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Critical evaluation of artificial 
intelligence as a digital twin 
of pathologists for prostate cancer 
pathology
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Prostate cancer pathology plays a crucial role in clinical management but is time-consuming. 
Artificial intelligence (AI) shows promise in detecting prostate cancer and grading patterns. We 
tested an AI-based digital twin of a pathologist, vPatho, on 2603 histological images of prostate 
tissue stained with hematoxylin and eosin. We analyzed various factors influencing tumor grade 
discordance between the vPatho system and six human pathologists. Our results demonstrated 
that vPatho achieved comparable performance in prostate cancer detection and tumor volume 
estimation, as reported in the literature. The concordance levels between vPatho and human 
pathologists were examined. Notably, moderate to substantial agreement was observed in identifying 
complementary histological features such as ductal, cribriform, nerve, blood vessel, and lymphocyte 
infiltration. However, concordance in tumor grading decreased when applied to prostatectomy 
specimens (κ = 0.44) compared to biopsy cores (κ = 0.70). Adjusting the decision threshold for the 
secondary Gleason pattern from 5 to 10% improved the concordance level between pathologists 
and vPatho for tumor grading on prostatectomy specimens (κ from 0.44 to 0.64). Potential causes 
of grade discordance included the vertical extent of tumors toward the prostate boundary and the 
proportions of slides with prostate cancer. Gleason pattern 4 was particularly associated with this 
population. Notably, the grade according to vPatho was not specific to any of the six pathologists 
involved in routine clinical grading. In conclusion, our study highlights the potential utility of AI in 
developing a digital twin for a pathologist. This approach can help uncover limitations in AI adoption 
and the practical application of the current grading system for prostate cancer pathology.

Keywords Artificial intelligence, Prostate cancer, Gleason grading system, ISUP, Deep learning, Automation, 
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Prostate cancer (PCa) is the most commonly diagnosed cancer in men and one of the most prevalent causes 
of cancer-related  death1. PCa is usually diagnosed via prostate needle biopsy and may be followed by radical 
prostatectomy (total removal of the prostate, seminal vesicles, and surrounding tissues)2. The management of 
patients who undergo prostatectomy requires a reliable histopathological evaluation, including the determination 
of tumor extent and other cancer-related metrics (particularly grading, staging, and tumor volume)3. However, 
documenting the spatial distribution of PCa tissue remains a challenging task since manual segmentation of 
cancer tissue and grading on histological slides are time-consuming, particularly for prostatectomy specimens. 

OPEN

1AI Vobis, Palo Alto, CA 94306, USA. 2Department of Pathology, Prostate Center, University Hospital 
Muenster, Muenster, Germany. 3Department of Pathology, Stanford University School of Medicine, Stanford, 
USA. 4Department of Pathology, Cologne University Hospital, Cologne, Germany. 5Department of Computer 
Science, Stanford University, Stanford, USA. 6Department of Urology, Stanford University School of Medicine, 
Stanford, CA, USA. 7Department of Urology, Prostate Center, University Hospital Muenster, Muenster, 
Germany. 8Department of Pediatrics, Stanford University School of Medicine, Stanford, USA. 9Institute for 
Pathology and Cytology, Schuettorf, Germany. 10These authors contributed equally: Okyaz Eminaga and Mahmoud 
Abbas. 11These authors contributed equally: Christian Kunder and Yuri Tolkach. *email: okyaz.eminaga@
aivobis.com; Mahmoud.Abbas@ukmuenster.de; O_Bettendorf@web.de

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-024-55228-w&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |         (2024) 14:5284  | https://doi.org/10.1038/s41598-024-55228-w

www.nature.com/scientificreports/

Additionally, the pathological characterization of prostatectomy specimens or biopsy cores requires extensive 
histological sampling (e.g., embedding in multiple blocks) for accurate tumor grading, staging, and volume 
 estimation4,5. The automated identification and delineation of PCa histology could drastically improve the speed 
of clinical workflows and provide accurate and detailed documentation for clinical and research usage.

Recent advances in artificial intelligence (AI), especially in digital pathology, have shown great potential 
for automated cancer detection and tumor grading from histology  images6–15. Despite promising results, little 
is known about how far AI is utilized as a digital twin to accomplish tasks frequently occurring during clinical 
routine and research and to identify challenges in the current grading system. Therefore, we propose different 
test conditions to simulate these tasks to identify the utilization boundary of AI as a digital twin for managing 
PCa pathology.

Results
Figure 1 provides a summary of the evaluation results of the digital twin (vPatho) under ten test conditions. 
The detailed results and the results for test conditions targeting cancer morphologies (cribriform pattern and 
ductal morphology) and (mesenchymal tissue structure) and tumor precursors (HGPNs), as well as the results 
from the vPatho assessment integrated into the electronic pathology reports, are provided in the supplementary 
results section.

Prostate cancer
The concordance level for the delineation of prostate cancer (PCa) areas (defined based on tiled patches) between 
the pathologist’s readings and vPatho was substantial, with a per-slide Cohen kappa score of 0.8385 (range: 
0.7468–0.9284) and a per-slide area under the receiver operating characteristic (AUROC) curve of 0.955 (95% 
confidence interval (CI)-: 0.953–0.956).

The per-slide AUROC was further comparable to the per-case AUROC for PCa detection, emphasizing the 
consistency of the performance of each radical prostatectomy specimen for patchwise tumor detection when 
dividing its complete slides into patches.

When we considered whole-slide (WS) images with white H&E-stained sections archived for more than 
20 years, we found that the PCa detection performance on 11,862 patches was comparable to the detection per-
formance on the patches from the recent WS (AUROC: 0.95; 95% CI 0.950–0.958). Moreover, this comparable 
performance was achieved by the computationally improved staining conditions of these WS images.

Another test condition evaluated vPatho for its accuracy in sorting slides according to the presence of PCa 
in multiple external datasets. We found that this sorting algorithm delivered excellent sorting accuracy on slide 
images obtained by different studies, indicating the generalizability of vPatho (see Fig. 1E).

When we focused on images of the whole mount slides (WMs) used for pathology evaluation during routine 
clinical practice and sorted them according to the predicted cancer presence status, 99.0% (1018 of 1028) of the 
WM histology slides were correctly classified for the presence of PCa; the PPV (positive predictive value) was 
99.14%, while the NPV (negative predictive value) was 98.75%. The TPR (true positive rate) was 99.9%, and the 
TNR (true negative rate) was 90.0% (Fig. 1E.1). Furthermore, a real pathologist reduced the number of normal 
tissue slides examined by 90.0% using vPatho, while only a single slide was missing from 1028 examined slides 
from 136 patients.

At the case level, we identified 7 erroneous cases per 100 cases. When false sorting occurred in patients with 
8 whole-mount slides on average, at least one slide was falsely sorted. When we examined the causes of these 
errors, we found that one of the 7 patients had a false negative slide, whereas the remaining 6 patients had at 
least one false positive slide. The error rate for falsely sorted slides in affected patients was 14% (range: 11–29%), 
which was significantly greater than the overall error rate for examined slides (1%).

vPatho could detect lymph nodes with PCa metastases with a TPR of 89% and a TNR of 97%, although vPatho 
was trained neither on images from lymph nodes nor on PCa metastases.

The predicted tumor volumes were strongly correlated with the ground truth, with a coefficient of determi-
nation  (R2) of 0.987 (95% CI 0.983–0.991) in 46 patients (368 WM histology images) whose histology images 
had complete and detailed annotations of the cancerous lesions (Fig. 1F). The supplementary Results section 
provides additional results concerning the presence of cancer via vPatho.

Gleason patterns and ISUP grading
Under the test conditions for the identification of Gleason patterns on images with prostatic tissues in a dimen-
sion (~ 512 µm) suitable for laser microdissection, we determined that vPatho provided a substantial concord-
ance level with the pathologist’s annotations for Gleason pattern 3 (Cohen κ: 0.785) and 5 (Cohen κ: 0.772). 
In contrast, moderate concordance was found for Gleason pattern 4 (Cohen κ: 0.562) between vPatho and the 
pathologists’ annotations (see Fig. 1G, I). In parallel, we found that Gleason pattern 5 was detected more accu-
rately at 10 × objective magnification, whereas Gleason patterns 3 and 4 were detected better when lesions were 
generated at 20 × objective magnification, indicating that the magnification of the Gleason pattern was dependent 
on the quality of the magnification (see the supplementary results section).

The concordance level for the ISUP grade on 137 images from biopsy cores between vPatho and the expert 
panel with up to 23 pathologists was substantial (quadratic weighted κ: 0.70; 95% CI 0.53 0.77). When we 
binarized the ISUP grades into GG1-2 and GG3-5, the consensus rate for GG1-2 (78.2%; 95% CI 69.0–85.8%) 
between vPatho and the expert panel did not significantly differ from that for GG3-5 (62.1%; 95% CI 48.3–74.5) 
(P = 1.000), indicating that our AI algorithms did not significantly affect any of the subgroups that reflect the 
malignancy grades of PCa (low-grade vs. high-grade).
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On 136 prostatectomy specimens, the concordance level between the pathology reports curated by six differ-
ent genitourinary pathologists during the clinical routine and vPatho for ISUP grading was moderate (quadratic 
weighted κ = 0.44) before correcting the threshold (5%) for reporting the secondary Gleason pattern. Notably, 
the primary and secondary Gleason patterns are essential for defining the ISUP grade and represent the most 
frequent Gleason patterns in radical prostatectomy. The definition of the secondary Gleason pattern depends 
largely on the arbitrary threshold of 5%. If the second most common Gleason pattern falls below 5%, the primary 

Figure 1.  Performance of the digital twin under ten test conditions. (A-I) A.1 illustrates the results of the color 
optimization using a modified version of Macenko. (B) and (C) Whole-mount H&E-stained sections. (J) All 
H&E-stained images of prostatectomy specimens from 136 patients were subjected to this test. The relevance of 
each test is explained. TPR: true positive rate, TNR: true negative rate; AUC: area under the receiver operating 
characteristic curve; TMA: tissue microarray; H&E: hematoxylin and eosin staining. 95% confidence intervals 
(CIs) for uncertainty measurements. GTEx: The Genotype-Tissue Expression (GTEx) project (the images 
originated from tissues processed using alternative fixatives to formalin; only slides showing preserved glandular 
morphology were considered for the evaluation and included images with prostatitis). The 11th test condition 
is provided in the supplementary results section. The results are provided in more detail in the supplementary 
results section.
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Gleason pattern is also considered a secondary Gleason pattern, and the second most common Gleason pattern 
is considered a tertiary Gleason pattern.

Given that our previous study on an independent cohort with radical prostatectomy specimens revealed a 
pathologist-related underestimation of the tumor area (underestimation bias) by approximately half (50%) of 
the original tumor  percentage4, we corrected this threshold to 10%. Correcting the threshold to 10% significantly 
improved the concordance level between vPatho and pathology reports from moderate to substantial (quadratic 
weighted κ: 0.64; 95% CI 0.54–0.74). Figure 2A shows the confusion matrix for ISUP grading. Here, we found a 
total of 81 consensus patients (60%) and 55 nonconsensus patients (40%).

When we divided the ISUP grades into GG1-2 and GG3-5 (Fig. 2B), the consensus rate for GG1-2 (70%; 95% 
CI 59–79%) between vPatho and pathology reports was comparable to that for GG3-5 (63%; 95% CI 51–74%), 
indicating no biased preference of vPatho toward any of these subgroups (P = 0.700). We found that 80% of the 
patients (n = 109) received the same binarized ISUP grade according to vPatho and other pathologists, while the 
remaining 20% of the patients did not (n = 27).

Factors associated with the ISUP grade
We investigated the associations of histopathological factors with malignancy grade (i.e., mismatch in ISUP 
grade between the vPatho and pathology reports). This evaluation included the pathologists who performed 
the ISUP grading on the prostatectomy specimens and factors describing the number of slides per patient, the 
extent of tumor and tumor grade. The factors for tumor extent were the proportion of slides with PCa and the 
tumor volume as a percentage (TuVol%). Furthermore, the tumor grades defined by vPatho and pathologists 
were considered. Since the complementary version of the Gleason grading system was introduced in 2016 and 
its adaptation in clinical practice is sometimes needed, we also included the year of tumor grading. For each 
patient, the pathological tumor stage and surgical margin status were also collected and incorporated in our 
analyses. Finally, we conducted mediation analyses to investigate the interaction effects between the significant 
indicators and grade disagreement. Detailed statistical results can be found in the supplementary section (see 
the supplementary results section).

Our analyses revealed that the ISUP grade determined by pathologists or by our AI algorithms was associ-
ated with grade disagreement when the tumor stage (pT), locoregional lymph node metastasis status (pN) and 
surgical margin (R) status were not considered for adjustment of the multivariable models. However, when the 
multivariable mixed-effects regression model included pT, pN and R status, the ISUP grade was no longer a 
significant indicator of grade discordance. Interestingly, the capsule proximity and the proportion of positive 
slides were indicative of grade disagreement, suggesting that other confounding factors defining the tumor extent 
direction (i.e., horizontal tumor extent3 toward the prostate boundary and the number of positive slides for 
vertical tumor extension) contributed to the grade concordance status between the AI algorithms and pathology 
reports (Fig. 3 and supplementary results section). We could not identify individual pathologists as a significant 
indicator of the grade discordance between the AI algorithm and the pathology report curated during routine 
clinical practice. The year of grading was weakly associated with the pathologists but not indicative of grade 
disagreement, emphasizing the lack of association between grade and the adaptation period for the recent ISUP 
grading system in clinical practice.

Although TuVol% was associated with the proportion of positive slides and was significantly twofold greater 
in patients with positive capsule proximity than in patients with negative capsule proximity, TuVol% was not 
indicative of the grade concordance between the AI algorithms and pathology reports, implying that the tumor 
expansion range (TuVol%) was not enough to trigger grade disagreement.

Figure 2.  Confusion matrices for (A) ISUP grades and (B) binary grade groups (ISUP grade groups 1–2 vs. 
grade groups 3–5) on 136 radical prostatectomy specimens. Kappa values are provided for each endpoint.
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Finally, we found that the absolute overall deviation between Gleason pattern 3 (GP3) and 4 (GP4) from the 
zero point (a point where the percentages of GP3 and GP4 are equal) was similar between patients with grade 
(34.1%) and those with grade concordance (35.6%), emphasizing that the absolute deviation from the zero point 
is not relevant for grade (P = 0.1521). In contrast, the median percentage difference between these Gleason pat-
terns was − 16.2% (interquartile range, IQR: − 34.2– − 4.9%) (negative sign: more GP4) for patients with grade 
discordance and 25.8% (IQR -23.6–43.7%) (positive sign: more GP3) for patients with grade agreement, revealing 
that the percentage of patients with grade concordance was significantly greater overall (P = 0.0005) or in ISUP 
grade 2 (3 + 4) (P = 0.01668), as shown in Fig. 4. Importantly, the median difference between the GP3 and GP4 
percentages deviated marginally (by 6.2%) from the 10% threshold for patients with grade disagreement, sug-
gesting the existence of a gray zone (uncertainty range) for the definition of grade concordance between vPatho 
and pathology reports (or a pool of six clinical pathologists) in a subset of these patients. Figure 5 provides two 
example cases to stress the impact of the proportion determination in causing the grade discordance between 
vPatho and the human observer.

Figure 3.  Shows a schematic 3D model of the prostate with the definition of a positive surgical margin (PSM), 
the proximity of the capsule to prostate cancer, the proportion of positive slides, the percentage of tumor volume 
(TuVol%) and the definitions of horizontal and vertical tumor extent. Each slice represents a single whole-
mount slide. Our analyses with multiple mixed-effects regression models and mediation analyses revealed that 
the proportion of prostate cancer (PCa)-positive slides and the proximity of the prostate cancer capsule were 
indicative of the degree to which the tumor grade was concordant between the AI algorithms and pathology 
reports. While the capsule proximity status was indicative of grade, an increase in the proportion of positive 
slides was indicative of grade agreement. Because a single radical prostatectomy specimen cannot be embedded 
into a single block and investigated at once, this specimen was dissected into multiple slices (whole mount). 
PSM: Positive surgical margins.

Figure 4.  Box plots showing the differences in tumor incidence between patients with Gleason pattern 3 and 4 
tumors stratified by tumor grade (A) and between patients with an ISUP grade 2 and patients in the pathology 
report (B).
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Discussion
The current study evaluated the ability of the digital twin to accomplish tasks recurrently occurring in the clini-
cal routine to evaluate histology slides with prostatic tissues for PCa. Our findings support the conclusion that 
building an artificial intelligence (AI) solution that acts as a digital twin is promising. Moreover, previous studies 
have shown a potential improvement in the concordance level between pathologists using  AI15,16. However, major 
challenges remain in realizing such AI solutions in the clinical stage and are discussed here.

First, the current study reveals the need to develop guidelines for PCa pathology justified by the limitations 
and the utilization boundaries of AI algorithms. In addition to image quality  assurance17, these guidelines 
incorporate test conditions to ensure the persistent efficacy of AI algorithms on different amounts of tissue 
ranging from microdissected tissues to radical prostatectomy specimens; additionally, they suggest strategies 
to overcome AI limitations and the feasibility of integrating the evaluation results from AI algorithms into an 
electronic pathology report.

Since the definition of an expert panel may occur in a closed circle and is subject to several biases (e.g., social 
network bias, implicit bias, situational bias and geographic bias), we also compared our conclusions with the 
conclusions of other geographically distinct studies, as listed in Table 1. Studies by Al Nemer et al.18 and Dere 
et al.19 assessed biopsy slides, revealing different levels of concordance among Western Asian pathologists on the 
ISUP grade group system: Al Nemer found substantial agreement, while Dere reported a moderate level. Egevad 
et al.20 observed a high level of consensus on the ISUP grade group among pathologists from Europe, North 
and South America, Eastern Asia, Australia, and New Zealand. In Southern Europe, Giunchi et al.21 examined 
various prostate samples, noting a substantial consensus in grading Prostate Cancer and identifying High-
Grade Prostatic Intraepithelial Neoplasia (HGPIN). Van der Slot et al. identified substantial concordance among 
Western European pathologists on the ISUP grade group for prostatectomy  specimens22. However, their focus on 
Gleason patterns 4, 5, and the Cribriform pattern showed a moderate agreement level, indicating a decrease in 
concordance for more complex pattern recognition compared to ISUP grading  only22. The concordance levels for 
vPatho align with those reported in various studies for biopsies and radical prostatectomy specimens (Table 1), 
supporting the generalizability of our results. Furthermore, our findings of concordance for Gleason pattern 4 
between vPatho and pathologists are corroborated by the work of Van der Slot et al.22.

Furthermore, using vPatho, we discovered that addressable challenges in the current grading system 
contributed to the grade in our radical prostatectomy samples, which are as follows:

1. The arbitrary decision threshold for the secondary Gleason pattern. The concordance level for radical pros-
tatectomy between vPatho and pathologists (pathology report) was inferior to that for biopsy cores when the 
decision threshold for the secondary Gleason pattern was not adjusted for underestimation bias. When the 
threshold was corrected from 5 to 10% based on the findings of a previous  study4, the concordance level for 
the ISUP grade groups significantly improved for radical prostatectomy and consequently eliminated the dif-
ferences in the concordance levels of the ISUP grade groups between biopsy cores and radical prostatectomy 
specimens. These conclusive findings emphasize the importance of adjusting the decision thresholds for a 
better consensus level between artificial intelligence and a pool of pathologists or even between pathologists. 
While implementing a dynamic threshold could offer a more nuanced approach, it presents technical chal-
lenges. Such a threshold would need to be linked to a specific metric to be justifiable; this metric can be the 

Figure 5.  Two example cases with grades between vPatho and the pathology reports. The proportions were 
estimated by vPatho (AI), and the resulting ISUP grade and tertiary Gleason pattern were compared with 
pathology reports (clinical routine). The tumor volume as a percentage was calculated by vPatho. Although 
both the vPatho and pathology results revealed the right Gleason pattern in these patients, differences in the 
ISUP grade were observed. Although the Gleason pattern 4 detected by vPatho was affected by a greater false 
negative rate than was the other Gleason patterns 3 and 5, we found that the grade difference between vPatho 
and pathology reports was associated with a greater proportion of estimations by vPatho for Gleason pattern 
4 than by that for Gleason pattern 3 (see Fig. 4). This finding revealed that the proportion of patients with a 
Gleason pattern marked as a tertiary Gleason pattern by pathologists is twice as high as the 10% threshold (a 
corrected threshold for determining the secondary Gleason pattern), indirectly highlighting the inaccurate size 
estimation (50% of the original size) made by human observers (pathologists). This result is in accordance with 
our previous study in which we showed that human observers (pathologists) significantly underestimate the size 
proportion (by 50% of the original tumor) compared to computer-assisted size estimation on an independent 
dataset with 255 prostatectomy  specimens4.
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tumor volume or the prostate volume in our case. However, future work is needed to develop and investigate 
such dynamic thresholding algorithms for tumor grading.

2. The distinction of pathologists, possibly by attention or cognitive bias, is not directly related to the ISUP 
grade (e.g., topographical tumor spread) due to the limited human capacity for  perception24. In contrast, the 
distraction of AI is related to image quality and content (e.g., brightness and the epithelium of the seminal 
vesicle). Considering distracting factors during model training or image preprocessing can mitigate the 
effects of distraction while improving the accuracy.

3. The proportion of slides with PCa in a single patient can impact the grade, possibly due to cognitive bias by 
human  observers25. vPatho mitigates cognitive bias by considering all slides tiled into small patches labeled 
with PCa for ISUP grading. Moreover, proportion estimation via computer-assisted planimetry is more 
accurate and objective than is human observer  assessment4.

4. The gray zone for the ISUP grade groups, due to the degree of closeness, can lead to this. Since the computer-
assisted planimetry of vPatho yields more accurate volume estimations than does the human observer, vPatho 
intuitively outperforms the human observer in managing borderline cases.

The existence of multiple ISUP grade groups is associated with an increasing likelihood of bias due to 
increasing grade complexity. In a simulation with an equal probability for each group, reducing the group 
number from 5 to 2 improved the concordance likelihood between two pathologists from 4 to 25% just by chance. 
Moreover, the current study revealed that the major driver of discordance was Gleason pattern 4, which was also 
found in two previous  studies4,13. A possible strategy to increase the concordance level would be weighing the 
proportion of Gleason pattern 3 in the group definition (e.g., dominant vs nondominant/rare or absent Gleason 
pattern 3) instead of Gleason pattern 4, which covers more heterogeneous and diverse patterns with a complex 
and challenging boundary definition.

By analyzing the limitations of the grading system, we determined that these limitations are rooted in 
the practical recommendations of the current ISUP grading system, which heavily depend on the subjective 
estimation of Gleason patterns for ISUP  grading26. Moreover, the current grading system is adapted to 
pathologists’ limitations by providing practical measurements for clinical implementation that are not time- or 
effort-intensive27; however, these measurements increase the likelihood of  bias28. Measurements adjusted to the 
pathologists’ limitations are not always transferrable to AI given their distinctive nature. Therefore, developing 
a widely acceptable AI solution requires a specific version of the grading system or prostate cancer reporting 
system for AI.

Our study reveals the necessity and feasibility of developing standardized test conditions reflecting routine 
clinical practice. An example of this need is that choosing only one slide per case does not suffice to assert a 
clinical-grade evaluation for PCa detection, and we should consider more slides per case to accurately measure 
the true accuracy at the case level. This is because false negatives and positives were found randomly in each case, 
and not specific to certain cases. Falsely sorting a single slide leads to an error rate between 11 and 29% in a single 
case depending on the number of slides per case (see Table S25 in the addendum table of the supplementary 

Table 1.  Lists the studies examining the recent version of the ISUP grade groups and other findings for their 
concordance level and comparison with our concordance levels. The geographic location is defined according 
to the United Nations geographic scheme. Most geographic regions are still underrepresented in terms of 
interobserver reproducibility in the recent version of the ISUP/2016 WHO grading system (e.g., Africa and 
central Asia), highlighting the significant regional disparity in evaluating tumor grade. *The concordance level 
among genitourinary pathologists is higher than that among general pathologists. HGPIN stands for high-
grade prostatic intraepithelial neoplasia. The conclusions of the current study (7/9) are mostly in agreement 
with the conclusions of these studies investigating the concordance conditions between different pathologists.

Study description Concordance level

Publication
Geographic locations of 
pathologists Metrics

Sample description 
(Geographic origin) Finding Study’s conclusion Our conclusion

Al Nemer et al.18 Western Asia Fleiss kappa 126 slides with biopsy cores 
(Western Asia) ISUP grade group Substantial Substantial

Dere et al.19 Western Asia Fleiss kappa 50 biopsy slides from 41 cases 
(Western Asia) ISUP grade group Moderate Substantial

Egevad et al.20

Western Europe, North Europe, 
North America, South America, 
Eastern Asia, Australia, and 
New Zealand

Average weighted kappa 90 core needle biopsies 
 (STHLM323, North Europe) ISUP grade group Substantial Substantial

Giunchi et al.21 Southern Europe Cohen kappa
121 regions of interest from 61 
slides covering biopsy, radical 
prostatectomy, and TUR 
(Southern Europe)

Prostate Cancer Substantial Substantial

HGPIN Substantial* Substantial

van der Slot et al.22 Western Europe Krippendorff ’s α 80 radical prostatectomy 
specimens (Western Europe)

Cribriform pattern Moderate Substantial

ISUP grade group Substantial Substantial

Gleason pattern 4 Moderate Moderate

Gleason pattern 5 Moderate Substantial
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results section). Therefore, it is clinically more important to report how many patients have falsely sorted slides 
per 100 patients examined. Furthermore, we emphasize that human examiners require additional efforts to screen 
for false negative slides (the human examiner needs to screen the whole slide for prostate cancer to confirm 
or exclude the existence of a false negative slide) than for false positive slides (we require only examining the 
regions demarcated by vPatho to determine false positive slides). We emphasize that having a negligible false 
negative rate is useful for directing the focus of pathologists to correct false positive slides with cancer areas 
demarcated by vPatho.

It is worth mentioning that the detection performance on patches (the deepest level of evaluation) from tissue 
microarray (ROCAUC: 0.982; 95% Confidence interval -CI- 0.974–0.988) was significantly higher than on patches 
from prostatectomy specimens (AUROC: 0.955, 95% CI 0.953–0.956) given that the histologic heterogeneity 
likelihood is higher in prostatectomy specimens and therefore more challenging compared to smaller tissues 
(i.e., laser microdissection, TMA spots); the curation of tissue microarrays (TMA) may rely on the random 
area selection, but it still follows a targeted tissue sampling that reduces the histologic heterogeneity spectrum. 
Our results also indicate that the detection performance for prostate cancer on TMA is not representative of 
the detection performance on slides of radical prostatectomy specimens at the patch level. Overall, the tissue 
dimension and tissue heterogeneity of prostate tissue samples impact detection performance. A variety of 
tissue dimensions should therefore be considered during prostate cancer detection performance evaluation to 
determine the generalizability of the clinical grade. Additionally, we highlight the importance of reporting the 
image preprocessing steps, as the definition of image preprocessing is strongly associated with the detection 
performance under test conditions and is therefore important for deep learning models.

Finally, we further emphasize the importance of designing the test conditions of datasets as completely 
disjointed from the development  set29. The study included slides examined during routine clinical procedures 
to generate pathology reports. Our test design is inspired by previous studies investigating the concordance 
between pathologists for different pathological findings.

In our study, while the model was trained once and tested across various scenarios, we recognize the critical 
importance of ongoing monitoring post-deployment, particularly in compliance with FDA and other regulatory 
approvals. This includes a well-documented review and monitoring process for the AI framework, ensuring it 
adheres to regulatory standards and maintains the highest level of integrity and safety in clinical applications. 
Moreover, conducting simulation tests that replicate typical scenarios encountered in clinical practice provides 
an effective method for evaluating machine learning performance in real-world settings.

The question of which pathologist’s grading is the most accurate remains debatable, and the true prognostic 
significance of varying gradings on the same patient is still unclear and whether other clinical parameters like 
tumor stage and PSA levels mitigate the effect of the varying gradings, with only partial insights gained from 
existing studies. Additionally, exploring the prognostic impact of discordance among pathologists is challenging 
due to inherent biases. These include variables such as the individual’s perceptual ability, daily workload, 
prior knowledge, and personal experience, which cannot be easily quantified in a time-dependent manner. 
For example, a pathologist with five years of experience in a high-volume, non-academic institution, dealing 
with a variety of PCa cases from different hospitals, may encounter a higher number of heterogeneous PCa 
cases annually than a pathologist who has ten years of experience working exclusively in a university hospital. 
Notably, university hospitals take on a more significant role in academic research and are more involved in the 
development of the grading system, often through collaborative consortium mechanisms with pathologists 
from different universities and the majority consensus mechanism. In clinical practice, grading is, however, not 
performed under a consensus mechanism, which means that the consensus reached in a collaborative consortium 
may not accurately reflect the decision-making process in a clinical setting. Similarly, when comparing AI with 
pathologists, a more controlled test environment is essential to ensure that bias factors, including selection 
biases, are minimized.

This study has several limitations. First, this study did not evaluate the correlation between the Gleason 
grade and survival outcomes given that the follow-up period for an appropriate survival analysis is less than 
10 years according to the 2016 WHO grading  system30. Second, the AI-based digital twin undergoes constant 
enhancements through iterative improvements in both content and technical aspects. Third, the current study 
covered only the major spectra of prostate cancer pathology, and the core goal of this study was to evaluate AI 
under different test conditions reflecting clinical routine and to demonstrate the useability of AI as a digital twin 
to determine issues associated with the current grading system. Future work will focus on automating tumor 
staging and pathological descriptions. Finally, all models for GP4 detection were trained using extensive image 
datasets, including but not limited to Gleason Pattern 4, with the objective of capturing the entire spectrum of 
GP4 variations as described in the methods section. However, we did not precisely categorize the training set for 
variations of Gleason Pattern 4. Instead, our emphasis was on creating a high-quality, detailed test set to confirm 
its coverage of the established GP4 variations. We must also note that while GP4 variation plays a limited role 
in clinical decision-making, its importance lies in ensuring that the test set encompasses the common patterns 
of GP4. It would be interesting to explore the significance of underestimating Gleason Pattern 4 (GP4) on the 
prognosis of outcomes in men who have undergone radical prostatectomy, highlighting the necessity for future 
studies to determine the extent of this impact.

Conclusions
Our digital twin concept facilitates trouble-shooting challenges in digital pathology and clinical practice for 
prostate cancer pathology.
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Methods
Image database
We utilized publicly available histology images of diagnostic slides provided by The Cancer Genome Atlas 
(TCGA)31 and images of tissue microarrays from a previous  study6 for model development. For model evaluation 
under different test conditions (from external datasets), we collected a total of 2540 images of H&E-stained 
diagnostic histology slides, micrographs, or tissue microarray spots of paraffin-embedded prostate tissues from 
709 patients. These slides were obtained by different institutions and scanned using different types of scanners. 
Table 2 provides a summary of the image datasets for each test condition.

Image processing
Whole-slide images are gigapixel images and are difficult to process in one step. Therefore, we tiled whole-slide 
images into small patches after identifying the foreground prostatic tissue using image thresholding according 
to Otsu’s  method36. We obtained a final patch size of 512 × 512 pixels at 10 × by a pixel mapping of 1 µm per pixel. 
For Gleason pattern detection, the 20 × objective magnification (~ 256 × 256 µm) was also evaluated to identify 
the optimal magnification level for the agreement between vPatho and the pathologist.

A patch was considered to be positive for PCa when more than one percent of the patch was positive. A patch 
was positive for high-grade prostatic intraepithelial neoplasia (HGPIN), Gleason patterns, ductal morphology, 
the cribriform pattern, nerves, or vessels when at least 5% of the patch was positive.

Spatial annotation data curated by pathologists were used to label these patches. For patchwise evaluation, 
each histological image has a corresponding mask that incorporates the demarcated lesion areas and has 
dimensions equal to the dimensions of the original image. Both the image and the mask were tiled using the 
same grid.

In contrast, the spot images from the TMA were first downsized to achieve a 10 × magnification; then, 
prostatic tissue was identified by applying image thresholding according to Otsu’s method, and the boundary 
was determined using the contour detection algorithm provided by the OpenCV  framework37. After that, the 
region of interest was divided into tiles of 512 × 512 pixels (512 × 512 µm).

Each TMA spot (each spot was captured at 20 × objective magnification) was previously labeled for PCa 
presence based on the pathologist’s judgment and whether it originated from cancer lesions in prostatectomy 
specimens. Accordingly, each patch was labeled based on the spot label.

Quality assessment
The quality assessment of slides by technical assistants and pathologists is an integral component of the standard 
operating procedure of accredited pathology  institutions38. In clinical settings, when a slide is not suitable 
for pathological evaluation, a better slide is prepared from the same tissue block (prostatectomy specimens 
are embedded in blocks) for pathological evaluation. We anticipate that similar standards for image quality 
assessment will become routine in future digital pathology workflows. However, the implementation of a 
quality management system for histology slides in a clinical setting is beyond the scope of the current study. We 
consequently refer the reader to the relevant literature.

Although all histology images passed internal review prior to inclusion in the current study, we implemented 
a blurriness and illuminance assessment tool for patches.

The blurriness of each patch was estimated using the variance of the  Laplacian39; we first established a 
reference range (95% confidence interval: 112–124) for blurriness detection on 800 patches randomly generated 
at 10 × objective magnification from 8 diagnostic H&E WS images available in TCGA-PRAD (100 patches 
extracted from random regions for each WS image). These slides did not contain visible blurriness or illuminance 
imbalance. If a patch had a variance outside this range, image  sharpening40 was applied to reduce the blurriness 
of the patch. A second blurriness assessment was then made, and if the variance of the patch was still outside 
the reference range, the patch was excluded from the detection task.

In parallel, we assessed the relative  illuminance41 of each patch and corrected its illuminance if the relative 
illuminance was outside the reference range (144.4–165.3). We determined the reference range on 800 patches 
previously utilized to identify the reference range for blurriness. For illuminance correction, we applied 
automated contrast limited adaptive histogram equalization (CLAHE)42 in combination with a modified version 
of a reference-free Macenko approach for stain color  optimization43. Our aim with the illuminance correction 
was to reduce the illuminance deviation from the reference range. Finally, we evaluated the impact of correcting 
for blurriness and illumination on the detection performance for spots with prostate cancer using Stanford’s 
tissue microarray with 1129 spots.

Model architecture
We utilized a novel convolutional neural network called  PlexusNet44 that supports neural architecture search 
(NAS)45 and uses  ResNet46 and Inception  blocks47 as well as standard convolutional blocks (VGGs). Taking 
inspiration from a previous study, we also included quasisoft attention  blocks48 (we removed “quasi” from the 
block description for convenience). The PlexusNet architecture is a directed acyclic multigraph. The complexity 
of this graph is primarily determined by its depth (i.e., the number of levels), extent of branching (i.e., end-to-
end paths or width) and number of weighted junctions (i.e., cross edges) between two end-to-end paths that give 
rise to the multigraph property. A transitory “short” path was randomly defined to populate feature maps of an 
end-to-end path at a random level (Fig. 6). The resulting feature maps (i.e., channels) for all the end-to-end paths 
were concatenated, and their feature dimensions were subsequently reduced via global pooling (either maximum 
or average pooling). The classification section of PlexusNet fully connects and weights the dense features to 
feed into the final layer to estimate the confidence scores for pathology in patches of histology images. Figure 6 
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Test condition
Data description or project source 
(number of cases), image size Number of images/patches Scanner vendor Objective magnification level

Prostate cancer detection on the H&E slides

Slide condition or sample dimension

Old slides (~ 20 years)

Patch images McNeal’s anatomy  study32

(15 cases), ~ 512 × 512 µm 11,862+ Philips 10×

Recent slides (< 6 years)

TMA Spots (Smallest sample dimension) Stanford TMA database
(339 cases), 2048 × 2048 pixels spot images 1129 Leica 20×

All whole mount slides of each single 
 case+++ (Largest sample dimension)

Radical prostatectomy
(46 cases), whole-mount slide 368 Leica 20×

Tumor volume estimation

All slides of each single  case+++ Radical prostatectomy (46 cases), whole-
mount slides 368 Leica 20×

Sorting slides according to prostate cancer presence

Tissue sampling method

Radical prostatectomy specimens Radical prostatectomy
(136), whole-mount slides 1080 Leica 20×

Dissected pelvic lymph nodes Lymph node dissection
(50 lymph nodes), whole slides 19 Leica 20×

Obduction
Cystprostatectomy specimens

The Genotype-Tissue Expression  project33 
(40 cases), whole  slides++ 40 Leica 40×

Radical prostatectomy
specimens

PAI-WSIT  project34 (18 cases), whole 
 slides++ 60 Hamamatsu 40×

Gleason pattern detection and ISUP grading

Tissue sampling method

Biopsy cores
The International Society of Urological 
Pathology image  library35, 2048 × 2048 
pixels (72dpi) micrograph, (137 cases)

137 Olympus (micrograph) 20×

Radical prostatectomy specimens Radical prostatectomy (136), whole-mount 
slides 1080 Leica 20×

Very limited tissues with prostate cancer
Patches from 594 random regions with 
Gleason patterns 3–5 and HGPIN in 
24 whole-mount WS images (24 cases), 
512 × 512 µm

3840 (20×)
1128 (10×) Leica 20×

10×

Detection of ductal morphology

Patch images

Patches from 38 random regions from 
2 WS images of 2 cases with ductal 
adenocarcinoma plus 218 random regions 
with Gleason pattern 3–5 in 9 WS images of 
9 cases, 512 × 512 µm

2112 Leica 10×

Detection of cribriform pattern

Patch images

Patches from 32 random regions with 
Cribriform patterns of 5 cases and 199 
random regions with noncribriform 
prostate cancers and Gleason patterns 
3–5 in 9 whole-mount WS images (9 
cases), ~ 512 × 512 µm

928 Leica 10×

Detection of vessels

Patch images

Patches from 642 random regions with 
blood vessels on 22 WS images (22 cases) 
and 478 random regions with Gleason 
patterns 3–5 on 20 WS images (20 cases), 
512 × 512 µm

4608 Leica 10×

Detection of nerve structure

Patch images

Patches from 628 random regions with 
nerves or ganglions on 22 WS images 
(22 cases) and 216 random regions with 
Gleason patterns 4–5 (8 slides, 8 cases), 
512 × 512 µm

1280 Leica 10×

Detection of inflammatory cell infiltration

Patch images

Patches from 123 random regions with 
inflammatory cell infiltration on 19 WS 
images (19 cases) and 216 random regions 
with Gleason patterns 4 and 5 (8 slides, 8 
cases), ~ 512 × 512 µm

768 Leica 10×

HGPIN detection

Continued



11

Vol.:(0123456789)

Scientific Reports |         (2024) 14:5284  | https://doi.org/10.1038/s41598-024-55228-w

www.nature.com/scientificreports/

Table 2.  The description of the cohort utilized to run the test conditions (external validation set). All 
histological slides were stained with hematoxylin and eosin. HGPIN: high-grade prostatic intraepithelial 
neoplasia. + the whole-slide images were tiled into small image patches ++whole slides with a portion of the 
prostatic slice (2.3 times smaller than the prostatic slice). TMA: tissue microarray. +++Given that a single whole-
mount (WM) slice roughly corresponds to 20–30 biopsy cores and because of the time- and labor-intensive 
effort required for high-precision annotation of WM images for prostate cancer, we randomly selected 46 
cases with a total of 368 WM images (~ 7,360–11,040 biopsy core images or ~ 894,240 nonoverlapping tiles 
(dimensions: 512 × 512 pixels) at 10 × and ~ 1 µm per pixel for patch-level performance evaluation. * The 
images were obtained at different sites. The negative control groups for the detection of ductal morphology, the 
cribriform pattern, vessels, nerve structure, and HGPIN are described in the sections below.

Test condition
Data description or project source 
(number of cases), image size Number of images/patches Scanner vendor Objective magnification level

Patch images

Random 32 regions from 10 WM images 
(10 cases); 40 random regions with 
intraductal adenocarcinoma from 4 WM 
images (4 cases); 19 random regions with 
benign prostatic hyperplasia from 4 WM 
images (4 cases), ~ 512 × 512 µm

2687 Leica 10×

Integration into an electronic pathology report platform

Radical prostatectomy specimens
136 radical prostatectomy specimens, 
complete representative whole-mount slides 
per case

1028
(Median: 8 per case) Leica 20×

Figure 6.  Summarizes the concept of the PlexusNet architecture. A block consists of multiple neural network 
layers. Four architecture block types are available: VGG, Inception, residual, or soft attention block. The major 
hyperparameters for the graph definition are the depth (number of levels), with a minimum depth of 2; the 
number of end-to-end paths (width); the number of transitory “short” paths; and junctions that intersect 
between two end-to-end paths. Here, the example PlexusNet architecture has a depth of 3 levels, a width of 2, 
and a single transitory path and weighted junction between two end-to-end paths. The position of the weighted 
junction between two paths before the global pooling layer is determined randomly. For all the PlexusNet 
models, all the final feature maps of the end-to-end paths are concatenated before being fed into the global 
pooling layer. The depth of a transitory path is determined randomly, and the transitory path concatenates with 
the root path (by default, the first end-to-end path is considered the root path) at the same level as the weighted 
junction. The position randomization for weighted junctions or the depth for transitory paths has no impact on 
the model performance, while the number of weighted junctions has an impact on the model performance. For 
simplified model development, we unified the block type for all paths.
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provides a summary of the PlexusNet architecture concept, and Figs. 7 and 8 illustrate the different block types 
used in the PlexusNet architecture. Table 3 summarizes the hyperparameter configurations for each finding.

We used Eq. (1) to justify the contrast and interpolation of the input images, as this step improved the 
classification performance for prostate cancer detection by 10.0% (95% CI 9.2–11.2%) compared to that of a 
convnet model without this interpolation function.

(1)X̂ = −2e−(2X2)
[cos(90ω1)+ x sin(90ω2)]

Figure 7.  Shows the structures of the (A) inception, (B) residual, and (C) soft attention blocks used in the 
present study. In the PlexusNet architecture, (D) two consecutive blocks are connected by an average pooling 
that reduces the width and heights of the feature maps of the next block by half. When we calculate the channel 
numbers, the “round half up” approach is used to convert the channel numbers to integer numbers. BN: batch 
normalization; MN: max normalization; LN: layer normalization; B/LN: either batch or layer normalization. γ is 
the compression rate used to reduce the channel information, similar to the compression ratio in  DenseNet49; l: 
the level index. H: Height; W: width; C: Channel. The subscript of the level definition for H and W was ignored 
to emphasize that H and W did not change during tensor processing in each block.
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X̂ is the output of the equation, where ω1 and ω2 are the trained weights (scalar), ω1,ω2 ∈ [−1, 1] and X is 
a matrix that represents an image batch defined by X = {x|∀x ∈ X, 0 ≤ x ≤ 1} ; and cos (90ω1) and sin (90ω2) 
terms are the interpolation functions. The optimal weights ω1 and ω2 are determined during model training.

This equation performs [− 1, 1] feature scaling, where X̃ is the normalized output and X̂ is the batch input 
that is interpolated by Eq. (1). Figure 9 illustrates the results of Eq. (1) on the input image.

We considered the PlexusNet architecture because this architecture facilitates the development of small 
models (see parameter capacity in Table 3) for accurate binary classification tasks comparable to those of large 
state-of-the-art models, as shown in supplementary file 1. It is worth mentioning that the cumulative parameter 
capacity of the models we considered for vPatho is remarkably below the parameter capacity of a single ResNet 
18 model (18 million trainable parameters), a frequently used model architecture. Moreover, the parallel use of 
these models is feasible on a single GPU card with 24 GB when we have a batch size of 16 patches (dimension: 
16 × 512 × 512 × 3).

Datasets for model development
For training, we followed a data-efficient strategy in which we predefined and determined the proportion of 
the pathological content of the training set. We followed a trial-and-error approach to determine the optimal 
proportion of the pathological content of the training set for each detection task. We mitigated the imbalanced 
classification conditions of the training set by oversampling the underrepresented positive findings and applying 
image augmentation with a 50% probability to vary the content visualization of the patches. Tables 4, 5, 6, 7, 8, 
9 and 10 summarize the data compositions for model development.

For precursor detection, cancer morphology detection and mesenchymal structure detection, we intentionally 
defined Gleason pattern 5 and benign prostatic hyperplasia as unseen pathological findings and included patches 
of these findings in the optimization datasets. The aim of this strategy was to increase the likelihood of detecting 
the best and best-fit models.

Comparison with state-of-the-art model architectures
As an exploratory analysis to determine the optimal model architecture and to justify our model architecture 
selection, a comparison of our novel model architecture with the state-of-the-art model architectures was con-
ducted on 60 randomly selected whole-mount images from Stanford to detect tiles with prostate cancer (a patch 
512 × 512 pixels and corresponds to ~ 512 × 512 µm at 10 × objective magnification). We compared the accuracy 
of these methods on nonoverlapping patches generated from these images, as patches represent the smallest data 

(2)X̃ = 2
X̂ −min(X̂)

max

(

X̂
)

−min(X̂)
− 1

Figure 8.  Represents the layers for the feature population block that populate the channel number from 3 to 
 C1 using the convolution layer with the size of the convolution weight kernel  (K1) and a stride  (S1). The default 
value for stride  S1 is 2 × 2 pixels to move  K1. The dimension unit is given in pixels.
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unit on which different detection tasks depend. The models were trained using categorical cross-entropy loss 
with a batch size of 16 and optimized using “ADAM” with a default  configuration56 and a learning rate of 1e-3. 
The patch augmentation incorporated random rotation, JPEG compression rates for random image resolution, 
flipping and color shifting as well as zooming. For all procedures, we utilized the same random seed (seed = 1234) 
to ensure that patch augmentation was similarly applied for all models. To account for variability in development 

Table 3.  Summarizes the architecture design for the different findings. By combining all the models listed 
here, the novel architecture design achieved a total parameter capacity markedly lower than the parameter 
capacities of a single ResNet-18 model (~ 11 million) or the 2nd version of a single MobileNet model (~ 2.0 
million parameters)50. These models combined a total of 1,012 features in the fully connected layers (in 
comparison, a single RestNet-18 model had 512 features in the fully connected layers). Given the compactness 
of our models, we could assign all 17 models to a single GPU card (VRAM 24 GB) for the pathology report 
generation task. For each Gleason pattern, we applied an ensemble model that weighted the predictions of the 
models equally. The weighted prediction scores ranged between 0 and 1. Note: The variation in the parameter 
capcity despite having the same hyperparameter configuration is due to the variation in the block number 
(depth) of the short path. A number of models with different configurations were tested to achieve the final 
model configuration via the grid search and trial-and-error approaches. Ch. Channel, conv. Convolution, C1 
channel number of the first convolution layer, K1 kernel size of the first convolution layer, act. activation, no. 
number, cat. Category, FC fully connected; +  Layer  normalization51 is applied instead of batch  normalization52. 
Transfomer blocks were added prior to global pooling; since the output of the convolutional layer was batch 
size × height × width × channel, we reshaped the output to batch size × height * width × channel before feeding 
into the transformer block; the output from the  transformer48 was reshaped back to the dimension of the 
convolutional layer before global pooling was applied. For all the models, a patch dimension of 512 × 512 × 3 is 
applied. Significant values are in bold.

Architecture

Finding
Block 
type Depth Width Junction

Short 
path C1 K1

Apply crop 
center 
on input 
(256 × 256)

Initial 
filter 
factor 
per path

Global 
pooling

No. of 
Ch. for 
 1st FC 
layer

Output 
function 
(no. of 
cat.)

Parameter 
capacity

Supervised 
contrastive 
 learning53

Transformer48 
(no. of blocks. 
header 
number)

Prostate 
Cancer Inception 7 2 3 1 32 5 × 5 No 2 Max 96 Softmax 

(2) 178,342 No No

Gleason 
pattern 3

Inception 4 2 3 1 32 5 × 5 No 2 Max 60 Softmax 
(2) 58,879 No No

Inception 4 2 3 1 32 5 × 5 No 2 Max 60 Softmax 
(2) 58,879 No No

Gleason 
pattern 4

Incep-
tion+ 4 2 3 1 6 5 × 5 No 2 Avg 60 Sigmoid 

(1) 49,122 Yes No

Incep-
tion+ 4 2 3 1 6 5 × 5 No 2 Avg 60 Sigmoid 

(1) 49,122 Yes No

Incep-
tion+ 4 2 3 1 32 5 × 5 No 2 Avg 60 Softmax 

(2) 50,201 No No

Soft atten-
tion 6 2 3 1 8 3 × 3 Yes 2 Max 20 Softmax 

(2) 51,732 No No

Soft atten-
tion 6 2 3 1 8 3 × 3 Yes 2 Max 20 Softmax 

(2) 51,732 No No

ResNet 5 2 3 1 16 5 × 5 No 4 Avg 44 Softmax 
(2) 206,638 No No

Gleason 
pattern 5

Soft atten-
tion 5 2 3 1 16 5 × 5 No 2 Avg 24 Softmax 

(2) 48,590 No No

Soft atten-
tion 5 2 3 1 16 5 × 5 No 2 Avg 24 Softmax 

(2) 48,590 No No

Ductal 
morphol-
ogy

Inception 4 2 3 1 16 5 × 5 No 2 Max 60 Softmax 
(2) 53,683 No No

Cribriform 
pattern Inception 3 2 3 1 32 5 × 5 No 2 Max 48 Softmax 

(2) 34,033 No No

HGPIN Inception 5 4 2 2 16 5 × 5 No 4 Max 160 Softmax 
(2) 412,322 No No

Vessel Incep-
tion+ 5 2 3 1 16 5 × 5 No 2 Max 72 Softmax 

(2) 183,448 No Yes (3,4)

Nerve Incep-
tion+ 5 2 3 1 16 5 × 5 No 2 Max 72 Softmax 

(2) 171,997 No Yes (3,4)

Inflamma-
tory cell 
infiltration

Incep-
tion+ 5 2 3 1 16 5 × 5 No 2 Max 72 Softmax 

(2) 171,277 No Yes (3,4)

Total 1012 1,878,587
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set portioning, we partitioned the development set threefold and repeated our evaluation three times on the 
held-out test set. At each time point, we evaluated the area under the receiver operating characteristic curve 
(AUROC), expected classification error, and Brier score for patches per slide and then determined the mean and 
95% confidence interval (CI) using 100,000 bootstrapped slide resamplings. The expected classification errors 
(ECEs) and Brier scores provide insights into the model goodness of fit and the model calibration. The lower the 
ECE or Brier score is, the better the goodness of fit and calibration of the model. On the basis of our evaluation, 

Figure 9.  (A) shows the same image before and after applying Eqs. (1) and (2) using ω1,ω2 provided in (C) 
for comparison. (B) Histograms of the same image before and after applying Eqs. (1) and (2). The application 
of Eq. (1) remarkably improves the image contrast, and (B) interpolates the input image according to ω1,ω2 . 
PlexusNet-based models learn the optimal values ω1,ω2 during model training to determine the optimal 
nonlinear interpolation of the input image to solve a classification problem. The purpose of this approach is to 
contrast the semantic content of the input image to increase the likelihood of capturing meaningful features in 
the deep convolutional neural network layers that consequently impact the classification performance; ω1,ω2 
given in (C) originated from the prostate cancer detection model. The example patch image has dimensions 
of ~ 512 µm × 512 µm at 10 × objective magnification. (C) Values of the input image were normalized using min–
max normalization and correlated with the values from Eqs. (1) and (2).
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Table 4.  Nonoverlapping patch number and cancer proportion resulting from splitting 200 whole-slide images 
(WSIs) at 10 × objective magnification by 512 × 512 pixels (1 pixel corresponds to ~ 1 µm) obtained from the 
Cancer Genome Atlas image library for prostate cancer (PRAD). All the slides were scanned at 40 × objective 
magnification. We randomly selected 200 WSIs for model development, where 195 WSIs were considered for 
training and 5 WSIs were considered for in-training optimization. These numbers were fixed when curating 
different folds by random data splitting. All the images were stained with H&E.

Finding

Random data splitting

Fold 1 Fold 2 Fold 3

Training set (case number = 195)

 Patches

  Noncancer tissues, n (%) 44,240 (53.99) 43,530 (53.35) 43,975 (54.03)

  Prostate cancer, n (%) 37,69 (46.01) 38,069 (46.65) 37,411 (45.97)

  Total, n (%) 81,937 (100.00) 81,599 (100.00) 81,386 (100.00)

  Average cancer pixel proportion in a patch labeled with prostate cancer (median) 78.8% (100.0%) 78.9% (100.0%) 78.9% (100.0%)

In-training optimization set (case number = 5)

 Patches

  Noncancer tissues, n (%) 1769 (72.0) 2479 (88.7) 2034 (67.6)

  Prostate cancer, n (%) 689 (28.0) 317 (11.3) 975 (32.4)

  Total, n (%) 2458 (100.0) 2796 (100.0) 3009 (100.0)

  Average pixelwise cancer proportion in a patch labeled with prostate cancer (median) 76.7% (100.0%) 64.9% (72.0%) 75.7% (97.0%)

Table 5.  The patch number and the cancer proportions in the external datasets curated from 60 whole-mount 
histology images. One whole-mount image covers the whole prostatic slice and provides patches on average 6 
times more than a single whole-slide image of the Cancer Genome Atlas for prostate cancer.

External dataset for model comparison (60 whole mount images)

Finding Patches

Noncancer tissues, n (%) 142,135 (81.95)

Prostate Cancer, n (%) 31,286 (18.05)

Total, n (%) 173,421 (100.00)

Average pixelwise cancer proportion in a patch labeled with prostate cancer (median) 80.6% (100%)

Table 6.  The number of patches generated from 641 tissue microarray spot images (2240 × 2240 pixels, 
scanned at 20 × objective magnification) provided by Arvaniti et al. with spatial annotation for prostate cancer 
and Gleason patterns prepared by two  pathologists6. The overlap between two patches was predefined to be 
50%

Finding Magnification level Patch number, n (%)

Noncancerous tissues

5× 532 (35.9)

10× 3325 (35.9)

20× 4166 (35.9)

Gleason pattern 3

5× 380 (25.7)

10× 2375 (25.7)

20× 2932 (25.7)

Gleason pattern 4

5× 328 (22.2)

10× 2049 (22.2)

20× 2867 (22.2)

Gleason pattern 5

5× 240 (16.2)

10× 1500 (16.2)

20× 1732 (16.2)
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we determined that our novel model “PlexusNet” achieved performance comparable to that of state-of-the-art 
models widely used in medical imaging, while its parameter capacity was 150- or 85-fold lower than that of 
ResNet-50v2 or VGG16; moreover, the per-batch training duration for PlexusNet was at least two times shorter 
(223 ± 54 ms per batch vs. 630 ± 67 ms per batch for RestNet-50v or 528 ± 68 for VGG-16) on a single graphics 
processing unit (GPU) (NVIDIA™ Titan Volta with 12 GB) under similar data input/output conditions (one 
training process at a time and running processes relevant for the operating system). The results of the comparison 
analysis are summarized in Supplementary file 1.

Hyperparameter configuration for model training
Table 11 provides the hyperparameter information used during model training. Models with the lowest AUROC 
in the optimization cohort were considered. For supervised contrastive learning, we selected the model with the 
lowest loss value in the steps for contrastive feature  learning53,57.

Ensemble learning for Gleason pattern detection
Given that Gleason patterns are heterogeneous and may have different latent appearance distributions, we 
applied ensemble learning to improve pattern detection accuracy and to increase the likelihood of having models 
robust to variation in appearance. Furthermore, we hypothesized that having multiple small models trained with 
different architectures and deep learning approaches provides better generalizability than does having a single 
small model.

Gleason pattern 3
For Gleason 3, we trained two models with different model architecture configurations (see Table 11) on a dataset 
with magnification levels of 5 × , 10 × , and 20 × and one model on a dataset with magnification levels of 10 × and 
20 × . The rationale behind training on such datasets is to capture magnification-invariant features related to 

Table 7.  Constitution of the training sets on the basis of Table 4, which aims to cover the variation in the 
magnification levels for model development. Various approaches for patch augmentation were applied to 
increase the variation in patch appearance to increase the likelihood of obtaining more generalizable models.

Finding/models Considered datasets with magnification levels as training set
Augmentation features
(Augmentation probability: 50%)

GP3

Random brightness and contrast
Random image compression rates (variable image 
resolution)
Random flip (horizontal and vertical)
Random rotation (between -90 and 90)
Random hue saturation value
Random Gaussian noise
Random clip limits in the Contrast limited adaptive 
histogram  equalization54

Model 1 5×, 10×, 20×

Model 2 10×, 20×

GP4

Model 1

10×, 20×

Model 2

Model 3

Model 4

Model 5

Model 6

GP5

Model 1
10×

Model 2

Table 8.  The optimization set for Gleason pattern detection used to select the best models according to the 
best area under the curve (AUROC). This optimization set was curated from The Cancer Genome Atlas images 
with demarcation of 536 prostate cancer heterogeneous regions representing different Gleason patterns and 
benign tissues in 35 patients (~ 15 regions per patient) by a team of a senior pathologist and a prostate cancer 
researcher. These patches (512 × 512 pixels) were curated at the 10 × magnification level, resulting in a total 
of 8308 patches. The “Normal tissue” category covers the prostatic epithelium, stroma, and atrophy. HGPIN 
stands for high-grade prostatic intraepithelial neoplasia and is the presumed precursor of prostate cancer.

Finding Case, n (%) Regions, n (%) Patches, n (%)

GP3 12 (21.4) 32 (6.0) 923 (11.1)

GP4 9 (16.1) 166 (31.0) 1318 (15.9)

GP5 20 (35.8) 216 (40.2) 5397 (65.0)

Normal tissue 11 (19.6) 106 (19.8) 466 (5.6)

HGPIN 4 (7.1) 16 (3.0) 204 (2.4)
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Gleason pattern 3; specifically, we were interested in the well-differentiated glandular appearance and the con-
nective tissue space between glandular structures, as these features have an important role in discriminating 
Gleason pattern 3 from 4 or 5.

Gleason pattern 4
Because Gleason pattern 4 has a broader tumor appearance than other Gleason patterns (i.e., 3 and 5), we used six 
PlexusNet models with different model configurations and training schemes: one model contained 3 transformer 
blocks after the last convolutional layer and before the full connection step; two models of two different epochs 

Table 9.  The training sets used to develop patch-level classification models for the cribriform pattern, ductal 
morphology, high-grade intraprostatic intraepithelial neoplasia (HGPIN), vessels, nerves, and inflammatory 
cell infiltration. A total of 42 patients and 1723 regions were considered. For all the findings, we oversampled 
the positive patches to overcome class imbalance. + 10 additional images were collected from the internet 
because ductal adenocarcinoma is a rare type of prostate cancer. Given that benign prostatic hyperplasia may 
have a glandular structure with a large lumen, we explicitly excluded patches from the lumen. Gleason patterns 
and normal glandular tissues further included stromal components. Normal tissues cover the ductus deferens 
and epithelial and stromal components from the peripheral and central zones of the prostate. Gleason pattern 5 
was not included in the training set because this pathology was not detected in the optimization set to identify 
the ideal model. The initial HGPIN model was retrained on a training set that included an additional 4143 
patches with prostatic hyperplasia from 19 lesions of 4 patients. Here, we used a learning rate of 1e-6 to avoid a 
complete distortion of the initial  weights55.

Finding

Patches

Regions, n (case, n) Magnification level Positive, n (%)
Negative, n (%), 
(regions, n; cases, n)

List of negative 
findings (%)

Cribriform pattern 117 (13) 10× 546 (24.5) 1686 (75.5)
(672; 29)

Gleason pattern 3 (45.0)
Nerves (35.3)
Normal glandular 
tissues (11.4)
Gleason pattern 4
No Cribriform pattern 
(8.3)

Ductal morphology 83 (19)+ 10× 278 (12.7) 1795 (87.3)
(218; 21)

Gleason pattern 3 (51.4)
Gleason pattern 4 (48.6)

HGPIN++ 40 (4) 10× 248 (3.0) 5009 (97)
(1564,37)

Gleason pattern 3 (9.2)
Gleason pattern 4 (13.3)
Cribriform pattern 
(11.6)
Nerves (16.1)
Vessel (12.7)
Ductal 
adenocarcinoma. (8.9)
Normal tissues (5.4)
Inflammatory cell 
infiltration (22.3)
Perineural invasion. 
(0.5)

Blood vessels 232 (23) 10× 375 (10.3) 3280 (89.7)
(955; 42)

Gleason pattern 4 (28.2)
Gleason pattern 3 (22.8)
Nerves (18.1)
Cribriform pattern 
(16.8)
Ductal adenocarcinoma 
(8.0)
Normal glandular 
tissues (6.1)

Nerves 344 (20) 10× 389 (11.2) 3088 (88.8)
(545; 31)

Gleason pattern 4 (28.9)
Gleason pattern 3 (23.9)
Cribriform pattern 
(18.5)
Blood vessels (14.6)
Ductal adenocarcinoma 
(8.0)
Normal glandular 
tissues (6.0)

Inflammatory cell 
infiltration 418 (25) 10× 430 (10.5) 3663 (89.5)

(867; 35)

Gleason pattern 4 (24.7)
Gleason pattern 3 (20.0)
Nerves (16.5)
Cribriform pattern 
(15.5)
Blood vessels (12.6)
Ductal adenocarcinoma 
(7.0)
Normal glandular 
tissues (3.6)
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were trained using supervised contrastive  learning53; two models of different epochs were trained in the same 
training setting; and one model was trained based on multitask learning. The purpose behind considering models 
from different epochs or with different algorithms is to hopefully lessen the effect of the latent distribution shift 
that may occur during model training and to increase the likelihood of capturing informative features. In our 
case, we selected two models where the epoch distance between these models corresponded to the half distance 
to the last epoch with the best model (e.g., the best model was found at 393 epochs; accordingly, we selected the 
next model at 191 epochs; both models were registered due to the reduction in loss values on the in-validation set 
compared to the prior epoch). The optimal hyperparameters were configured using the trial-and-error method 
for the detection of Gleason patterns.

Gleason pattern 5
For Gleason pattern 5, we utilized two models with soft attention blocks that generate pixelwise attention maps 
and trained on datasets of TMA spot images at a 10 × magnification. Our decision to use the pixelwise soft 
attention block was due to its superior performance for Gleason pattern 5 detection and histological character-
istics of Gleason pattern 5 as part of the neural architecture search. As demonstrated in Fig. 10, the histological 
characteristics of Gleason pattern 5 include tumor cells infiltrating into the connective tissues (captured by local 
attention) and glandular structure disappearance (captured by global attention).

Threshold selection
We applied the brute force approach to determine the threshold (operating point) with the best Cohen kappa on 
the in-training validation set for patch-level classification of findings. Here, we increased the initial threshold by 
0.1 by 0.01 and measured Cohen kappa for interrater agreement between the annotator and vPatho at the patch 
level (tiles); our approach can be considered similar to that of Youden’s J statistics, where the largest J value is 
 determined59. Bootstrapping with 10,000 resamplings was applied to determine the thresholds. Figure 11 provides 
a code snippet for threshold determination.

Table 10.  The optimization sets used to select the best models for high-grade intraprostatic intraepithelial 
neoplasia, vessel, nerve, and inflammatory cell infiltration. These datasets were curated from the PRAD-TCGA 
histology image dataset. We emphasize that we added images representing Gleason pattern 5 as an unseen 
pathological finding. A total of 42 additional patients were considered for the optimization set. For the HGPIN, 
we increased the patch number to increase.

Finding Regions, n (case, n) Magnification level Positive, n (%) Negative, n (regions, n; cases, n) List of negative findings (%)

Cribriform pattern 87 (12) 10× 197 (32.9) 402 (67.1)
(197, 25)

Gleason pattern 3 (41.0)
Gleason pattern 4 without cribriform pattern 
(9.4)
Nerve (36.7)
Normal glandular tissues (12.9)

Ductal morphology 36 (1) 10× 59 (3%) 1906 (97%)
(496, 42)

Gleason pattern 3 (8.3)
Gleason pattern 4 (11.4)
Gleason pattern 5 (56.1)
Nerve (8.6)
Blood vessel (6.8)
Cribriform pattern (6.9)
Normal glandular tissues (1.9)

HGPIN 16 (7) 10× 204 (2.5) 8104 (97.5) (581, 35)

Benign Prostatic
Hyperplasia (5.8)
Gleason pattern 3 (11.4)
Gleason pattern 4 (16.2)
Gleason pattern 5 (66.6)

Blood vessel 96 (18) 10× 123 (6.3) 1820 (93.7)
(447,40)

Gleason pattern 3 (9.6)
Gleason pattern 4 (10.9)
Gleason pattern 5 (57.8)
Nerve (8.2)
Cribriform pattern (7.9)
Normal glandular tissues (2.2)
Ductal adenocarcinoma (3.4)

Nerve 147 (17) 10× 157 (8.0) 1812 (92.0)
(392,41)

Gleason pattern 3 (10.2)
Gleason pattern 4 (12.7)
Gleason pattern 5 (56.8)
Cribriform pattern (6.7)
Vessel (6.3)
Normal glandular tissues (3.1)
Ductal adenocarcinoma (4.2)

Inflammatory cell infiltration 109 (22) 10× 161 (7.8) 1904 (92.2)
(511, 42)

Gleason pattern 3 (10.0)
Gleason pattern 4 (11.4)
Gleason pattern 5 (54.1)
Nerve. (7.3)
Cribriform pattern (6.5)
Vessel (5.5)
Normal glandular tissues (1.7)
Ductal adenocarcinoma (3.5)
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Test conditions
To cover the full range of PCa evaluations performed during routine clinical practice, we defined eleven test 
conditions that are important for pathological evaluation and reports. The subset for each test condition was 
defined prior to running the test (Table 2 provides a summary of the datasets utilized for different test conditions). 
The eleven test conditions are as follows.

Cancer detection on H&E-stained slides
We collected histological images that included slides archived for approximately 20 years to determine the 
influence of our approach on slides affected by the aging process. Spot images of a tissue microarray (TMA) and 
whole-mount images of prostatectomy specimens were also considered because they represent the breadth of 
tissue sampling for prostatic tissues.

Table 11.  The final hyperparameter configuration determined according to the trial-and-error approach and 
grid search that resulted in examining 100 models. **The epochs of models that we considered final models 
during the development setting. The AUROC was determined for the optimization cohort. Models were 
selected based on their AUROC + Highlights that we consider two models originating from the same training 
setting. The reasons for considering multiple models are described in the following section.

Model Loss function Batch size Optimization algorithm Best epoch** (Max epochs) Initial learning rate AUROC *

GP3

 Model 1

Categorical cross entropy 16

For the first 100 epochs: 
ADAM
For the remaining epochs:
Weighted Stochastic gradient 
descent (wSGD) with 
decoupled weight  decay58 
for the remaining epochs 
(Weight decay = 1e-6,
Decay steps = 1000,
Decay rate = 0.5,
momentum = 0.9)

70 (200)

For ADAM: 1e-3
For wSGD:
3e-5

0.934

 Model 2 49 (100) 0.887

GP4

 Model 1 (SCL) Max. margin contrastive 
loss for  SCL53 Binary cross 
entropy for classification

16

[Contrastive feature 
learning]
ADAM with
cosine decay for learning rate 
(decay step: 1000) 16
[Classification]
For the first 100 epochs:
ADAM 16
For the remaining epochs:
Weighted Stochastic gradient 
descent (wSGD) with 
decoupled weight  decay58 
(Weight decay = 1e-4,
Decay steps = 50, 
momentum = 0.9)
We also applied exponential 
decay to the learning rate 
(Decay steps: 50, decay 
rate: 0.5)

41 (200)+

[Contrastive feature 
learning]
1e-5
[Classification]
For ADAM: 1e-3
For wSGD:
3e-5

0.781+

 Model 2 (SCL) 110 (200)+ 0.816+

 Model 3

Categorical cross entropy

90 (200) 0.801+

 Model 4 191 (400)+ 0.805+

 Model 5 393 (400)+ 0.821+

Model 6 298 (300) 0.758

GP5

 Model 1

Categorical cross entropy 32

ADAM
A class weight was applied 
instead of oversampling 
approach. The class weight is 
the inverse class proportion
0.7927398 for positive class 
(i.e., Gleason pattern 5)
0.2072602 for negative class

192 (300) +

1e-3

0.996

 Model 2 289 (300) + 0.994

 HGPIN Categorical cross entropy 16 ADAM 31 (50) 1e-3 0.982

 Cribriform pattern Categorical cross entropy 32 ADAM 476 (600) 1e-3 0.943

 Ductal morphology Categorical cross entropy 64

Stochastic Gradient 
decent with the cycle 
polynomial decay learning 
rate (Decay step: 12,550, 
momentum = 0.0, power = 2, 
max. learning rate of 
9.9725e-9)

28 (200) 1e-3 0.948

 Blood vessel Categorical cross entropy 128 ADAM 100 (200) 1e-3 0.940

 Nerves Categorical cross entropy 128 ADAM 105 (200) 1e-3 0.921

 Inflammatory cell 
infiltration Categorical cross entropy 128 ADAM 100 (100) 1e-3 0.926
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Given that a single whole-mount (WM) image corresponds to approximately 30 stretched biopsy core images 
and given the time- and labor-intensive effort of obtaining high-precision annotations of WM images for prostate 
cancer, we randomly selected 46 radical prostatectomy specimens, for a total of 368 WM images [~ 11,040 biopsy 
core images with prostatic tissues or 894,240 patch images (512 × 512 pixels, 512 µm, at 10 × by a pixel mapping 
of ~ 1 µm per pixel] from 136 patients between 2016 and 2019.

A single pathologist (CK) annotated PCa areas on 368 slides. In contrast, each TMA spot was previously 
labeled for PCa presence based on the judgment of a single pathologist (RB) and whether it originated from 
cancer lesions in prostatectomy specimens. The cancer lesions in the historic McNeal slides were already 
delineated as part of a previous study investigating the tumor distribution during  prostatectomy32. The use of 
different sample collections is reflective of real-world experience in clinical and research hospitals.

For the evaluation of agreement levels between automated and manual annotations of PCa, a 49% or above 
confidence score was used as the decision threshold for (integer) defining the presence of PCa in a patch. This 
threshold was deemed sufficient because of the well-calibrated DL model (see Supplementary file 1).

Cancer detection on each H&E-stained slide
We measured the area under the receiver operating characteristic curve (AUROC) on every patch from every 
slide using their predicted confidence scores and their true labels for PCa presence. To account for variation in 
the number of patches between slides, we evaluated slide-level performance using the mean per-slide AUROC.

We also assessed Cohen’s kappa  coefficient60 as a measurement of the degree of agreement between the model 
labels and the true labels made by the pathologist (CK) on image patches for each slide. Then, we determined 

Figure 10.  Shows two patches at 10 × objective magnification for Gleason pattern 5 (patch dimension: 512 × 512 
px.).

Figure 11.  Illustrates the code snippet. This code determines the threshold with the highest Cohen kappa 
score. “y_true”: the ground truth labels of the patches from the optimization set, and “y_pred” is the predicted 
confidence score for these patches. We considered the median of the bootstrapped scores to mitigate the effects 
of outliers. After calculating the scores for all thresholds, the threshold with the highest Cohen kappa (index_w_
best_c) was determined. The thresholds are given in the supplementary Materials and Methods section.
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the median per-slide Cohen kappa coefficient and its range. These test conditions reproduced the spatial PCa 
detection (annotation) on each slide as well.

Cancer detection on H&E-stained slides from a single patient
In this test, all slides from the prostatectomy specimens of 46 patients with complete tumor annotations were 
utilized. We determined the average performance for cancer detection on patch images per patient (per-case 
AUROC). This test condition reflects the clinical condition of the pathology, where we collectively evaluated all 
the slides from a single patient.

Spot detection of PCa on an H&E-stained TMA
This test task utilized H&E-stained histology images from 4 TMAs with a total of 1129 spots from 339 
prostatectomy specimens; these images included, on average, three cores from each patient and contained 
TMA cores with normal tissues. Each spot image represents a single tissue core (diameter range: 0.6–1 mm). 
We determined the detection accuracy (i.e., sensitivity, specificity, negative and positive likelihoods, positive 
and negative predictive values and AUROC) for cancer detection on all spot images and the average AUROC 
after stratification by TMA (per-TMA AUROC). This test condition represents a research condition where the 
TMA evaluation of cancer presence is needed or when we have a very limited tissue amount to investigate for 
cancer presence during routine clinical practice or research. In parallel, we measured the impact of overlapping 
neighboring patches on the detection performance.

PCa detection on old slides with weak H&E staining due to the aging process
We randomly selected 13 H&E whole slide images originating from the historic McNeal  dataset32. These H&E 
slides were archived over a period of more than 20 years. From these slide images, we generated 11,862 patch 
images (512 × 512 pixels, 512 µm, at 10 × by a pixel mapping of 1 µm per pixel), including 3552 patch images 
with PCa. We applied a reference-free version of Macenko’s stain normalization algorithm for color intensity 
optimization of the patch  images43 (see Fig. 1A.1).

For accuracy evaluation, we measured the area under the receiver operating characteristic curve (AUROC) 
on all patch images using their predicted confidence scores and their true labels for PCa presence. These test 
conditions replicate the challenge of cancer detection on images originating from slides with faded staining to 
assess the limitations of our approach.

Tumor volume estimation
We measured the association between the predicted and true tumor volumes in 46 prostatectomy specimens 
with complete delineation of cancer lesions (368 slides). We utilized the well-established grid method, which 
was described in detail in our previous  study4. In brief, we defined a two-dimensional space for each slide where 
a single patch image corresponded to a pixel (a pixel corresponded to a 512 × 512 µm dimension of a slide image 
at the 10 × objective magnification level). Then, we counted the total number of pixels (patch images) that were 
positive for prostate cancer. We also determined the background tissue using image thresholding (Otsu’s method) 
and excluded the white areas located outside the background tissues in all slides for each patient. After that, we 
determined the number of patch images generated from the background, which also affects the number of pixels. 
Finally, the total number of pixels with PCs was divided by the total number of pixels in the background tissues to 
estimate the tumor volume (TuVol%) in each patient (Fig. 1B). The coefficient of the regression score determined 
the correlation of TuVol% between the ground truth and the AI solution at the case level. The pairwise Welch’s 
t test was applied to determine the significance of the difference between the ground truth and the AI solution 
for tumor volume  estimation61.

Gleason patterns and ISUP grading
This test condition involved three tasks. The first task is to determine the Gleason patterns on very limited tissues 
(~ 256–512 µm) suitable for laser capture  microdissection62; the second and third tasks are to determine the ISUP 
grade on biopsy cores and prostatectomy specimens, respectively.

The ISUP grading system for each biopsy core was defined by the most frequent Gleason pattern for the 
primary Gleason pattern and the most common Gleason pattern for the secondary Gleason pattern. In contrast, 
the ISUP grading system for radical prostatectomy specimens considers the first and second most frequent 
Gleason patterns across the specimen. The second most common Gleason pattern is considered to indicate the 
secondary Gleason pattern if it is equal to or exceeds 5%. If the second most common Gleason pattern is less 
than 5%, the secondary Gleason pattern will be the same as the primary Gleason pattern, and the second most 
common Gleason pattern will be the tertiary Gleason pattern.

Since there are no widely agreed-upon rules for limited tissues to report ISUP grade and because the patch 
level is the smallest unit required to assess ISUP grade at the slide and case levels, we focused on evaluating the 
accuracy of Gleason pattern detection in such limited tissues. The decision thresholds of 35%, 65% and 93% for 
GP3, GP4 and GP5, respectively, were retrospectively determined on the development set using a brute force 
algorithm that identified thresholds with the best interrater reliability (Cohen’s  kappa60). After these thresholds 
were fixed, the presence of the Gleason pattern was determined via patch images to measure interrater agreement.

Two test conditions were used to assess the concordance level between pathologists and vPatho for Gleason 
grading in the ISUP dataset (biopsy cores) and Stanford’s external dataset (radical prostatectomy). We aimed to 
use the same vPatho for these two different grading conditions to identify histopathological factors impacting the 
concordance level of the current ISUP grading system on radical prostatectomy specimens. We considered both 
10 × and 20 × magnification levels to determine the magnification level with better Gleason pattern detection.
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Very limited tissue samples for laser microdissection
Nonoverlapping patch images covering GP3, GP4 and GP5 were obtained to simulate a Gleason pattern detection 
on tissue dimensions suitable for laser capture microdissection (Table 12). These images were generated from 47 
prostate cancer regions randomly selected from 60 whole-mount slides of 10 radical prostatectomies (average 
4.7 regions per radical prostatectomy). Each patch image included only one Gleason pattern owing to the time-
intensive effort to annotate highly homogenous regions for each pattern. The labels of the patch images were 
defined based on the annotation data curated by a single pathologist, “YT”. A patch image is positive for one of 
the Gleason patterns when at least 10% of the patch image is positive. For each Gleason pattern, we measured 
the detection accuracy and interrater agreement between the pathologists and the DL models (see evaluation 
metrics). Finally, we repeated the evaluation at 20 × to evaluate the agreement between the DL models and the 
single pathologist (Table 12).

Biopsy cores
We considered the reference image database for Gleason patterns (GPs) and Gleason grading provided by ISUP, an 
international organization responsible for the histopathological definition of Gleason  grading35. These reference 
images were graded by the ISUP member team according to majority  rule35. This database represents a unique 
and independent resource for evaluating the agreement between an expert panel and DL models. To determine 
the ISUP grade on biopsy cores, we considered reference images captured at 20 × objective magnification. By 
considering the different sizes of these images, we generated patches (512 × 512 µm; 1 pixel = 1 µm) for each 
ISUP image at 10 × objective magnification after downsizing the original histology images or (~ 256 × 256 µm; 1 
pixel = 0.5 µm) at 20 × objective magnification. We populated the patch number for each ISUP image by applying 
50% overlap between patches to increase the likelihood of a complete appearance of Gleason patterns in these 
patches with effective computational workloads. Then, we counted the positive patches for each GP. After 
implementing a conditional algorithm according to the ISUP grading system for the biopsy core, we estimated 
the ISUP grade for each biopsy core and evaluated the agreement level for tumor grading between the expert 
panel and our approach.

Radical prostatectomy
A total of 136 patients who underwent radical prostatectomy were available for this task. These prostatectomy 
specimens were already evaluated during routine clinical practice by six different board-certified pathologists 
between 2016 and 2019. This cohort included patients seen during routine clinical practice. Using chart review, 
we acquired pathological and clinical information for each patient. The information included the tumor stage, 
the status of locoregional lymph node metastases, surgical margin status, the year of the pathology report, the 
ISUP grade and the pathologist who conducted the pathology evaluation.

After excluding the white background, all whole-mount slide images were tiled into 512 × 512 pixel patches 
(~ 512 µm). Then, we counted the number of positive patches for each GP. Finally, we developed and applied 
a conditional algorithm to grade PCa in each patient according to the International Society for Pennsylvania 
[ISUP] grading system for prostatectomy. The patch images did not overlap because of the greater dimension of 
the WM images than of the biopsy cores.

We measured the agreement between the results of a pool of 6 pathologists who evaluated these patients 
during routine clinical practice and our approach. We repeated our agreement evaluation after we adjusted the 
decision threshold from 5 to 10% for secondary and tertiary Gleason patterns since our previous study showed 
that eyeball judgment can underestimate the tumor size by 50% of the original  size4.

Sorting the slides according to cancer presence status
We wanted to determine the sorting accuracy of slides with PCa since this measurement is relevant for improving 
clinical workflows. Therefore, we considered different types of slides and datasets to verify the model performance 
in identifying slides with PCa (Table 2). These slides originated from different institutions and used different pro-
tocols for tissue preparation or from different backgrounds (i.e., lymph node tissues). Here, two positive patches 

Table 12.  Lists the numbers of patch images for each finding considered to evaluate our deep learning models 
for Gleason pattern detection on very limited tissue samples. Manual quality control was performed to ensure 
that these patches included only a single finding.

Number of patch images (%)

Finding 10 × objective magnification 20 × objective magnification

High-grade Prostatic intraepithelial neoplasia 250 (22.2) 845 (22.0)

Gleason pattern 3 311 (27.6) 1211 (31.5)

Gleason pattern 4 454 (40.2) 1374 (35.8)

 Cribriform glands 36 (7.9) 117 (8.5)

 Poorly formed glands 210 (46.3) 538 (39.2)

 Fused glands 19 (4.2) 57 (4.1)

 Poorly formed and fused glands 189 (41.6) 662 (48.2)

Gleason pattern 5 (Mixed) 113 (10.0) 410 (10.7)
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(in which the tumor probability exceeded the threshold of 49%) were enough to mark the slide as positive. We 
assessed the confusion matrix and measured the true positive rate (TPR), positive predictive value (PPV), true 
negative rate (TNR) and negative predictive value (NPV) to objectively evaluate the sorting accuracy.

Detection of ductal morphology
A total of 1247 nonoverlapping patch images (512 × 512 pixels ~ 512 × 512 µm at 10 × objective magnification) 
covering ductal adenocarcinoma were obtained to simulate ductal morphology. These patches were generated 
from 38 prostate cancer regions randomly selected from 2 whole-mount slides of 2 radical prostatectomies 
(Table 13). Since ductal adenocarcinoma is a rare cancer morphology (approximately 0.4–0.8% of radical 
prostatectomies), we weighted the patch number in favor of ductal adenocarcinoma for a balanced performance 
evaluation. The labels of the patch images were defined based on the annotation data curated by a single 
pathologist, “YT”. Each patch image covered a single entity owing to the time-intensive effort to annotate highly 
homogenous regions. Given that cancer lesions with ductal morphology may incorporate empty spaces, a patch 
image was considered positive for ductal morphology when at least 40% of the patch image was positive and the 
white background area in the patch image was not more than 60%. For ductal morphology, we measured the 
detection accuracy and interrater agreement between the pathologists and the DL model.

The definition of ductal morphology primarily depends on the ductal appearance of prostate cancer, and 
splitting a region with ductal adenocarcinoma of the prostate into patches causes the disappearance of ductal 
morphology in some patches. Therefore, we specifically reviewed and included only patches that represented 
their corresponding finding labels. The threshold was identified and set to 90% using the development set via 
the same approach for threshold determination for Gleason pattern detection, as described earlier.

Detection of the cribriform pattern
A total of 92 nonoverlapping patch images (512 × 512 pixels; ~ 512 × 512 µm at 10 × objective magnification) 
covering cribriform Gleason pattern 4 (n = 37) or ductal adenocarcinoma with cribriform architecture (n = 58) 
were obtained to simulate a cribriform pattern (Table 14). The true label of patch images was defined based on 
the regional delineation and its labels on histology slides made by a single pathologist, “YT”. A single finding 
was obtained for each region to construct a more homogenous dataset to simulate the detection performance for 
cribriform patterns. A patch image was considered positive for the cribriform pattern when at least 50% of the 
patch image was positive. As a negative control, we considered a total of 836 patients with Gleason patterns 3 to 
5, with the exception of patients with Gleason pattern 4 and cribriform patterns. These images for the negative 
control originated from the previous test conditions for GS detection.

For the cribriform pattern, we measured the detection accuracy and the interrater agreement between the 
pathologist and the DL model. Given that the definition of the cribriform pattern primarily depends on the 
distinctive appearance of holes within the cancer cell aggregation zone, we specifically reviewed these patches 
to ensure that the positive patches included the distinctive appearance of the hole in prostate cancer tissue prior 
to performing the evaluation. The threshold was identified and set to 65% in the development cohort using the 
same approach for threshold determination for Gleason pattern detection, as described earlier.

Detection of nerves
A single pathologist randomly delineated 158 nerve structures on the same 60 slides of 10 patients, resulting 
in a total of 739 patch images with nerve components (nerves and ganglions). Furthermore, we considered 541 
patches with Gleason patterns as the negative control group, as these images did not include nerve structures. A 
patch image was considered positive for nerve structures when at least 5% of the patch image was positive for the 
incorporation of small nerve structures (~ 25.6 µm). Finally, we measured the detection accuracy and interrater 

Table 13.  Lists the numbers of patch images used to evaluate the detection model for ductal adenocarcinoma.

Finding Number of patch images (%)

Ductal adenocarcinoma 1247 (59.0)

Nonductal prostate cancers 865 (41.0)

Gleason pattern 3 315 (36.4)

Gleason pattern 4 435 (50.3)

Gleason pattern 5 115 (13.3)

Table 14.  Lists the numbers of patch images used to evaluate the detection model for ductal adenocarcinoma.

Cribriform patterns Number of patch images (%)

Yes 92 (9.9)

No 836 (90.1)
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agreement between the pathologists and vPatho. Given the heterogeneity of the prostatectomy specimens, we 
specifically reviewed these patches to ensure that the patches represented their corresponding labels prior to 
evaluation. A probability threshold of 35% was identified on the development set and fixed for testing using the 
same approach for the threshold determination described earlier.

Detection of vessels
We generated a total of 1455 nonoverlapping patch images (512 × 512 pixels; 512 × 512 µm at 10 × objective 
magnification) covering the general appearance of blood vessels to simulate a blood detection task. These images 
were generated from 150 blood vessels of various sizes randomly selected and annotated by a single pathologist 
on the previous 60 whole-mount slides of 10 radical prostatectomies. A patch image was considered to be positive 
for the blood vessel when at least 5% of the patch image was positive (a threshold of 5% was considered to cover 
small vessels). The negative group included 3153 patches from 50 cancer regions that were already prepared in 
the previous steps. Finally, the detection accuracy and the interrater agreement between the pathologist and the 
DL model were calculated. The probability threshold for classifying the patches was set to 50%.

Detection of inflammatory cell infiltration
We curated 268 nonoverlapping patches with inflammatory cell infiltration (512 × 512 pixels; 512 × 512 µm at 
10 × objective magnification) to simulate the detection of tissue regions with infiltrated inflammatory cells. In 
parallel, a negative group of 500 patch images positive for cancer was randomly generated from 216 regions. 
A patch image was considered positive for inflammatory cell infiltration when at least 3% of the patch image 
was positive since inflammatory cell infiltration can be small (~ 10 µm). Thereafter, we measured the detection 
accuracy and interrater agreement between the pathologists and the DL model. Given the heterogeneity of the 
prostatectomy specimens, we specifically reviewed these patches to ensure that the patches represented their 
corresponding labels. We used a probability threshold of 70.5% to classify the patches, which was determined 
on the development set using the same approach described earlier.

Detection of tumor precursors
A single pathologist screened for high-grade prostatic intraepithelial neoplasia (HGPIN) lesions in 60 whole-
mount slides of 10 radical prostatectomy patients and identified 32 regions with HGIPN. From these regions, 
we curated 250 patches to examine the detection performance for HGPIN with 50% overlap (512 × 512 pixels; 
512 × 512 µm at 10 × objective magnification) to increase the likelihood of having an HGPIN appearance in these 
patches. While generating the patches, we manually excluded the lumen patches after running an algorithm 
that identified and excluded the lumen patches as background. A single patch is positive when 10% of the 
patch is positive for HGPIN (this threshold is arbitrary). As a negative control, we used patches with benign 
prostatic hyperplasia (BPH) and intraductal adenocarcinoma (IDC) because IDC is considered the differential 
diagnosis of HGPIN, whereas BPH and HGPIN are benign tumor-like lesions in the  prostate57,63–65. While 
generating the patches, we manually excluded the lumen patches after running an algorithm that identified and 
flagged the lumen patches as background. The test conditions include the detection of HGPIN in limited tissues 
where capturing HGPIN lesions requires the use of laser microdissection. Identifying regions suitable for laser 
microdissection is also essential for studies investigating HGPIN lesions. We emphasize that our sample size 
for HGPIN patients is adequate given that HGPIN lesions are mostly limited and very small lesions are found 
in up to 50% of prostatectomy  specimens66 and therefore preferably sampled using laser  microdissection67. The 
probability threshold for classifying the patch according to the presence of HGPIN was fixed at 65%, which was 
identified using the brute-force search approach on the development set, as described in the supplementary 
model development section.

Reporting the existence of relevant findings in a case
We aimed to evaluate the feasibility of integrating the results from deep learning models into pathology reports. 
Here, we aimed to answer two major questions:

(1) How integrable are the results provided by vPatho into the pathology report for prostatectomy specimens?
(2) What information needs to be considered when implementing such results in pathology reports?

To answer these questions, we selected 136 patients who underwent radical prostatectomy, and the data of 
these patients were obtained during routine clinical practice. Since these prostatectomy specimens were already 
evaluated during routine clinical practice and since the evaluation results were documented, we reviewed the 
pathology reports for the ISUP grade, tertiary Gleason pattern, cribriform pattern, and ductal morphology for 
these patients before running the analyses.

Investigating variables indicating the degree to which the prostatectomy specimens were 
discordant
The following analyses were performed to answer the question of whether the current practice of grading 
prostatectomy specimens with ISUP has a direct effect on grade disagreement (discordance) after controlling for 
other confounders. We further wished to identify other independent factors associated with grade disagreement 
in prostatectomy specimens.

Our study involved experienced genitourinary pathologists from high-volume centers (> 200 radical 
prostatectomy cases per year) to compare our AI solutions. A survey revealed a significant correlation between 
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the number of biopsies evaluated by a pathologist per week and the grade concordance level with expert  review68. 
Goodman et al. concluded that the likelihood of discordance between pathology reports and expert-assigned 
Gleason scores is particularly elevated for small community hospitals compared to high-volume  hospitals69. 
Therefore, defining expertise based on case volume instead of experience years (which is associated with a 
physician group who is at higher risk for medical errors due to their  age70) is the most appropriate reflection of 
clinical experience.

We investigated the effects of these variables on the degree of grade disagreement between the pathology 
reports and our approach using the binomial generalized linear mixed-effects  model71. The variables were the 
pathologists who conducted the pathology evaluation, TuVol% made by AI and pathologists, the proportion of 
positive slides (which represents the vertical tumor extent), the cancer proximity to the prostatic capsule and 
grades (i.e., the ISUP grade made by pathologist and by AI-assisted approach), the year of tumor grading, and the 
total number of slides for each case. The proximity of the cancer to the prostatic capsule was determined using 
a mask function that considers only cancer areas within a border zone (zone 1) covering 10% of the prostate 
slice, as schematically illustrated in Fig. 12, and the registration of cancer presence was performed according to 
Eminaga et al.72.

The year of tumor grading was incorporated as a representation of the variation in the staining protocol over 
the time and adaptation period of the recent version of the ISUP grading system in 2016. As model input, the 
standard scores were estimated for all the variables listed above. As a model output, we calculated the odds ratio 
(OR) and its 95% Wald confidence interval (WCI) for each variable.

We designed four mixed-effects models to identify the effects of these variables on grade disagreement with 
four goals:

1. The effect of the ISUP grade determined by pathologists on grade discordance was evaluated regardless of 
the pathologist who provided the tumor grade.

2. The effect of the pathologist on grading disagreement, regardless of the ISUP grade, was evaluated
3. The predictive ability of variables that are determined by the AI for grade disagreement was evaluated 

regardless of the pathologist who assessed the tumor grade.
4. The present study evaluated the ability of significant variables to predict cancer proximity to the prostatic 

capsule, tumor stage, and locoregional lymph node metastasis status in prostate cancer patients.

The hypotheses for each model were as follows:

H0: There is no relationship between the variables and grade disagreement.

H1: There is a relationship between one or more variables and grade disagreement.

Since multicollinearity may impact the stability of the generalized linear mixed-effects model, we assessed the 
variance inflation factor (VIF) of these variables to measure multicollinearity in each model. Here, we considered 
a VIF less than 2 to indicate negligible  collinearity29. The intraclass correlation coefficient was calculated for the 
random effects to determine the proportion of variance that can be explained by the random  effects73.

We further evaluated the impact of each variable on the goodness of fit of each model by comparing the 
Akaike information criterion (AIC)74 of the model before and after excluding the variable; the analysis of 
deviance tables was computed to determine the comparison significance between a model with the variable and 
a model without the variable. The false discovery rate (used to correct P values) was estimated to determine the 
significance of the change in AIC.

Figure 12.  Schematically illustrates the definition of the border zone (zone 1), which comprises 10% of the 
prostatic slice area and is adjacent to the prostatic capsule.
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We run a Monte Carlo simulation (1000 simulations) to measure the power of the effects for all significant 
variables after setting the percentage of type I errors (falsely rejecting the hypothesis H0 that there is no relation-
ship) to 10% (or 5% for each side). The function “powerSim” from the “simr” package was used to measure the 
power of the mixed-effects  models75.

Given that there is collinearity in the ISUP grades between the AI and pathologists, we considered only the 
ISUP grades assigned by pathologists for goals 1, 2 and 4 and the ISUP grades assigned by the AI for goal 3. In 
goal 4, we further repeated our model evaluation after replacing the ISUP grades made by pathologists with those 
made by the AI. Table 15 reveals the variables for fixed effects and random effects. The “glmer” function from 
the lmer4 package was used for binomial logistic linear mixed-effects modeling with the default  configuration76.

The general equation for the mixed-effect model is

where y is a vector of the grade disagreement status, X is a matrix of fixed variables, β is a vector of fixed effects 
regression coefficients, Z is a design matrix of the random effect, υ is a vector of the random effect and ǫ is a 
vector of the residual.

Finally, we conducted model-based causal mediation analyses to measure the indirect causal mediation effect 
of the pathologist or another significant variable (other than ISUP grade) on grade disagreement. To simplify 
the mediation analyses, we defined low-grade and high-grade tumors based on the ISUP grade (ISUP grades 1 
and 2 vs. ISUP grades 3–5) as a binary group instead of considering the five ISUP grades.

We further evaluated the associations of the variables with the mediators. When we investigated the factor of 
interest as a mediator, we selected variables that were defined based on the pathologist’s decision (tumor stage, 
pN status, and ISUP grading). Furthermore, we incorporated TuVol%, the proportion of positive slides and the 
year of tumor grading as these factors may affect the identification of WM histology slides. Such associations 
were assumed when the P value was < 0.2 (two-tailed test).

A sensitivity analysis with 1,000 bootstrap resamplings was carried out to validate the results for the causal 
mediation effects after iterating the mediating coefficient with different  constants77.

The mediation and sensitivity analyses were conducted using the package “mediation”77; the moderation of 
the relationship between the independent variables and the mediator was assessed using a linear model, whereas 
the overall effect was estimated using a binomial logistic regression  model78. The results of the mediation analyses 
are presented in flowchart diagrams.

The contingency table was evaluated using Pearson’s chi-squared  test79. The medians were evaluated for 
differences between the groups using the Mann‒Whitney Wilcoxon  test80, and the means were compared between 
the groups using Welch’s t  test61. A P value ≤ 0.05 indicated a significant difference. The 95% Clopper–Pearson 
confidence interval for the proportion was  estimated81.

Evaluation metrics
The discrimination accuracy for each endpoint was evaluated using the AUROC. The AUROC reveals the clas-
sification performance at different thresholds; a higher AUROC indicates a better classification accuracy, where 
an AUROC of 1 represents the highest  accuracy82. Using the thresholds determined on the development set, we 
calculated the sensitivity, specificity, and negative and positive likelihoods. Furthermore, we estimated the positive 
and negative predictive values for different prevalence rates (e.g., patch proportion with prostate cancer). The 
agreement rate was measured using Cohen kappa for binary categories or weighted quadratic kappa for more 

1. y = Xβ + Zυ + ǫ

Table 15.  Describes the variables included in each mixed-effects model.

Variables

Model (goal) Fixed effects Random effect (random intercept)

A

Tumor volume in percentage
Year of the pathology report
Proportion of positive slides
The total number of slides
Gleason grade made by the pathologists

Pathologists

B

Tumor volume in percentage
Year of the pathology report
Proportion of positive slides
The total number of slides
Pathologists

Gleason grade made by the pathologists

C
Tumor volume in percentage
Year of the pathology report
Proportion of positive slides
Gleason grade made by AI

Pathologists

D

Tumor stage (pT)
Locoregional lymph node metastases status (pN)
Cancer proximity to prostate capsule
Gleason grade made by the pathologists/by AI
Tumor volume in percentage
Proportion of positive slides

Pathologists



28

Vol:.(1234567890)

Scientific Reports |         (2024) 14:5284  | https://doi.org/10.1038/s41598-024-55228-w

www.nature.com/scientificreports/

than 3 categories. The agreement rate was determined according to Cohen J., who introduced Cohen kappa and 
weighted kappa (Table 16)60,83.

The coefficient of the regression score determined the correlation of relative tumor volumes between the 
ground truth and the AI solution at the case level. The pairwise Welch’s t test was applied to determine the 
significance of the variation between the ground truth and the AI solution for tumor  volume61. The reported P 
values are two-tailed, and P ≤ 0.05 was considered to indicate statistical significance. The uncertainty (95% CI) 
for the area under the curve (AUROC), Cohen kappa coefficient (Cohen kappa) and weighted kappa coefficient 
was determined by bootstrapping with 100,000  replications84. The Cooper–Pearson interval was used to calculate 
the 95% confidence  interval81 for detection accuracy (i.e., sensitivity, specificity, positive and negative likelihoods, 
and positive and negative predictive values).

Software and hardware settings
Our analyses were performed using Python 3.6 (Python Software Foundation, Wilmington, DE) and R 3.5.1 (R 
Foundation for Statistical Computing, Vienna, Austria). We applied the Keras library, a high-level wrapper of the 
TensorFlow framework, to develop the models. All analyses were performed on a GPU machine with a 32-core 
AMD processor with 128 GB RAM (Advanced Micro Devices, Santa Clara, CA), 2 TB PCIe flash memory, 5 TB 
SDD hard disks, and a single NVIDIA Titan V GPU with 12 GB VRAM.

Data availability
Stanford’s datasets are not publicly available due to patient privacy regulations and the internal data sharing 
policy. However, other public datasets are available, and their sources are given in the “image database” section 
(Supplementary material). A cMDX file and the cMDX viewer tool are available for demonstration purposes 
(https:// github. com/ oemin aga/ cmdx_ report. git), and a python package for the PlexusNet architecture is publicly 
available (https:// github. com/ oemin aga/ Plexu sNet. git).

Code statement
An abstract version of the pipeline will be provided upon acceptance.
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