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A hybrid machine learning‑based 
model for predicting flight delay 
through aviation big data
Min Dai 

The prediction of flight delays is one of the important and challenging issues in the field of scheduling 
and planning flights by airports and airlines. Therefore, in recent years, we have witnessed various 
methods to solve this problem using machine learning techniques. In this article, a new method is 
proposed to address these issues. In the proposed method, a group of potential indicators related to 
flight delay is introduced, and a combination of ANOVA and the Forward Sequential Feature Selection 
(FSFS) algorithm is used to determine the most influential indicators on flight delays. To overcome 
the challenges related to large flight data volumes, a clustering strategy based on the DBSCAN 
algorithm is employed. In this approach, samples are clustered into similar groups, and a separate 
learning model is used to predict flight delays for each group. This strategy allows the problem to be 
decomposed into smaller sub-problems, leading to improved prediction system performance in terms 
of accuracy (by 2.49%) and processing speed (by 39.17%). The learning model used in each cluster is 
a novel structure based on a random forest, where each tree component is optimized and weighted 
using the Coyote Optimization Algorithm (COA). Optimizing the structure of each tree component 
and assigning weighted values to them results in a minimum 5.3% increase in accuracy compared to 
the conventional random forest model. The performance of the proposed method in predicting flight 
delays is tested and compared with previous research. The findings demonstrate that the proposed 
approach achieves an average accuracy of 97.2% which indicates a 4.7% improvement compared to 
previous efforts.
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Prior knowledge of flight delays is a key prerequisite for the management and scheduling of flights in airports 
and airlines1. Flight delays can result from adverse weather conditions, aircraft malfunctions, unavailability of 
flight conditions, or even delays in previous flights2. Therefore, predicting flight delays is a highly complex process 
that can be influenced by multiple factors3. On the other hand, providing accurate predictions of future flight 
delays is of great importance to airports. By being aware of flight delays, airports and airline managers can take 
necessary measures to minimize the losses caused by delays and increase the efficiency of the aviation system4. 
Moreover, having a reliable flight delay prediction system can directly impact passenger satisfaction and increase 
airline revenue5. The significance of this issue has led to the development of various methods for predicting flight 
delays in previous research studies.

In most previous studies, machine learning techniques have been used for flight delay prediction. Initial 
research utilized classical machine learning techniques, while in recent years, researchers have focused more on 
employing ensemble learning models and deep learning6. However, the reported results in these studies indi-
cate a noticeable gap with an ideal prediction system1. To reduce this gap, the problem of flight delay prediction 
needs to be examined from three aspects. Firstly, the prediction of flight delays should be based on relevant, 
accurate, and describable factors in an appropriate manner while avoiding the use of unrelated factors that can 
hinder the prediction process. As mentioned, the existence of a delay in a flight can result from various factors 
such as weather conditions, the flight’s delay history, congestion at departure and destination airports, aircraft 
characteristics, and the flight route. Some studies have only considered a limited number of these characteristics, 
while other models proposed in different studies include a large set of features that can potentially affect the 
prediction speed and accuracy. Therefore, determining the most relevant factors associated with flight delays is 
of great importance and requires a review of previous research in this area.

The second aspect to consider in the flight delay prediction problem is the massive volume of flight data, 
which requires the use of big data processing techniques. This feature has often made previously proposed models 
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unable to be used in real-world applications. To address this issue, two strategies can be adopted. The first strategy 
involves utilizing distributed computing techniques, which have not been widely embraced in previous studies 
due to the complexity of the resulting models. The second strategy is simplifying the problem by breaking it down 
into several problems with lower complexity using big data processing techniques, which will be investigated in 
this study. By employing this strategy, it is possible to achieve a fast and flexible model for flight delay prediction 
that efficiently handles the processing of large flight data volumes.

The third aspect that needs to be considered in the flight delay prediction problem is the configuration of 
the learning model. In most previous studies, the configuration of the learning models has not received much 
attention. Consequently, it is difficult to ensure satisfactory performance of these strategies. In this study, it was 
attempted to guarantee higher performance of machine learning models by utilizing optimization techniques. 
In summary, the contributions of this paper are as follows:

•	 This paper proposes a clustering-based model for decomposing the flight delay prediction task into subprob-
lems, improving the prediction system’s performance in terms of accuracy and speed when using large flight 
data. In this approach, initial samples are clustered using the DBSCAN algorithm, and a separate prediction 
model is utilized to analyze the samples in each cluster. This process significantly aids in pattern learning for 
the prediction models.

•	 This paper presents a novel weighted random forest model called COWRF (COA-optimized Weighted Ran-
dom Forest) for flight delay prediction. COWRF is essentially a random forest model where each tree com-
ponent is tuned using COA. The tuning processes occur at the split point of decision nodes and the weight-
ing of each tree. Modifying the values of split points in each tree component in COWRF enhances its local 
accuracy, while the weighting strategy of tree components contributes to the overall accuracy improvement 
of the COWRF model.

•	 In this study, the importance and impact of each indicator on flight delays are examined using analysis of 
variance (ANOVA), and the most relevant indicators are identified using feature selection strategies. It is 
demonstrated that employing these indicators can effectively improve prediction accuracy.

It should be noted that the introduced COWRF model in this paper, as well as its distribution in data clusters 
for flight delay prediction, have innovative aspects that distinguish the current research from previous similar 
efforts. The continuation of this paper is organized as follows. The second section provides a review of previous 
research conducted in this field. The third section describes the proposed method for flight delay prediction 
based on big data and machine learning techniques. The fourth section presents the results and discusses the 
findings of the research, while the fifth section summarizes the research findings.

Literature review
The importance of the flight delay problem has led to its investigation in numerous studies. Among them, a sig-
nificant number of previous studies have attempted to solve this problem using machine learning techniques. For 
example, in Ref.7, a method based on spatio-temporal analysis was proposed for flight delay prediction. In this 
approach, spatial features of flights were extracted based on complex network theory. Additionally, by employing 
Long Short-term Memory (LSTM) models, the temporal correlation between weather conditions and airport 
traffic was modeled to predict these characteristics for each flight. Finally, a random forest model combining 
the temporal and spatial features was used to predict flight delays. The research was continued in Ref.8, where a 
Convolutional Neural Network (CNN) model was utilized to extract spatial features of flights, which proved to 
be more efficient in describing features compared to the complex graph theory-based model. Similar to Ref.7, 
in this study, the temporal features based on LSTM and spatial features based on CNN were merged to perform 
flight delay prediction using a random forest model.

In Ref.9, ensemble learning methods based on Gradient Boosting were used for flight delay prediction. This 
approach aimed to predict delays based on only seven flight-related features: airline type, aircraft type, depar-
ture airport, arrival airport, flight day, flight time, and distance. In this method, the mentioned features were 
preprocessed and encoded, and then three models, XGBoost, LightGBM, and CatBoost, were employed for 
delay prediction. This approach has two main shortcomings. Firstly, the considered number of features seems 
insufficient since providing accurate predictions requires a set of factors related to weather conditions and con-
gestion. Secondly, each of the employed learning models requires tuning various hyperparameters to achieve 
satisfactory performance.

In Ref.10, a combination of machine learning models was used for flight delay prediction, aiming to address the 
limitations associated with Ref.9. In this approach, flight data was preprocessed, and then a combination of three 
models, XGBoost, LightGBM, and CatBoost, was employed for flight delay prediction. Bayesian techniques were 
utilized to tune the hyperparameters of each model. Additionally, the Synthetic Minority Oversampling Tech-
nique (SMOTE) was used to balance the number of samples with and without delays according to the schedule.

In Ref.11, a method for flight delay prediction through the analysis of direct and indirect indicators using 
machine learning techniques was proposed. In this research, a set of indicators such as weather conditions, 
airport congestion, flight routes, and flight characteristics (e.g., number of passengers, aircraft size, airline fea-
tures, etc.) were introduced as direct indicators. Furthermore, factors such as the previous airport and previous 
flights were considered indirect indicators. Then, an LSTM model was used to predict the delays based on these 
indicators.

In Ref.12, a machine learning-based approach for strategic-level flight delay prediction was presented, distin-
guishing it from previous works. Strategic-level flight delay prediction covers a period of up to six months before 
the flight and the models based on it can serve as effective tools for flight schedule adjustments at airports and 
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airline managers. In this approach, after preprocessing and feature selection, three models, Perceptron Neural 
Network, LightGBM, and Random Forest, were utilized for delay prediction.

The research conducted in Ref.13 utilized a Fully Connected Deep Neural Network (DFCNN) for flight delay 
prediction. In this method, the performance of different structures of the DFCNN model was analyzed and 
evaluated for delay prediction by examining weather information, flight characteristics, and historical flight 
delay data. Then, an optimized structure with the best performance was obtained by optimizing the parameters 
of the model from three aspects: activation function, input data, and delay threshold. The resulting DFCNN 
model consisted of five hidden layers with Exponential Linear Unit (ELU) activation functions and achieved an 
average prediction accuracy of 92.39%.

In Ref.14, a random forest model based on cluster computing techniques was used for flight delay prediction. 
The main focus of this research was to improve the processing speed of flight data using big data processing 
techniques, and significant improvement in prediction accuracy was not achieved. However, the random forest 
model was capable of predicting flight delays with an accuracy of 92.7%, indicating the compatibility of this 
learning model with the flight delay prediction problem. Consequently, the random forest has been used in many 
studies in this field. According to the reported results, the use of cluster computing techniques in the random 
forest model can lead to a 38% increase in processing speed.

In Ref.15, factors related to flight delays were divided into two categories: weather-dependent and weather-
independent, and a probabilistic model based on a random forest was used to analyze the impact of each factor 
on prediction accuracy. Finally, a random forest was used to detect flight delays based on the selected factors.

The research conducted in Ref.16 proposed a Graph Convolutional Network (GCN)-based model called Geo-
graphical and Operational GCN (GOGCN) for flight delay prediction, which demonstrated better capability in 
representing geographical properties and spatio-temporal features compared to GCN alone. In this approach, 
global operational features and local geographical features were separately processed by two GCN models. 
Then, the extracted features from these two models were merged to perform flight delay prediction through an 
output layer.

In Ref.17, deep learning techniques were utilized for flight delay prediction. In this method, a set of flight-
related and weather-related features were preprocessed, and the ECA-MobileNetV3 model was used to reduce 
the dimensionality of the features. Finally, the extracted features were classified using a SoftMax layer.

Research in Ref.18, combined severak deep learning models for flight delay prediction. This research initially 
employed a CNN-based model called CondenseNet, and by integrating CBAM components into this model, the 
prediction accuracy was improved. Additionally, a model combining CNN and LSTM was proposed for delay 
prediction, and by adding SimAM components to this CNN-LSTM model, it achieved a 91.36% prediction 
accuracy, showing a significant improvement compared to individual CNN, LSTM, and CondenseNet models. 
In Ref.19, a GCN-based model was presented for flight delay prediction, which represented temporal and spatial 
features in a separable manner and effectively learned the relationships between these features. In Ref.20, a model 
named Grasshopper Optimization Algorithm-based Random Forest (GHOA-RF) for predicting flight delay was 
presented. In this model, the GHOA was used for tuning the parameters of the RF model. Hybrid deep learning 
techniques are effective approaches for solving a wide range of problems such as traffic prediction21,22, trajec-
tory prediction23, and so on. Also, optimization techniques have been used in many researches to improve the 
efficiency of learning models24. This research applies optimization techniques to machine learning models to 
achieve an accurate flight delay prediction system.

Research method
To accurately predict flight delays, it is necessary to utilize relevant indicators and employ an optimized predic-
tion model that can handle large-scale flight data processing. This section outlines the proposed method to meet 
these requirements.

Database
Since existing databases for flight delay prediction are often limited, the required data for this research was col-
lected using a web crawler from the FlightRadar24 website. In the data collection process, information for arriving 
flights at JFK International Airport, New York during June, July, and August 2023 was collected. The collected 
data includes information on 23,793 domestic and international flights to this airport. By excluding canceled 
flights (997 samples), the data was reduced to 22,796 records. In the obtained dataset, 18,591 samples belong 
to the category of on-time flights, while 4102 flights have minor delays, and 103 flights have significant delays.

Then, due to the imbalanced nature of samples in the target classes (low number of samples for flights with 
minimal and significant delays), information on delayed flights from January to May 2023 was also utilized. This 
operation, increased the instances count to 24,986, including 854 samples belonging to flights with significant 
delays and 5541 samples related to flights with small delays. For all samples in the database, information regarding 
origin and destination airport congestion, aircraft type, weather conditions, flight time, and airline delay history 
were collected. Table 1 presents the set of extracted features for describing each database sample.

According to Table 1, each record in the database is described through 36 different indicators. These indica-
tors can be divided into three categories: weather conditions (7 indicators), flight status (19 indicators), and 
airport status (10 indicators).

Ensemble learning‑based flight delay prediction
The proposed method for flight delay prediction utilizes a combination of big data processing techniques, 
machine learning, and optimization. Additionally, statistical analysis of the indicators is used to determine the 
most relevant features related to flight delays. The proposed method includes three steps:



4

Vol:.(1234567890)

Scientific Reports |         (2024) 14:4603  | https://doi.org/10.1038/s41598-024-55217-z

www.nature.com/scientificreports/

1.	 Preprocessing and selection of relevant indicators.
2.	 Clustering based on the DBSCAN algorithm.
3.	 Delay prediction based on the COWRF models.

The mechanism of the proposed method is illustrated in Fig. 1 as a diagram. In this diagram, the stages related 
to the training and testing phases of the proposed model are separated. To clarify the processes, the training 

Table 1.   Set of extracted features for each database sample.

Category ID Title Description Data type

Weather condition

I1 Temperature Temperature at the neighboring station of the origin airport (°C) Continuous

I2 Humidity percentage Humidity at the neighboring station of the origin airport (%) Continuous

I3 Cloud density Cloud density at the origin airport Ordinal

I4 Wind direction Average wind direction at the station of the origin airport Ordinal

I5 Horizontal visibility Horizontal visibility at the station of the origin airport (m) Continuous

I6 Wind speed Average wind speed at the station of the origin airport (km/h) Continuous

I7 Air pressure Air pressure at the station of the origin airport (bar) Continuous

Flight status

I8 Day Number of days elapsed in the month Discrete

I9 Month Number of months elapsed in the year Discrete

I10 Day of the week Number of days elapsed in the week Discrete

I11 Departure time Scheduled departure time from the origin Continuous

I12 Arrival time Scheduled arrival time at the destination Continuous

I13 Travel time Predicted travel duration from takeoff to arrival at the destination 
(min) Continuous

I14 Flight distance Flight distance between the origin and destination (km) Continuous

I15 Flight class Airline flight class type Ordinal

I16 Flight type Domestic (1) or international (2) flight Ordinal

I17 Aircraft Aircraft type Ordinal

I18 Number of passengers Total number of adult passengers on the flight Continuous

I19 Previous flight Existence (1) or absence (2) of previous flight Ordinal

I20−I26 Airline delay history Delay history in the last 7 airline flights as a vector (min) Discrete

Airport status

I27 Origin congestion level Number of scheduled flights at the departure time from the origin 
airport Discrete

I28 Destination congestion level Number of scheduled flights at the arrival time at the destination 
airport Discrete

I29−I35 Airport delay history Delay history in the last seven incoming flights at the airport as 
numerical values (min) Discrete

I36 Origin delay rate Rate of delayed flights at the departure airport during the past 7 days Continuous

Training Data

Preprocessing

Select relevant indicators 
(ANOVA and FSFS)

Clustering by DBSCAN

Test sample

Train & optimize 
NCOWRF

NC
Train & optimize 

1COWRF

1C

Preprocessing

Retrieve selected 
indicators 

Determine Cluster of test 
sample

Prediction Result

…

Figure 1.   Steps of flight delay prediction in the proposed method.
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phases are connected through solid black lines, and the testing stages (prediction of delays in new samples) are 
represented by dashed red lines. The training phase of the proposed method starts with data preprocessing. 
Then, the indicators of the training samples are ranked based on ANOVA, and the most relevant indicators 
associated with flight delays are identified using the FSFS algorithm. In the next step, the training samples are 
clustered based on the selected indicators. The clustering process is performed using the DBSCAN algorithm, 
which helps identify noise and disregard it in the training samples. By doing so, the training samples are divided 
into N clusters. In the next step, the samples from each cluster are used to train the proposed prediction model. 
This model utilizes COA to optimize the tree components and adjust the weight values for these components. 
The obtained learning models for each cluster are then used to predict delays in new samples.

To predict delays in new samples, the preprocess operations are first applied on the input record, and then, 
the selected indicators during the training phase are extracted from the input record. Then, the probability of 
belonging of the test sample to each cluster (C1 to CN) is calculated, and the sample is assigned to one of the exist-
ing clusters. Once the cluster of the test sample is determined, the corresponding COWRF model for that cluster 
is used to predict the delay. Each COWRF model utilizes a weighted voting strategy among the tree components 
to determine the prediction result.

Preprocessing and selection of relevant indicators
The proposed approach starts with preprocessing and selecting indicators relevant to flight delays. The preproc-
essing operation starts with handling missing values. If there is a missing value for a continuous indicator, it is 
replaced with the mean value of that indicator in the training samples. Also, any missing value in categorical 
indicators is replaced with 0.

After handling missing values, each database indicator is mapped to the range [0, 1] using the following 
equation25:

In the above equation, I represents the vector of values for each indicator, and minI and maxI represent the 
minimum and maximum possible values for that indicator, respectively. After normalizing the indicators, the 
process of selecting indicators relevant to flight delays is performed. The prerequisite for this task is determin-
ing the importance of each indicator based on its values. For this purpose, the F-score in one-way ANOVA can 
be used. One-way ANOVA is a suitable method for investigating the effect of each independent variable (input 
indicators) on the dependent variable (flight delay)26. In the proposed method, this analysis is performed on 
each input indicator to determine the significance level of its effect on flight delay in the form of an F-score. The 
F-score for each indicator indicates the ratio of between-group variations to within-group variations. If F > 1 , it 
means that the between-group variations are greater than the within-group variations, indicating that the effect 
of that indicator on the dependent variable could be beyond random situations. Furthermore, as the F-value 
increases, the effect becomes more evident. Based on this, in the proposed method, after calculating the F-score 
for each input indicator, they are ranked in decreasing order by the obtained F-score to rank them according to 
their importance.

After determining the importance of input indicators, it is necessary to determine the appropriate number 
of indicators to achieve the highest prediction accuracy. In the proposed method, the FSFS algorithm27 is used 
to fulfill this objective. The FSFS algorithm is a feature selection strategy based on ranked features, which can 
determine the appropriate number of features for predicting flight delays. In this regard, the learning model is first 
trained based on the top-ranked two indicators, and the validation error is calculated based on these indicators. In 
the next step, the third-ranked indicator is added too, and the training and validation error calculation processes 
are performed, respectively. This process is repeated, and after adding each new indicator, the obtained validation 
error is compared with the previous state. If adding a new indicator leads to an increase in the validation error, 
the feature selection procedure is ended, and indicators having minimum validation error will be selected. This 
selected set is used as the input for the second step of the proposed method.

DBSCAN‑based clustering
After preprocessing and selecting relevant indicators, the training samples are clustered using the DBSCAN 
algorithm. This algorithm performs data point clustering based on their density. Accordingly, data points that 
are close to each other and form a region with high density are considered as a cluster. On the other hand, points 
that are far from dense regions are identified as outliers28. In proposed method the clustering algorithm is applied 
on all training samples. Each cluster contains a set a training samples which are used to train a separate learning 
model. Using the clustering strategy for flight data through this algorithm has several advantages. Firstly, the 
DBSCAN algorithm has the ability to distinguish outlier samples from data points, and employing this strategy 
can prevent the inclusion of samples that may disrupt the prediction process. Secondly, the use of clustering 
strategy leads to simplifying the problem by breaking it down into several subproblems with lower complexity. 
By utilizing the sub-problems generated by the structure of clusters, the prediction process can be performed 
more accurately. In this case, each learning model is trained based on the controlled set of data in each cluster, 
which strengthens the model’s ability to learn patterns specific to each cluster. Additionally, clustering the data 
reduces the training time of the learning models, which is crucial for processing large-scale flight data in real-
world applications. These reasons justify the use of the clustering strategy for the samples in the proposed method. 
However, it should be noted that the clustering algorithm should be capable of processing big data.

The original DBSCAN algorithm has a computational complexity of O
(

N2
)

, which is not suitable for large-
scale data processing applications. Therefore, the proposed method uses an enhanced version of the DBSCAN 

(1)NI =
I −minI

maxI −minI
.
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model for clustering the samples. This enhanced algorithm improves the performance of DBSCAN by sampling 
from the data points and initializing the clusters.

Similar to the original DBSCAN algorithm, this enhanced algorithm utilizes two threshold parameters: the 
neighborhood threshold ϵ and the minimum number of points P. It is worth mentioning that in this algorithm, 
the neighborhood set of each data point x, which has a distance less than the ϵ threshold, is denoted as Nx , and 
the set of data points that have a distance less than ǫ

2
 with it is denoted as NCx . The enhanced DBSCAN algorithm 

employs three sets, C, M, and I, to organize the cluster structure. These sets represent the core points of clusters, 
the margin points, and the cluster labels, respectively. The algorithm starts by initializing sets C, M, and I as 
empty. Then an iterative mechanism is used for assigning a cluster id to each unlabeled sample. During each 
iteration, the number of neighbors within a distance less than ϵ from data point are determined as |Nx| . Data 
points with neighbors larger than threshold P are considered as core points and their unlabeled neighbors are 
labeled according to their new core. On the other hand, data points with neighbors smaller than threshold P 
are considered as margin point; while samples without neighbors are marked as noise. After processing all data 
points, each margin point is assigned with a label using majority of cluster id in its neighborhood. The pseudo 
code the enhanced DBSCAN is presented in Algorithm 1.

12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.

End If
Else 

If = ∅, 
label x as noise and remove it from the input data set;

Elseif | | < , 
add x to set M;

End If
End If

End For
For each ∈

For each ∈
If ∈

assign the label of z corresponding to cluster y;
End If

End For
End For
For each ∈

calculate the set ;
If (∃ ∈ | ∈ ) // at least one member of the is a member of C

assign the label of w based on the majority cluster ID in the ;
Else

consider w as a noise data point;
End If

End For

1.
2.
3.
4.
5.
6.
7.
8.
9.

10.
11.

Initialize sets C, M, and I as empty;
For each ∈

If ( ∈ )
Continue;

Else 
Identify | |; //the number of neighbors within a distance less than ϵ from x; 

End If;
If | | ≥

If | | ≥
add x to set C;
add the sample x and the set to the clusters in set I;

Algorithm 1.   Enhanced DBSCAN.
By executing the above steps, the training samples will be assigned to N clusters. Additionally, the identified 

training samples as noise will be discarded during the training process. In the next step, each cluster will be 
assigned a learning model to train the model based on the training samples of that cluster. In this research, the 
parameters P and ϵ are set empirically to 15 and 0.1, respectively.

Predicting delays based on COWRF models
Finally, optimized random forest models by COA are used for training based on the samples of each cluster. 
To do so, a learning model is assigned to each cluster formed in the previous step. In this study, the proposed 
learning model for predicting flight delays is called COWRF. In this model, a random forest is initially used to 
build the base learning model. Then, COA is used for optimization and configuration of the base model at the 
local and global levels:
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1.	 Optimizing configuration of each tree model At this level, COA is used to modify each tree by tuning its split 
points. Based on these parameters, each decision tree component of the base random forest model is con-
figured. The goal of this step is to minimize the local error of each decision tree component in identifying 
flight delay patterns.

2.	 Determining the effectiveness of each tree model on the detection outcome through assigning weight values 
Since the decision tree components in random forest models have different accuracies, the output value of 
each component can be different from others. To address this issue, the output value of each decision tree 
component in COWRF is determined using a specified weight value. In this case, accurate decision tree 
components will have a higher weight, while components with higher errors will have a lower weight. Finally, 
the output of the COWRF model is determined through weighted voting among these components.

The continuation of this section explains how the COWRF model is optimized at these two levels.

Optimization of each tree model configuration.  The algorithms for constructing conventional decision trees 
utilize greedy strategies to expand the tree structure. In this approach, an appropriate splitting point at the root 
node is greedily searched to generate two child nodes branching from the root. Then, the process of determin-
ing splitting points for each child node is performed in a similar manner, and this process is repeated until the 
decision tree structure is complete. It is evident that the splitting points formed in greedy algorithms may not 
lead to an optimal decision tree. Therefore, revisiting the determined values in decision nodes can contribute to 
achieving an effective decision tree performance. In the proposed method, this task is accomplished using COA. 
Adjusting the decision points in the components of the COWRF tree can be done separately or collectively. In 
the first case, each tree component is optimized individually by COA, and in the second case, all decision points 
in all trees are simultaneously optimized by COA. In this research, the second case is utilized. Furthermore, the 
structure of the solution vector and the fitness evaluation function in the optimization problem are described, 
followed by explaining the computational steps of COA for solving this problem. To optimize the splitting points 
in each component of the COWRF tree, each splitting point is considered as an optimization variable. In this 
case, each solution vector in COA has a length equal to the number of decision points in all COWRF trees. Since 
all input indicators are mapped to the interval [0, 1] in the preprocessing step, each optimization variable (split-
ting point) is represented as a real number within this range. Figure 2 illustrates an example of the structure of 
the solution vector and its utilization in the problem. In this figure, a COWRF model consists of two hypothetical 
trees, T1 and T2, which have 4 and 3 decision nodes, respectively. In this case, according to Fig. 2b, each solution 
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Figure 2.   An example of the solution vector and its application on COWRF in optimizing the splitting points 
(a) the initial RF model, (b) an example of solution vector in COA, (c) the result of applying solution vector on 
initial RF model.
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vector has a length of 7, where the first 4 elements specify the split points of decision nodes P1 to P4 in T1, and the 
next 3 elements correspond to the split points of decision nodes Q1 to Q3 in T2. The process of applying the deter-
mined decision points in the COA solution vector on the components of the COWRF tree is illustrated in Fig. 2c.

After setting the splitting points for each component of the tree based on the solution vector, training sam-
ples are applied to each configured tree, and the output labels for the input samples are determined. Then, the 
fitness of the solution vector is evaluated by comparing the output labels of these models with the actual labels:

where T represents the number of tree components in the COWRF model, which is considered as 25 in this 
research. Additionally, N denotes the number of training samples, and ei indicates the number of errors made 
by tree component i in labeling the training samples. In other words, in this phase, the COA utilizes the aver-
age error rate of tree components as a fitness measure to evaluate the fitness of each solution vector. The COA 
algorithm starts with randomly generating an initial population consisting of p packs, each containing c coyotes. 
This algorithm iterates the search mechanism until one of the stop criteria are met. During each iteration, first the 
coyote with the minimum fitness in each pack is considered as alpha. Then, the social attraction of the current 
group is calculated based on the following equation29:

In the mentioned context, Qp,t represents the social rank of coyotes in pack p for iteration t.
Then, for each coyote such as c in each pack, the social position of the coyote is updated as follows29:

In the above equation, r1 and r2 represent the weight coefficients of the alpha coyote and the current pack, 
respectively. Additionally, δ1 and δ2 represent the impact rates of the alpha coyote and the current pack, which 
are calculated based on the difference between the position of the alpha coyote and the pack position. Then the 
social position of the coyote is updated based on its fitness changes, and birth and death operators are applied 
to each pack. In the end of each iteration, the probability of transferring the coyote to another pack is calculated 
and the age of coyotes are updated. The pseudo code of COA has been presented in Algorithm 2.

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.

Initialize the random population of p packs, each containing c coyotes;
Evaluate solution vectors (coyotes) using fitness function defined in equation (2);
While (!StopCriteria)

For each group of coyotes do:
Identify the coyote with the minimum fitness in the current pack as alpha;
Calculate the social attraction of the current group using equation (3);
For each coyote c in the current pack do:

Update the social position of the coyotes using equation (4);
Update the fitness of the current coyote using equation (2);
Update the social position of the coyote based on its fitness;

End For
Apply birth and death operators to the current pack;

End For;
Calculate the probability of abandoning a pack = 0.005 × 2;
If Probability Pc met

transfer the coyote to another pack;
End If
Update the age of coyotes;

End While.

Algorithm 2.   Coyote Optimization Algorithm.
After executing the aforementioned optimization steps, the solution vector with the minimum fitness (lowest 

average training error) is applied to the tree components.

Weight assignment in COWRF.  In order to predict flight delays in the COWRF model, the input sample is 
applied to each tree component, and the final output of COWRF is determined by majority voting among the 
outputs generated by these components. However, it should be noted that each tree model may have different 
performance compared to others. Therefore, the output value of each tree model in COWRF may vary from oth-
ers. Consequently, the negative effect of models with high errors can lead to errors in the proposed prediction 
system. To address this issue, the weighted strategy for tree components is employed in COWRF. To achieve 
this, the influence of each tree’s output in the COWRF structure is determined using a specific weight value, and 

(2)fitnesslocal =
1

T

T
∑

i=1

ei

N
,

(3)cult
p,t
j =







O
p,t
c+1
2

,j
, if c is odd

O
p,t
c
2
,j
+O

p,t
c
2
+1,j

2
else

.

(4)newSoc
p,t
c = soc

p,t
c + r1 × δ1 + r2 × δ2.



9

Vol.:(0123456789)

Scientific Reports |         (2024) 14:4603  | https://doi.org/10.1038/s41598-024-55217-z

www.nature.com/scientificreports/

the output of the proposed model is determined using the weighted voting strategy. COA is also utilized in this 
phase to assign weight values to each tree component. In this case, COA tries to improve the overall accuracy of 
the prediction system by assigning lower weights to trees with high errors and increasing the weights of more 
accurate trees. The optimization steps for weight values in this phase are similar to the previous phase, but a dif-
ferent structure for describing the solution vector and evaluating fitness is used. Therefore, in this section, we will 
focus on explaining the structure of the solution vector and the fitness function.

The objective of COA in this phase is to allocate a weight value to each tree component in COWRF. Therefore, 
the number of optimization variables is equal to the number of tree components in COWRF. Each optimization 
variable determines the weight value corresponding to a tree, represented as an integer in the range [0,10]. With 
these explanations, for a COWRF model consisting of N trees, the solution vector is described as an integer 
vector with a length of N. The assigned weight value to each tree component determines the number of times its 
output is counted in the voting process. For example, if a tree has a weight value of 3, its output will be counted 
3 times for each sample in the voting process. Similarly, assigning a weight of 0 to a tree indicates its exclusion 
from the voting process.

To evaluate the fitness of each solution vector in this phase, the validation samples are applied to the tree com-
ponents in COWRF, and the output of each model corresponding to its weight value is repeated. Then, the voting 
process is performed based on the repeated output vectors of the models to determine the COWRF’s prediction 
result for each validation sample. Finally, the fitness evaluation is conducted by the validation error as follows:

where e refers to the size of the validation set for which the COWRF output contradicts the ground truth labels, 
and N denotes the total number of validation samples. Using this fitness measure, the combination with the 
minimum validation error can be determined for the prediction model. Ultimately, the COWRF model with the 
optimal weight combination is utilized for predicting delays in new flights.

Results and discussion
To implement and evaluate the proposed method, MATLAB 2020a software was used. The experiments in this 
research were conducted based on the 50-fold Cross-Validation (CV) mechanism. Considering the size of the 
dataset, and the issue of class imbalance, 50-fold CV was considered as an appropriate and effective strategy to 
evaluate the proposed model. By repeatedly dividing the data into smaller folds and training the model on dif-
ferent subsets, we can obtain more reliable and unbiased performance estimates. This approach helps to reduce 
the impact of random noise and ensures that the model’s performance is not overly influenced by the distribu-
tion of data points in a particular fold. Therefore, during the 50-fold CV, the training and testing processes of 
the model were repeated 50 times, and in each iteration, 98% of the samples were used for training the model, 
while the remaining 2% were used for evaluating its performance. It should be noted that this principle of data 
partitioning has been used for the samples of each class in each fold of CV. In other words, the training samples 
in each fold of CV include 98% of the samples of each class; while the remaining 2% of the samples of each 
class were used for model testing in that fold. Since new test samples are used in each fold, after completing the 
evaluation, all database samples will be used as test samples. In each iteration, the performance of the proposed 
method was evaluated based on accuracy, precision, recall, and F-measure metrics, and the average results are 
presented in this section.

The accuracy metric represents the ratio of test samples (in all target classes) that are classified correctly. On 
the other hand, the precision metric indicates the proportion of correctly classified samples in each class, i.e., 
on-time, low delay, and high delay. Additionally, the recall metric shows the relative ratio of correctly identified 
samples in each target class. It should be noted that to calculate precision and recall metrics, the problem should 
be considered as a binary classification problem (positive and negative classes). Accordingly, these metrics were 
calculated separately for each target class. In this case, for each class, it was considered as the positive class, and 
the other classes were considered as negative. These metrics are calculated based on the following equations30:

To examine the specific impact of each employed technique on the performance of the proposed method, the 
results obtained from this strategy were compared with the following scenarios:

•	 All Features In this scenario, flight delay prediction is performed based on all features (Listed in Table 1). In 
other words, the process of selecting relevant indicators is disregarded, and the performance of the COWRF 
model is evaluated based on all features.

•	 Without DBSCAN In this scenario, the clustering process of the samples by the DBSCAN algorithm is disre-
garded, and only a COWRF model is used to classify all samples.
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•	 Conventional RF In this scenario, the proposed COWRF model is replaced with a conventional random forest 
model, and flight delay prediction is performed based on this model.

The goal of examining the first scenario is to examine the effect of the feature selection strategy in improving 
the performance of the flight delay prediction system. Based on the second comparison scenario, the impact 
of clustering the samples on the accuracy of the proposed model can be demonstrated. The third comparison 
scenario indicates the effect of optimizing the tree components and their weighting by COA on increasing pre-
diction accuracy. Additionally, the results of the presented approach were compared with the DFCNN model in 
Ref.13, the CCRF model in Ref.14, the CNN-LSTM mode in Ref.18 and GHOA-RF model in Ref.20. Same training 
and test sets were used for all of these methods.

According to the procedure described in “Preprocessing and selection of relevant indicators” section, the 
identification of features related to flight delay was performed using ANOVA and the FSFS strategy. First, the 
F-score of the features was evaluated based on the ANOVA test. Figure 3 shows the calculated F-scores for the 
input features. These results indicate that weather features, airport congestion characteristics, and some flight-
related attributes such as aircraft type and route length are more important. After sorting the features based 
on their F-scores and applying the FSFS strategy for feature selection, it was found that the highest prediction 
accuracy can be achieved using 21 selected features. These features are distinguished from other features by a 
green dashed line in Fig. 3. Therefore, the presented results in this section are based on these 21 selected features.

In the proposed method, COA was used for optimizing the COWRF model. This optimization was performed 
in two phases. In the first phase, the process of tuning the decision points of the trees was performed, and then, 
the effect of each tree component on the output of COWRF was determined using a specified weight value. It 
should be noted that in the first phase, the parameters of the number of packs, the number of coyotes in each 
pack, and the number of COA iterations were set to 50, 10, and 1500, respectively. Additionally, in the second 
phase, these parameters were set to 10, 10, and 200, respectively. Figure 4 shows the variations of the fitness in 
the best solution found during various iterations for each of these optimization steps. According to Fig. 4, the 
COA algorithm can minimize the fitness value through efficient search in the problem space in both phases. 
According to these graphs, the average population fitness in both phases also showed a decreasing trend towards 
the best discovered fitness. The optimization of the COWRF model at the local level (configuring each tree) and 
the global level (weighting the models) was effective in further reducing the training error. According to Fig. 4a, 
the optimization of each tree’s configuration at the first level was able to reduce the average training error of the 
tree components in COWRF to about 5%. After that, weighting the learned models at the second level led to 
further reduction in the error, resulting in a weighted model with a training error of less than 1%. These results 
confirm the effectiveness of the proposed two-level optimization technique.

Before examining the performance of the proposed method in predicting flight delay, it is useful to evaluate 
the performance of the improved DBSCAN algorithm in clustering samples. For this purpose, the clustering 
quality of database samples based on this algorithm has been compared with other clustering algorithms. In 
this case, the quality of the formed clusters has been evaluated based on the intra-cluster distance, inter-cluster 
distance and silhouette index. Also, the efficiency of the improved DBSCAN algorithm has been compared with 
other clustering methods in terms of processing time. This experiment was performed on a personal computer 
with an Intel Core i7 processor with a frequency of 3.2 GHz and 16 GB of memory. The results of this experi-
ment are presented in Fig. 5.

Figure 3.   F-scores calculated based on ANOVA for input features.
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Figure 5a, compares different clustering algorithms using intra-cluster, inter-cluster and silhouette index. 
Also, Fig. 5b compares these methods in terms of processing time. The intra-cluster distance is calculated as the 
average distance between each pair of data points of the same cluster. Also, the inter-cluster distance represents 
the minimum average distance between the points of each cluster and the points of other clusters. Finally, the 
silhouette index is calculated as follows31:

In the above relationship, a and b represent the intra-cluster and inter-cluster distances, respectively. It should 
be noted that distances have been calculated based on normalized features (Eq. 1). As the results presented in 
Fig. 5 show, the improved DBSCAN algorithm can organize the data into clusters with less inter-cluster and more 
intra-cluster distances, which results in increasing the silhouette index and achieving clustered structures with 
higher quality than clusters. On the other hand, compared to the conventional DBSCAN algorithm, the improved 
model can perform clustering in a shorter period. Based on the results, the improved DBSCAN algorithm, while 

(9)S =

b− a

max(a, b)
.

(b)(a)

Figure 4.   Variations of the best fitness during various cycles for (a) tree configuration optimization phase and 
(b) tree weighting phase in the COWRF model.

(b)(a)

Figure 5.   The results of evaluating the performance of clustering algorithms in terms of (a) clustering quality, 
and (b) processing time.
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having the qualitative advantages of the conventional DBSCAN algorithm, can compete with faster algorithms 
such as K-Means in terms of processing time. These results show that the clustering technique used in the pre-
sented approach can be more suitable for big data processing applications.

Figure 6, represents the mean accuracy in flight delay prediction after 50-folds of cross-validation are pre-
sented. The examination of the accuracy values of different scenarios shows that the proposed method is capable 
of achieving more accurate flight delay prediction in the database samples. The average accuracy of the proposed 
method is 97.2%, which is at least 2.49% higher compared to the closest scenario. Moreover, the proposed 
COWRF model outperforms DFCNN, CCRF, CNN-LSTM, and GHOA-RF methods in terms of accuracy, even 
without using the clustering and feature selection strategy, and it can achieve flight delay prediction more accu-
rately than these two methods.

By comparing the different scenarios in Fig. 6, valuable insights can be extracted regarding the performance 
of the proposed method. For instance, if the process of selecting relevant features is disregarded, the prediction 
accuracy would be 93.29%. This means that the process of selecting relevant features can increase the accuracy by 
an average of 3.91%. It is likely that with the adoption of more efficient feature selection strategies, this difference 
can be further increased. On the other hand, if only a single COWRF model is used for flight delay prediction 
(eliminating the clustering step in the proposed method), the prediction accuracy would decrease to 94.70%. This 
indicates that the clustering strategy and problem decomposition played an effective role in reducing complexity. 
Employing a separate COWRF model for each cluster allows the models to learn patterns in each cluster more 
effectively, resulting in a 2.5% increase in accuracy. Additionally, the clustering strategy leads to faster detection in 
the proposed model, as it can reduce the processing time for each sample by an average of 39.17%. Furthermore, 
the COWRF model outperforms the conventional random forest model by 5.3% in terms of accuracy. These 
results demonstrate that even without the COWRF model and using prediction based on the baseline random 
forest, the proposed method achieves a slight advantage over the CCRF model14. This advantage confirms the 
effectiveness of the feature selection and clustering strategies in reducing the complexity of the problem.

Figure 7, presents the confusion matrices resulting from flight delay prediction by different methods. In each 
matrix, the rows indicate the prediction of flight delay by different methods, and the columns represent the actual 
distribution of samples in the target categories. For example, Fig. 7a demonstrates that the presented approach 
correctly predicted 18,068 out of 18,591 on-time flights (sum of values in the first column) and incorrectly clas-
sified 249 on-time flights as delayed flights. Also, 274 on-time flights were incorrectly classified as flights with 
high delays. Furthermore, there were 5541 flights with low delay, and the presented approach correctly identified 
delay in 5385 flights and misclassified 156 samples in other categories. The interpretation of the confusion matrix 
can be performed similarly for other methods.

Examining the performance of different methods separately for each category in the confusion matrices 
reveals that, generally, the detection of flights without delay is more accurate than flights with delay. One reason 
for this is the larger number of samples in the category, allowing the learning models to more accurately identify 
the underlying patterns in the features of on-time flights. Another reason is the high similarity between the fea-
tures in the two categories of flights with low and high delay, which, coupled with the small number of samples, 
leads to the models’ confusion in distinguishing between these two categories.

By comparing the confusion matrices, two points can be inferred. Firstly, the presented approach, in addition 
to being more accurate, also performs more accurately in categorizing samples in each category, indicating its 
superiority in terms of accuracy for each category. Secondly, the proposed method is capable of correctly identify-
ing a higher rate of samples in each category, resulting in higher recall compared to the compared scenarios. This 
claim can be confirmed through Fig. 8. In this figure, the performance of different methods in terms of accuracy, 
recall, and F-measure for each category (Fig. 8a–c) and as an average (Fig. 8d) is presented. In Fig. 8a–c, the x-axis 
represents different methods, and the y-axis represents each target class. The values in these graphs represent 
the quality measures of classification for each target class. This figure clearly demonstrates that the proposed 
method is capable of improving the quality measures of classification in each target category. Furthermore, the 

Figure 6.   Mean accuracy in flight delay prediction.
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average values presented in Fig. 8d clearly indicate the superiority of the presented approach. This superiority can 
be the results of using the strategies employed in feature selection, data clustering, and classification processes.

Figure 9, presents the ROC curves resulting from flight delay prediction by different methods. It should be 
noted that for drawing the ROC curve for each method, the Late and VeryLate categories were merged and 
labeled as the positive class. Thus, the ROC curve can effectively describe the performance of each method in 
predicting delay for each flight.

As shown in Fig. 9, the presented method achieved a lower false positive rate and a higher true positive rate 
in predicting flight delays. The reduction in the false positive rate indicates that this approach misclassified fewer 
on-time flights as delayed. On the other hand, the increase in the true positive rate demonstrates the favorable 
efficiency of the presented approach in predicting the presence of delays in flights. Table 2, represents a summary 
of the results obtained from these experiments.

The analysis of the results obtained from the conducted experiments indicates that the proposed method is 
an efficient and accurate strategy for predicting flight delays in both domestic and international flights, and it 
can serve as a useful tool in real-world scenarios.

Conclusion
Accurate prediction of flight delays is an important and challenging problem in the aviation industry, and achiev-
ing it can improve the efficiency of flight-related processes. However, challenges such as low accuracy and the 
lack of compatibility of machine learning models with large-scale flight data have hindered their practical use. In 
this research, the focus was on addressing these challenges and presenting a novel method for accurate detection 
of flight delays. To achieve this, a combination of ANOVA and FSFS strategies was initially used to determine 
the most relevant features associated with flight delays. The analysis revealed that besides weather-related fea-
tures, certain flight characteristics such as aircraft type, flight type, and congestion-related attributes, as well as 
departure delay history, had the greatest impact on the occurrence of delays. The feature selection strategy was 
found to effectively increase the prediction accuracy by at least 3.91%. In this study, a clustering strategy was also 
employed to decompose the problem and reduce its complexity. The samples were clustered into sets of similar 
categories using the DBSCAN algorithm, and a separate learning model was utilized for predicting delays in 
each category. According to the findings, the clustering technique improved the speed and accuracy of delay 
prediction by 39.17% and 2.49%, respectively. Furthermore, the employed learning model for each cluster was 

Figure 7.   Confusion matrices of different methods in flight delay prediction.
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a random forest, with the adjustment processes of decision node splits and weight determination for each tree 
component performed using COA. This new ensemble model could enhance the prediction accuracy by 5.3% 
compared to the conventional random forest model. The evaluation of the proposed method based on real flight 
data from JFK airport demonstrated that it achieved an average prediction accuracy of 97.2%, indicating a 4.7% 
improvement compared to previous efforts.

Although the significance of feature selection in improving flight delay prediction was demonstrated in this 
research, employing more efficient feature selection techniques could lead to even better results. Therefore, this 
aspect can be further explored in future studies. Moreover, in prediction applications, a wide range of features 
may be associated with uncertainties. Hence, by integrating the proposed model with a fuzzy model, a more 
accurate description of flight features can be achieved, aiming to improve the model’s flexibility.

(b)(a)

(d)
(c)

Figure 8.   Performance of different methods in terms of (a) precision, (b) recall, and (c) F-measure for each 
class and (d) the average values of these metrics.
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