt
≤

(µ+ δ + a)(µ+ v)(r − γ − w)B

αµ

(

N −
(µ+δ+a)(µ+v)

αµ

) (ℜ0 − 1).

(30)µN =(αI + βB)S + (µ+ v)S,

(31)(αI + βB)S =(µ+ δ + a)I ,

(32)I =
r

ξκ
B2 +

γ + w − r

ξ
B.

(33)αI2 + [βB+ µ+ v − αθ]I − βθB = 0.



7

Vol.:(0123456789)

Scientific Reports |         (2024) 14:4616  | https://doi.org/10.1038/s41598-024-55240-0

www.nature.com/scientificreports/

Once more, we create a function B = h(I) from Eq. (33) in the following way.

The following derivatives make it simple to verify that the functions f and h are connected.

Lemma 2  The fact that h(I) = B > 0 implies the following relations. 

	 (i)	 I < θ,
	 (ii)	 max

(

0, θ −
µ+v
α

)

< I < θ.

Proof  The results in Lemma 2 are direct consequences of the inequality

We denote the expression in Eq. (32) as

Thus, the existence of endemic equilibrium depends on the existence of solutions to the equation

Assume that n = min
(

θ , µ+v
α

)

 . Then, from the results of Lemma 2, we have that 0 < θ − I < n and 
(

µ+v
α

)

θ � n2 . 
This leads us to the following inequality.

Considering the above equation and differentiating the functions f and g, we have

The derivatives presented in the above equations are very important in examining the behavior of the function 
f and g. Evaluating f ′ and g ′ at B = 0 , we have

A direct consequence of the above equations is

Now, lets consider the following case to analyze the existence of solution to the equation f (B) = g(B) . 

(34)f (B) =

√

(µ+ v − αθ + βB)2 + 4αβθB− (µ+ v − αθ + βB)

2α
, B � 0.

(35)h(I) =
(µ+ v)I

β(θ − I)
−

αI

β
, I � 0.

(36)f ′(B) =
1

h′(I)
.

(37)
(µ+ v)I

β(θ − I)
−

αI

β
> 0.

(38)I = g(B) =
r

ξκ
B2 +

γ + w − r

ξ
B.

(39)f (B) = g(B), B > 0.

(40)(µ+ v)θ − α(θ − I)2 > (µ+ v)θ − αn2 = α

((

µ+ v

α

)

θ − n2
)

� 0.

(41)f ′(B) =
1

h′(I)
=

β(θ − I)2

(µ+ v)θ − α(θ − I)2
> 0,

(42)f ′′(B) =−
h′′(I)

h′(I)3
= −

2(µ+ v)θ f ′(B)3

β(θ − I)3
< 0,

(43)g ′′(B) =
2r

ξκ
.

(44)f ′(0) =
βµN

(µ+ v)(µ+ δ + a)

[

1

1− αµN
(µ+v)(µ+δ+a)

]

,

(45)g ′(0) =
γ + w − r

ξ
.

(46)f ′(0)− g ′(0) =
(γ + w − r)(ℜ0 − 1)

ξ

(

1− αµN
(µ+v)(µ+δ+a)

) .
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	Case I:	 f (0) > g(0) . In this case, it is clear that g(0) = 0 . Therefore, f (0) > g(0) implies that αµN
(µ+v)(µ+δ+a) > 1 

which means that I > 0 . Thus, since f is concave downward and g is concave upward, there exists a unique 
nontrivial equilibrium solution in this case.

	Case II:	f (0) = g(0) . In this case, the relation αµN
(µ+v)(µ+δ+a) � 1 holds. Thus, the existence depends on the relative 

slopes of f and g at B = 0 . 

	 (i)	 Consider the case αµN
(µ+v)(µ+δ+a) = 1 . From Eqs. (44)–(45), we have that 

 Therefore, since f is concave downward and g is concave upward, there exists a unique nontrivial 
equilibrium solution in this case.

	 (ii)	 Consider the case αµN
(µ+v)(µ+δ+a) < 1 . From the expression in Eq. (46), The next two cases are the 

ones that follow.

Case (a): f ′(0) > g ′(0) . This is meant that ℜ0 > 1 . In this case, there exists a unique nontrivial equi-
librium solution as f is concave downward and g is concave upward.
Case (b): f ′(0) < g ′(0) . This is meant that ℜ0 < 1 . In this case, there doe not exist a nontrivial equi-
librium solution as f is concave downward and g is concave upward.

Accordingly, the dynamical system in Eqs. (6)–(8) has a distinctive positive endemic equilibrium if and only if 
ℜ0 > 1.

Theorem 4  (Local stability of endemic equilibrium) The dynamical system in Eqs. (2)–(5) is locally asymptotically 
stable in its endemic equilibrium.

Proof  Assume that EE = (S1, I1,R1,B1) represents the endemic equilibrium of the dynamical system in Eqs. 
(2)–(5). The dynamical system’s Jacobian matrix (J) at EE is provided as

The Jacobian matrix’s characteristic polynomial is provided as

where a1 , a2 and a3 are given as in the following.

For an endemic equilibrium EE = (S1, I1,R1,B1) , we have that a1 > 0 , a2 > 0 and a3 > 0 . Moreover,

The endemic equilibrium EE = (S1, I1,R1,B1) is locally asymptotically stable, as per the Routh-Hurwitz criteria.

Theorem 5  (Global stability of endemic equilibrium) If N � δ+a−v
2α  holds, the dynamical system in Eqs. (2)–(5) 

is in an endemic equilibrium that is globally stable.

(47)f ′(0+) = +∞ > g ′(0).

(48)J =







−(αI1 + βB1 + µ+ v) − αS1 0 − βS1
αI1 + βB1 αS1 − (µ+ δ + a) 0 βS1

v δ + a − µ 0

0 ξ 0 −
r(2B1−κ)

κ
− (γ + w)






.

(49)|�I4 − J| = (�+ µ)
(

�
3 + a1�

2 + a2�+ a3
)

,

a1 =
µN

S1
+

βB1S1

I1
+

ξ I1

B1
+

rB1

κ
,

a2 =
µN

S1

(

ξ I1

B1
+

rB1

κ

)

+
βµNB1

I1
+ α(µ+ δ + a)I1 +

βrS1B
2
1

κI1
,

a3 =
βrµNB21

κI1
+ α(µ+ δ + a)I1

(

ξ I1

B1
+

rB1

κ

)

+ βξ(µ+ δ + a)I1.

a1a2 >

(

µN

S1
+

ξ I1

B1
+

rB1

κ

)(

βµNB1

I1
+ α(µ+ δ + a)I1 +

βrS1B
2
1

κI1

)

,

>

(

µN

S1

)(

βrS1B
2
1

κI1

)

+

(

ξ I1

B1
+

rB1

κ

)(

βµNB1

I1
+ α(µ+ δ + a)I1

)

,

>
βrµNB21

κI1
+ α(µ+ δ + a)I1

(

ξ I1

B1
+

rB1

κ

)

+

(

ξ I1

B1

)(

βµNB1

I1

)

,

>
βrµNB21

κI1
+ α(µ+ δ + a)I1

(

ξ I1

B1
+

rB1

κ

)

+ βξ(µ+ δ + a)I1,

=a3.
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Proof  We apply the geometric approach proposed by Li and Muldowney36 to prove the global stability of endemic 
equilibrium EE = (S, I ,R,B) . For simplicity, we drop the rate of change of the recovered individuals. Thus, the 
Jacobian matrix of the dynamical system is given as

Denoting d =
r(2B1−κ)

κ
+ (γ + w) and defining A(t) = I3 + tJ , the second additive compound matrix of J is 

given as �2(J) =
d
dt (C2(A(t)))|t=0 where C2(A(t)) is the second compound matrix of A(t) , I3 is the 3× 3 identity 

matrix and t is a scalar. Thus,

Define P = diag
[

1, IB ,
I
B

]

 and let f denote the vector field of the dynamical system. Moreover, define Pf  to be the 
derivative of P along the direction of f. Then

and

 Now, we define a matrix Q := Pf P
−1 + PC2(J)P

−1 =

[

Q11 Q12

Q21 Q22

]

 where there block matrices are given as

Let the Lozinski measure with respect to L∞ vector norm be denoted by m. Then, by a direct calculation, we 
found that

where

From the assumption N ≤ δ+a−v
2α  ,  we have that  2αS + v − δ − a ≤ 0 which implies  that 

sup(0, 2α + v − δ − a) = 0 . Moreover, from Equation (7), we have that βS B
I = İ

I − αS + (µ+ δ + a) . Thus, 
we have the following results.

which implies that m(Q) ≤ İ
I − µ . Since 0 ≤ I(t) ≤ N , there exists T > 0 such that

for t > T . The above equation implies that

J =





−(αI + βB+ µ+ v) − αS − βS
αI + βB αS − (µ+ δ + a) βS

0 ξ −
r(2B−κ)

κ
− (γ + w)



 .

�2(J) =

[

αS − (αI + βB+ 2µ+ v + δ + a) βS βS
ξ − (αI + βB+ µ+ v + d) − αS
0 αI + βB αS − (µ+ δ + a+ d)

]

.

Pf P
−1 = diag

[

0,
İ

I
−

Ḃ

B
,
İ

I
−

Ḃ

B

]

,

P�2(J)P
−1 =





αS − (αI + βB+ 2(µ+ v)+ δ + a) βS B
I βS B

I
I
B ξ − (αI + βB+ µ+ v + d) − αS
0 αI + βB αS − (µ+ δ + a+ d)



 .

Q11 =αS − (αI + βB+ 2µ+ v + δ + a), Q12 =

[

βS
B

I
,βS

B

I

]

, Q21 =

[

ξ
I

B
, 0

]T

,

Q22 =

[

−(αI + βB+ µ+ v + d)+ İ
I −

Ḃ
B − αS

αI + βB αS − (µ+ δ + a+ d)+ İ
I −

Ḃ
B

]

.

(50)m(Q) = sup
(

g1, g2
)

,

(51)g1 =m1(Q11)+ |Q12| = αS + βS
B

I
− (αI + βB+ 2µ+ v + δ + a),

(52)g2 =m1(Q22)+ |Q21| =
İ

I
− µ− v −

rB

κ
+ sup(0, 2α + v − δ − a).

(53)g1 =
İ

I
− µ− (αI + βB+ v) ≤

İ

I
− µ,

(54)g2 =
İ

I
− µ−

(

v +
rB

κ

)

≤
İ

I
− µ,

(55)
ln (I(t))− ln (I(0))

t
<

µ

2
,

(56)
1

t

∫ t

0
m(Q)dτ ≤

1

t

∫ t

0

(

İ

I
− µ

)

dτ =
ln (I(t))− ln (I(0))

t
− µ ≤ −

µ

2
.
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Thus, according to the geometric approach originally proposed by Li and Muldowney, the quantity q̄2 is given as

Therefore, the idea of geometric approach tells us that the endemic equilibrium is globally stable for N ≤ δ+a−v
2α .

Numerical test problems for stability of equilibrium solutions
In all the numerical test problems, we consider N = 250000 and κ = 106.

Numerical test problems for epidemic cholera dynamics
In this sub section, we are examining the results in Theorem 1 and 2 numerically for the epidemic cholera 
dynamics.

Example 1  We take into account the parameter values in Table 2 in this test problem.
With the parameter values in Table 2, ℜ0 = 0.000127412 < 1 and the only equilibrium solution to the dynami-

cal system in Eqs. (6)–(8) is the disease free equilibrium given as

The above disease free equilibrium is, hence, stable by Theorem 1 and 2.
Two different initial conditions (S(0), I(0),B(0)) = (10, 100, 5× κ) and (S(0), I(0),B(0)) = (100, 200, 10× κ) 

were considered to produce the results in Fig. 3. The results are eventually approaching to the disease free 
equilibrium.

Example 2  In this test problem, we consider the values of parameters in Table 3.
Considering the values of parameters in Table 3, ℜ0 = 1.6171 > 1 . In this case, we obtained two equilibrium 

solutions, Namely; the epidemic equilibrium and the endemic equilibrium for the dynamical system in Eqs. 
(6)–(8). These equilibrium solutions are given as

(57)q̄2 := lim sup
t→∞

(

1

t

∫ t

0
m(Q)dτ

)

≤ −
µ

2
< 0.

E0 =

(

µN

µ+ v
, 0, 0

)

= (19.6535, 0, 0).

Figure 3.   Population and Bacteria dynamics considering different initial conditions and ℜ0 < 1.

Table 2.   Parameter values in the case of 1.

Model parameter Value Reference Model parameter Value Reference

α 1.48× 10
−8 16 β 1.70× 10

−8 16

γ 1

10

16,25 δ 1

30

16,25

ξ 10 16,25 a 0.1 assumed

v 0.8 assumed w 0.3 assumed

r 0.2 assumed µ 1/43.5 year 16,25
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Thus, Theorems 1 and 2 tells us that the disease free equilibrium solution E0 is unstable.
T w o  d i f f e r e n t  i n i t i a l  c o n d i t i o n s  (S(0), I(0),B(0)) = (100, 100, 0.008× κ)  a n d 

(S(0), I(0),B(0)) = (10, 10, 0.001× κ) were considered to produce the results in Fig. 4. The results are eventu-
ally going away from the disease free equilibrium. Rather, the dynamical system is approaching to the endemic 
equilibrium.

Numerical test problems for endemic cholera dynamics
In this sub section, we are examining the results in Theorem (3-5) numerically for the endemic cholera dynamics.

Example 3  In this test problem, we consider the values of parameters in Table 4.
Accordingly, αµN

(µ+v)(µ+δ+a) = 1.01024 > 1 and ℜ0 = 1.01095 > 1 . This implies that f (0) > g(0) which tells us 
a unique endemic equilibrium exists by Theorem 3. The existence of the endemic equilibrium is depicted in Fig. 5.

As can be seen from Fig. 5, the endemic equilibrium exists and is given as

Moreover, the epidemic equilibrium also exists and is given as

E0 =

(

µN

µ+ v
, 0, 0

)

= (78.5953, 0, 0), and E = (48.6027, 25.7091, 3208.49).

E = (77.7437, 0.730033, 91.25).

Table 3.   Parameter values for Example 2.

Model parameter Value Reference Model parameter Value Reference

α 0.0048 16 β 1.70× 10
−8 16

γ 1

10

16,25 δ 1

30

16,25

ξ 50 16,25 a 0.2 assumed

v 0.2 assumed w 0.5 assumed

r 0.2 assumed µ 1/43.5 year 16,25

Figure 4.   Population and Bacteria dynamics considering different initial conditions and ℜ0 > 1.

Table 4.   Parameter values for Example 3.

Model parameter Value Reference Model parameter Value Reference

α 0.003 16 β 1.70× 10
−8 16

γ 1

10

16,25 δ 1

30

16,25

ξ 50 16,25 a 0.2 Assumed

v 0.2 Assumed w 0.5 Assumed

r 0.2 Assumed µ 1/43.5 year 16,25
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Thus, Theorem 1 and Theorem 2 tells us that the disease free equilibrium solution E0 is unstable. However, 
the endemic equilibrium E = (77.7437, 0.730033, 91.25) is asymptotically stable by Theorem 4. We considered 
two different initial conditions (S(0), I(0),B(0)) = (10, 10, 10) and (S(0), I(0),B(0)) = (100, 100, 100) to pro-
duce the results in Fig. 6. It is shown that the dynamical system is approaching to the endemic equilibrium 
E = (77.7437, 0.730033, 91.25) asymptotically.

Model parameter sensitivity analysis
The sensitivity of a model parameter (p) is meant its effect on the values of the basic reproduction number and 
is measured by the elasticity index defined as37,38

From the above equation, if the sign of Yℜ0
p  is positive, the value of ℜ0 increases with an increase in the value of 

the model parameter. Moreover, if the sign of Yℜ0
p  is negative, the value of ℜ0 decreases with an increase in the 

value of the model parameter37. The elasticity index is very important to guide an intervention by indicating 
the most important model parameters to target. Based on Equation (58), the elasticity index of the intervention 
strategies and intrinsic bacteria growth are derived to be

E0 =

(

µN

µ+ v
, 0, 0

)

= (78.5953, 0, 0).

(58)Y
ℜ0
p =

∂ℜ0

∂p
×

p

ℜ0
.

(59)Y
ℜ0
v =−

v

µ+ v
< 0,

Figure 5.   Comparison of I = f (B) and I = g(B) for endemic equilibrium.

Figure 6.   Endemic cholera dynamics.
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From the theoretical point of view, intervention strategies play a great role in reducing the basic reproduction 
number and the intrinsic bacteria growth rate in increasing the basic reproduction number. The results in Eqs. 
(59)–(62) validates the theoretical studies on the effect of intervention strategies and intrinsic bacteria growth 
on basic reproduction numbers.

Based on the values of the parameters in Table 2, the effects of vaccination, therapeutic treatment, and sani-
tation are shown in Figs. 7, 8 and 9. The impact of vaccination on the dynamical system is shown in Fig. 7. It is 
evident that a higher vaccination rate lowers the population of vulnerable people, the number of sick people, 
and the density of germs. As the vaccine is given to susceptible individuals, it drastically reduces the number 
of susceptible individuals within a short period of time as compared to the number of infected individuals and 
bacteria density.

Figure 8, the effect of therapeutic treatment is displayed. From the theoretical point of view, therapeutic 
treatment helps individuals to recover and they can not contribute bacteria to the environment. Because of this, 
when the rate of therapeutic treatment increases, so does the concentration of germs in the environment and 
the number of infected persons. The rate of therapeutic treatment and the rate of immunisation, however, are 
negatively correlated. This important result recommends the development for an optimal control problem. The 
values of the triplet control parameters (v, a,w) that simultaneously reduce the number of susceptible, infective 
and bacteria density can be obtained using optimal control problem.

The effect of sanitation on the dynamics of the cholera disease is presented in Fig. 9. It shows that the bacteria 
concentration in the environment vanishes with an increase in the sanitation rate. However, in this test situation, 
there have been no appreciable changes in the number of susceptible and infected persons with an increase in 
sanitation rate. This suggests that in order to see a change, adjustments must be made to the remaining model 

(60)Y
ℜ0
w =−

βξw

(r − w − γ )(α(r − w − γ )− βξ)
< 0,

(61)Y
ℜ0
a =−

a

µ+ δ + a
< 0,

(62)Y
ℜ0
r =

αβξr

(r − w − γ )(α(r − w − γ )− βξ)
> 0

Figure 7.   Effect of vaccine on the cholera dynamics.
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parameter values. In other words, future research must examine the covariance of sanitation rate with the other 
model.

The effect of bacteria growth rate on the infection dynamics is presented in Fig. 10. It can be observed that an 
increase in the growth rate results in an increase in the concentration of the bacteria. Moreover, it is displayed in 
Fig. 10b that the number of susceptible individuals starts to rise after decaying due to the growth rate.

Conclusion and future works
In our assumption, we considered the bacteria intrinsic growth, vaccination, water sanitation and therapeutic 
treatment rate as very important parameters. The importance of these model parameters is embedded in the 
mathematical expression of the basic reproduction number. According to the results from sensitivity analysis, an 
increase in the bacteria intrinsic growth rate contributes positively to the value of the basic reproduction number. 
Nonetheless, it is determined that higher intervention rates have a detrimental impact on the fundamental repro-
duction number’s value. A significant discovery of this study is that a quick drop in infection may be achieved 
by maintaining a constant vaccination rate while adjusting treatment and sanitation rates.

The values of model parameters are obtained either from previous research works or are assumed by the 
researcher. In future works, the values of the model parameters can be estimated from real data using appropriate 
theories of approximations and covariance of model parameters has to be carried out to examine their relation-
ship. Moreover, from an optimization point of view, intervention strategies should have to vary with time. There-
fore, the formulation of an optimal control problem for the mathematical model is recommended in future works.

Figure 8.   Effect of therapeutic treatment on the cholera dynamics.
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Figure 9.   Effect of sanitation on the cholera dynamics.
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The datasets generated and/or analysed during the current study are available from the corresponding author 
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