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Dynamical behavior of water wave 
phenomena for the 3D fractional 
WBBM equations using rational 
sine‑Gordon expansion method
Abdulla‑Al‑ Mamun 1,2,3*, Chunhui Lu 1,2, Samsun Nahar Ananna 4 & Md Mohi Uddin 5

To examine the dynamical behavior of travelling wave solutions of the water wave phenomenon for 
the family of 3D fractional Wazwaz‑Benjamin‑Bona‑Mahony (WBBM) equations, this work employs 
the rational Sine‑Gordon expansion (RSGE) approach based on the conformable fractional derivative. 
The method generalizes the well‑known sine‑Gordon expansion using the sine‑Gordon equation 
as an auxiliary equation. In contrast to the conventional sine‑Gordon expansion method, it takes 
a more general approach, a rational function rather than a polynomial one of the solutions of the 
auxiliary equation. The method described above is used to generate various solutions of the WBBM 
equations for hyperbolic functions, including soliton, singular soliton, multiple‑soliton, kink, cusp, 
lump‑kink, kink double‑soliton, etc. The RSGE method contributes to our understanding of nonlinear 
phenomena, provides exact solutions to nonlinear equations, aids in studying solitons, advances 
mathematical techniques, and finds applications in various scientific and engineering disciplines. 
The answers are graphically shown in three‑dimensional (3D) surface plots and contour plots using 
the MATLAB program. The resolutions of the equation, which have appropriate parameters, exhibit 
the absolute wave configurations in all screens. Furthermore, it can be inferred that the physical 
characteristics of the discovered solutions and their features may aid in our understanding of the 
propagation of shallow water waves in nonlinear dynamics.

Keywords Wazwaz-Benjamin-Bona-Mahony equation, The rational sine-Gordon expansion method, Exact 
solution, Soliton shape, Lump shape, Sine-Gordon equation

Numerous issues in applied sciences, such as fluid dynamics, hydrodynamics, plasma physics, and quantum 
mechanics, may be modelled using ordinary and partial differential equations to characterize their physical 
characteristics under suitable conditions. Ordinary differential equations (ODEs) are more accessible to solve 
analytically, but partial differential equations (PDEs), especially nonlinear equations, are more challenging. PDEs 
typically convert to ODEs when they seek explicit solutions using the Ansatz (direct) and Symmetry techniques. 
To verify correctness and compare numerical systems, exact solutions are helpful.

To create a flow in a domain, air must be replaced by water in soils (and foams) or vice versa in fluid recovery 
operations. Newton’s law of viscosity, which stipulates that the shear stress between adjacent fluid layers is pro-
portional to the velocity gradient between the two layers, is not followed by non-Newtonian fluids. Newtonian 
fluids have a constant viscosity regardless of the force applied. Conversely, non-Newtonian fluids can experience 
variations in density due to various factors, including shear rate or stress. Because of their varied behavior, non-
Newtonian fluids cannot all be described by a single model. Several models relate their viscosity to pressure or 
shear  rate1–5. Both systems have equivalent principles regulating fluid flow. However, depending on the medium 
under consideration, these laws may be represented differently or use different terminology. Although flow in soil 
and flow in foam research disciplines are concerned with comparable physical  laws6,7, communication between 
them has been hampered by a lack of ordinary language. A frequent and intriguing example of travelling waves 
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in nature is water waves. The water surface oscillates up and down as a travelling wave travels across it, generating 
wave patterns that move over the surface. The characteristics of water waves, such as their wavelength, frequency, 
speed, and amplitude, may be used to define how they behave. The wave equation, a partial differential equation 
that describes the correlation between wave motion, time, and space, controls the dynamics of water waves. The 
one-dimensional linear shallow water wave equation, often known as the Korteweg-de Vries equation (KdV)8, 
is the traditional wave equation for small amplitude waves in shallow water. It defines waves that may move 
without altering form and have a single wave profile. Waves in water often disperse, which means they move at 
varying rates depending on their wavelength. Shorter waves with higher frequencies move more slowly than 
longer waves with lower frequencies.

The interactions between the waves and the surface tension and depth of the water cause this dispersion. The 
dynamics of water waves can become nonlinear for huge amplitude waves over long  distances9. Due to nonlinear 
wave dynamics, complex patterns like solitons and rogue waves can arise. Waves may grow steep and unstable 
as they go closer to shallow water, finally breaking into choppy whitecaps. Near shorelines, this phenomenon 
is pronounced. Figure 1 represents the dynamics of water waves. In general, water waves display a wide range 
of characteristics, making them an important topic of interest and research in fluid dynamics, oceanography, 
and other related ones. Numerous variables affect their dynamic behavior, including wave characteristics, water 
depth, and environmental  interactions10,11.

A family of nonlinear partial differential equations called the Wazwaz-Benjamin-Bona-Mahony (WBBM) 
equations is used to simulate the behavior of water waves. They expand the Benjamin-Bona-Mahony (BBM) 
equation, which explains long waves in the context of weak dispersiveness and nonlinearity. Wave propaga-
tion non-locality and memory effects are taken into consideration in the WBBM equations through the use of 
fractional derivatives. The fractional Wazwaz-BBM (WBBM) equation is an extension proposed by Wazwaz to 
incorporate fractional calculus into the BBM equation. The specific form of the 3D fractional WBBM equations 
would depend on the dimensionality and the particular fractional derivative operator used. In 2017,  Wazwaz12 
proclaimed a distinctive structure for the 3D architecture of the upgraded BBM equations, a framework, and 
an overview of differing thoughts used in the  literature8,13–17. The subsequent are the new equations, frequently 
known as the WBBM equations:

These particular fractional equations are frequently encountered in investigating complex phenomena in 
various scientific disciplines, including fluid dynamics, nonlinear waves, and other areas where long-range inter-
actions or fractal-like behavior are present. Therefore, those, as mentioned earlier, recently discovered equations 
will be explored in this work, assuming that challenges in higher dimensions have more incredible applications 
in authentic situations and that solutions assist in adopting the extended belated physics models.

The main goal of this work is to directly apply the RSGE method to the dynamical analysis of new 3D 
fractional WBBM equations. There are several benefits when comparing our strategy to the other approaches. 

(1)ux + u2uy + ut − uxzt = 0,

(2)uz + u2ux + ut − uxyt = 0,

(3)uy + u2uz + ut − uxxt = 0.

Figure 1.  Dynamics of water waves.
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Simply put, it employs a more structured technique and more steps to generate an algebraic system. It also 
automatically creates kink and singular soliton  solutions17–19. The principal important methodology of 
this method is too explicit the exact solutions of FNLEEs that satisfy the Nonlinear ODE of the form, 
U(ψ) =

∑N
i=1 tanh

i−1 ψ(ai sech ψ + ci tanhψ + a0)/
∑N

i=1 tanh
i−1 ψ(bi sech ψ + di tanhψ + b0) .  O u r 

method provides a more direct and concise approach to the exact travelling wave solution than the other exist-
ing systems. Some authors used this RSGE technique to determine the exact solution to multiple NLEEs in the 
deferential sense of derivative, such as Jumarie’s modified Riemann–Liouville derivatives, conformable deriva-
tives, and Kerr law nonlinearity. Nevertheless, no adequate studies utilizing this method have been conducted on 
our suggested WBBM equation. Here, the recently found exact solution of the WBBM equations is more accurate, 
efficient, and versatile enough to be used in many treatments in mathematical physics, engineering, and wave 
analysis. Thus, we can state that our proposed research is innovative in the sense of conformable derivatives as it 
employs the RSGE technique to dynamically analyze recently introduced WBBM equations. We presented the 
results using the mathematical software Mathematica by choosing appropriate values for the employed param-
eters and then employing illustrations to simplify the physical interpretation suitably.

Recent years have significantly increased interest in nonlinear fractional differential equations. The change in 
fractional calculus theory and the use of such shapes in various fields, including physics, engineering, and biology, 
depend  greatly20,21. To discriminate between different sorts of nonlinear circumstances in applied research and 
engineering, travelling wave solutions of nonlinear partial differential equations must be studied. Heat flow, shal-
low water waves, wave propagation, optical fibres, plasma physics, fluid mechanics, biology, electricity, chemical 
kinematics, and quantum theory are only a few examples of the numerous nonlinear wave techniques that have 
been employed in the past to illustrate different physics  issues22–24. Thus, to investigate these substances, scores 
of effective strategies have been recommended in the circulated works by scholars, namely the improved modi-
fied extended tanh-function  method17, the (G′/G,1/G)-expansion  technique15,25, the modified extended tanh-
function  method8,26,27, the (Gʹ/G2)-expansion  technique16,28, the advanced exp(− ∅(ξ))-expansion  method29–31, 
the tanh-coth  method32, the variational iteration  method33–35, the method of  characteristics36, the exp function 
 method37, the sine-Gordon expansion  method18, Wang’s Bäcklund transformation-based  method38, the new 
auxiliary equation  method19, the Hirota bilinear  method39–41, Soret and Dufour  effects42, Variational  method43, 
Deep Learning  approach44, Dixon resultant  method45, the three-dimensional molecular structure  model46, the 
Kudryashov  method47, etc.

The layout of the article is as follows: the critical stages of the chosen approaches are provided in Section 
"Introduction". In the section under "Rational sine-Gordon expansion method", we apply the most recent ver-
sion of the Rational sine-Gordon expansion method to our chosen models, the 3D fractional WBBM equations. 
Results analysis is offered in the section under "Result and discussion". The "Conclusion" section contains the 
primary synopsis of our new work.

Conformable fractional derivative
Some  researchers48–55 have utilized the above description of fractional derivatives and several of their attributes 
to investigate exact solutions for numerous fractional differential equations. Significant research on conformable 
derivatives is being conducted and should be emphasized  here54. Recently, the conformable derivative’s geometric 
and physical representations have been made more  apparent55. To describe the physical ecosphere, they presented 
the general conformable derivative, a family of innovative fractional derivatives having geometrical and physical 
implications. It is the thorough process for the conformable derivative that  Khalil56 proposed. This section briefly 
discussesonformable fractional derivatives and their  properties56–58.

Definition 1.56 Based on the independent variable t, the conformable derivative of order γ is defined as

for persistence z = z(t) : [0,∞) → R . This well-known fractional derivative is achieved by satisfying some 
known necessary conditions. If y is γ-differential in some (0, ρ), ρ > 0, and then lim

t→0+
D
γ
t

(
y(t)

)
 exists, then

Theorem 1.57 Suppose the derivative order γ ∈ (0, 1] , and undertake that for all positive values of t, µ = µ(t) 
and σ = σ(t) are γ-differentiable. Then,

• D
γ
t (m1µ+m2σ) = m1D

γ
t (µ)+m2D

γ
t (σ),

• D
γ
t (t

p) = ptp−γ, ∀p ∈ R,
• D

γ
t (β) = 0,∀u(t) = β,

• D
γ
t (µσ) = µD

γ
t (σ)+ σD

γ
t (µ),

• D
γ
t

(
µ
σ

)
= fD

γ
t (µ)−µD

γ
t (σ)

σ2
,

• D
γ
t (µ)(t) = t1−γ dµ

dt .

for all c1, c2 ∈ R . The conformable differential operator follows some vital essential stuff similar to the chain rule, 
Laplace transforms, and Taylor series  expansion58.

Theorem 2. Consider µ = µ(t) be a γ conformable differentiable function and undertake that f  is differenti-
able and precise in various g . Then,

(4)D
γ
t (z(t)) = lim

ρ→0

z
(
t+ ρt1−γ

)
− z(t)

ρ
, t > 0, γ ∈ (0,1].

D
γ
t (z(0)) = lim

t→0+
D
γ
t (z(t)).
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The conformable fractional derivative has two benefits over conventional fractional derivatives. First, the 
definition of the conformable fractional derivative is likely accurate. It satisfies most conditions for the classical 
integral derivative, such as linearity, Rolle’s theorem, mean value theorem, product rule, quotient rule, power rule, 
and chain rule. Second, for modelling various physical problems, the conformable derivative is far more helpful 
than the Riemann–Liouville or Caputo fractional derivatives. This is because, compared to the latter two, the 
differential equations related to the conformable fractional derivative are more accessible to solve theoretically. 
Several academics have previously employed conformable fractional derivatives in various fields and created 
numerous matching strategies.

Rational sine‑Gordon expansion method
The consistent fractional form u(x, t) = U(ψ) with ψ = a

(
x − vtγ

γ

)
 The unadventurous wave  renovation18,59,60 

decreases the fractional Sine-Gordon equation in one dimension of the form

To the ODE

where v indicates the velocity of the travelling wave illustrated in the transform.  Reference32 Some simplifica-
tions lead

where C is an integrating constant and is supposed to be zero for simplicity. Let w(ψ) = U(ψ)
2  and b2 = m2

a2(1−v2)
 . 

Then Eq. (8) is converted to

Set b = 1 in Eq. (9). Then Eq. (9) yields two significant relations.

or

where d is a nonzero integrating constant. Then, the fractional PDE of the form

can be reduced to an ODE

by using an equivalent wave transform u(x, t) = U(ψ) where the transform variable ψ is specified as a
(
x − vtγ

α

)
 . 

Then, the expected solution (Eq. 13) of the form

can be written as

use Eqs. (10) and (11), Eq. (9) is a bivariate polynomial function in tanhψ and sechψ , as is evident. Due to the 
relationships tanh2ψ+ sech2ψ = 1 , it is essential to note that this polynomial must be linear in one of these 
auxiliary functions. In this case, sechψ . We can now see that a subset of rational functions comprises polynomial 
functions. As a result, the latter is often far superior to the former in tasks like interpolation or approximating 

(5)D
γ
t (µ ◦ σ)(t) = t1−γσ′(t)µ′(σ(t)),

(6)∂2u

∂x2
− D2α

t u = m2sinu, m is constant.

(7)
d2U

dψ2
=

m2

a2
(
1− v2

) sin U ,

(8)

(
d
(
U
2

)

dψ

)2

=
m2

a2
(
1− v2

) sin2U
2
+ C,

(9)
d(w)

dψ
= b sin w.

(10)sin w(ψ) =
2deψ

d2e2ψ + 1

∣∣∣∣
d=1

= sech ψ ,

(11)cos w(ψ) =
d2e2ψ − 1

d2e2ψ + 1

∣∣∣∣
d=1

= tanh ψ ,

(12)P
(
u,D

γ
t u, ux ,D

2γ
tt , uxx , . . .

)
= 0,

(13)P̃ =
(
U ,U ′,U ′′, . . .

)
= 0,

(14)U(ψ) = A0 +
s∑

i=1

tanhi−1(ψ)(Bi sech ψ + Ai tanh ψ),

(15)U(w) = A0 +
s∑

i=1

cosi−1(w)(Bi sin w + Ai cos w).
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 functions61. It is simple to assume that the same will hold while attempting to solve nonlinear evolution equa-
tions. The concept of rational expansion has been utilized in the literature before, but only in the context of one 
auxiliary  function61–63. In this study, we propose expanding this concept to two additional tasks.

in place of Eq. (14), which can also be written as

owing to Eqs. (16, 17). Setting up index limits with a uniform balance of the conditions in Eq. (13) is the first 
step in the procedure. The projected solution (Eq. 16), engaging in Eq. (13), is replaced, and the coefficient of 
powers of sin and cos is assumed to be zero. Next, an explanation of the ensuing algebraic system is provided 
for the coefficients a0, a1, b0, b1, . . . . If there are any answers, they are put together using Eqs. (10, 11) and ψ.

Application of the RSGE method
The 1st WBBM equation
Consider the 3D fractional WBBM equation as follows:

Utilizing the subsequent wave transformation

on Eq. (18), we get

Integrating Eq. (19) with respect to ψ , we get

where c1 is an integrating constant. We set c1 = 0 for simplicity, we get,

With the integrity of homogeneous evaluating in Eq. (20), we find that N = 1 . Thus, our endorsed technique 
allows us to use the supplementary solution of the form:

Now employing the value of U ,U ′′ and U3 in Eq. (20) as well as comparing the coefficients of like power of 
γ from the above equation, we get the SAE as follows:

Explaining the SAE, we acquire the subsequent solution sets,

(16)U(ψ) =
∑

N

i=1 tanh
i−1ψ(ai sech ψ + ci tanh ψ + a0)∑

N

i=1 tanh
i−1ψ(bi sech ψ + ditanh ψ + b0)

,

(17)U(w) =
∑N

i=1 cos
i−1w(ai sinw+ ci cosw+ a0)∑N

i=1 cos
i−1 w (bi sinw+ di cosw+ b0)

,

(18)D
γ
t u+ Dγ

xu+ Dγ
yu

3 − D
3γ
xztu = 0.

u
(
x, y, z, t

)
= U (ψ), where ψ = p

xγ

γ
+ q

yγ

γ
+ r

zγ

γ
− s

tγ

γ
.

(19)
(
−s+ p

)
U′ + q

(
U3

)′ + p r s U′′ = 0.

(
−s+ p

)
U+ q U3 + p r s U′′ + c1 = 0,

(20)
(
−s+ p

)
U+ q U3 + p r s U′′ = 0.

(21)U(w) =
a0 + a1sinw + c1cosw

b0 + b1sinw + d1cosw
,

(22)

qa30 + 3qa0a
2
1 + pa0b

2
0 − sa0b

2
0 + 2pa1b0b1 − 2sa1b0b1 − prsa1b0b1 + pa0b

2
1 − sa0b

2
1

−prsa0b
2
1 − 2prsb0c1d1 + 2prsa0d

2
1 = 0,

3qa20c1 + 3qa21c1 + pb20c1 − sb20c1 − 2prsb20c1 + pb21c1 − sb21c1 + prsb21c1 + 2pa0b0d1
−2sa0b0d1 + prsa0b0d1 + 2pa1b1d1 − 2sa1b1d1 − prsa1b1d1 = 0,
−3qa0a

2
1 − 2pa1b0b1 + 2sa1b0b1 + prsa1b0b1 − pa0b

2
1 + sa0b

2
1 + 3prsa0b

2
1 + 3qa0c

2
1

+2pb0c1d1 − 2sb0c1d1 + 2prsb0c1d1 + pa0d
2
1 − sa0d

2
1 − 3prsa0d

2
1 = 0,

−3qa21c1 + 2prsb20c1 − pb21c1 + sb21c1 − prsb21c1 + qc31 − prsa0b0d1 − 2pa1b1d1
+2sa1b1d1 + prsa1b1d1 + pc1d

2
1 − sc1d

2
1 = 0,

−2prsa0b
2
1 + prsa0d

2
1 = 0,

qa30 + 3qa0a
2
1 + pa0b

2
0 − sa0b

2
0 + 2pa1b0b1 − 2sa1b0b1 − prsa1b0b1 + pa0b

2
1 − sa0b

2
1

−prsa0b
2
1 − 2prsb0c1d1 + 2prsa0d

2
1 = 0,

3qa20a1 + qa31 + pa1b
2
0 − sa1b

2
0 − prsa1b

2
0 + 2pa0b0b1 − 2sa0b0b1 − prsa0b0b1 + pa1b

2
1

−sa1b
2
1 − 2prsb1c1d1 + 2prsa1d

2
1 = 0,

6qa0a1c1 + 2pb0b1c1 − 2sb0b1c1 − prsb0b1c1 + 2pa1b0d1 − 2sa1b0d1 + 2prsa1b0d1
+2pa0b1d1 − 2sa0b1d1 − 3prsa0b1d1 = 0,
−qa31 + 2prsa1b

2
0 − pa1b

2
1 + sa1b

2
1 + 3qa1c

2
1 + 2pb1c1d1 − 2sb1c1d1 + prsb1c1d1 + pa1d

2
1

−sa1d
2
1 − prsa1d

2
1 = 0,

2prsa0b1d1 = 0.
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Concerning these solution sets, we acquired the exact solutions of the equation

The 2nd WBBM equation
The second WBBM equation has the following solution sets when the process mentioned above is followed:

p = −
2s

−2+ rs
, a0 = 0, a1 = ±

i
√
rs
√

−b20 + b21
√
2q− qrs

, c1 = ±
√
rsb0√

−2q+ qrs
, d1 = 0.

p =
s

1+ rs
, a0 = 0, a1 = ±

√
2
√
rs2b20 − rs2d21
√
q+ qrs

, b1 = 0, c1 = 0.

p = −
2s

−2+ rs
, a0 = 0, a1 = ±

√
rsb0√

2q− qrs
, b1 = 0, c1 = ±

√
rsb0√

−2q+ qrs
, d1 = 0.

p = −
2s

−2+ rs
, a0 = 0, a1 = 0, b0 = ±b1, c1 = ±

√
rsb1√

−2q+ qrs
, d1 = 0.

p =
s

1+ rs
, a0 = 0, a1 = ±

√
2
√
rsd1√−q− qrs

, b0 = 0, b1 = 0, c1 = 0.

p =
s

1+ rs
, a0 = 0, a1 = ±

√
2
√
rsb0√

q+ qrs
, b1 = 0, c1 = 0, d1 = 0.

p = −
s

−1+ 2rs
, a0 = 0, a1 = 0, b1 = 0, c1 = ±

√
2
√
rsb0√

−q+ 2qrs
, d1 = 0.

U1,2,3,4

(
x, y, z, t

)
=

√
rs

(
± iSech[ψ]

√
−b20+b21√

2q−qrs
± b0Tanh[ψ]√

q(−2+rs)

)

b0 + Sech[ψ]b1
;ψ = −

stγ

γ
−

2sxγ

(−2+ rs)γ
+

qyγ

γ
+

rzγ

γ
.

U5,6

(
x, y, z, t

)
= ±

√
2Sech[ψ]

√
rs2

(
b20 − d21

)

√
q+ qrs(b0 + d1Tanh[ψ])

;ψ = −
stγ

γ
+

sxγ

(1+ rs)γ
+

qyγ

γ
+

rzγ

γ
.

U7,8,9,10

(
x, y, z, t

)
= ±

√
rsSech[ψ]

(√
q(−2+ rs)±

√
−q(−2+ rs)Sinh[ψ]

)
√

−q2(−2+ rs)2
;ψ = −

stγ

γ
−

2sxγ

(−2+ rs)γ
+

qyγ

γ
+

rzγ

γ
.

U11,12

(
x, y, z, t

)
= ±

√
rsCoth

[
ψ
2

]

√
q(−2+ rs)

;ψ = −
stγ

γ
−

2sxγ

(−2+ rs)γ
+

qyγ

γ
+

rzγ

γ
.

U13,14

(
x, y, z, t

)
= ±

√
2
√
rsCsch[ψ]√

−q(1+ rs)
;ψ = −

stγ

γ
+

sxγ

(1+ rs)γ
+

qyγ

γ
+

rzγ

γ
.

U15,16

(
x, y, z, t

)
= ±

√
2
√
rsSech[ψ]

√
q+ qrs

;ψ = −
stγ

γ
+

sxγ

(1+ rs)γ
+

qyγ

γ
+

rzγ

γ
.

U17,18

(
x, y, z, t

)
= ±

√
2
√
rsTanh[ψ]√

q(−1+ 2rs)
;ψ = −

stγ

γ
−

sxγ

(−1+ 2rs)γ
+

qyγ

γ
+

rzγ

γ
.

p =
2(r − s)

qs
, a0 = 0, a1 = ±

√
qsb20 − qsb21√

2
, c1 = ±

i
√
q
√
sb0√
2

, d1 = 0.

p =
r − s

2qs
, a0 = −i

√
2
√
q
√
sd1, a1 = 0, b1 = 0, c1 = −i

√
2
√
q
√
sb0.
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Concerning these solution sets, we acquired the exact solutions of the equation

p =
r − s

2qs
, a0 = i

√
2
√
q
√
sd1, a1 = 0, b1 = 0, c1 = i

√
2
√
q
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The 3rd WBBM equation
The third WBBM equation has the following solution sets when the process mentioned above is followed:
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Concerning these solution sets, we acquired the exact solutions of the equation
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Result and discussion
In this section, recently identified exact solutions to the family of 3D fractional WBBM equations are defined 
using physical and pictorial examples. Visualization is the ideal method for illustrating the entire crucial struc-
ture of real-life situations. Additionally, we took advantage of the computational bundle MATLAB capabilities 
by choosing appropriate fractional values of γ . We charged several exorbitant fees for the unknown aspects to 
evaluate its standard attributes. Figures 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 and 13 show the proven equations in detail.
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Figure 2.  Multiple soliton shapes of the real part of U1

(
x, y, z, t

)
 for the parameters q = 0.5, r = −0.5, s = 0.5,

b0 = 1, b1 = 0.1, y = 0, z = 0, γ = 0.3, 0.6, 1.
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Physical explanation
A travelling wave that develops on the surface of an ocean, lake, or river is an iconic illustration of this type of 
wave. Gravity and surface tension forces work together to control the velocity of water waves, which results in 
their behavior. Imagine a tranquil body of water at rest—moving waveforms when there is an obstruction on the 
water’s surface. Numerous things might contribute to this disturbance, such as the wind blowing over the water, 
a foreign object being dumped, and seismic activity. Let’s take the example of the wind creating pond ripples. 
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Figure 3.  Multiple Kink-soliton shapes of the imaginary part of U1

(
x, y, z, t

)
 for the parameters q = 0.5,

r = −0.5, s = 0.5, b0 = 1, b1 = 0.1, y = 0, z = 0, γ = 0.3, 0.6, 1.
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Figure 4.  The breather-kink shape of the imaginary part of U5

(
x, y, z, t

)
 for the parameters q = 0.5, r = −0.5,

s = 0.5, b0 = 1, d1 = 0.1, y = 0, z = 0, γ = 0.3, 0.6, 1.
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Surface, or surface tension, is a cohesive force that pulls water molecules together at a body of water’s surface. 
Gravity is also pushing the water downhill at the same time.

When these two forces interact, restoring power is produced that tends to return the water’s surface to its 
equilibrium position. As the wind blows over the water, it transfers energy to the surface, forcing some water 
molecules to flow upward to form peaks known as crests and downward to create troughs. The movement of water 
molecules up and down causes oscillations all over the water’s surface, which is how the disturbance spreads. 
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Figure 5.  Kink-soliton shape of the real part of U7

(
x, y, z, t

)
 for the parameters q = 0.5, r = −0.5, s = 0.5,

y = 0, z = 0, γ = 0.3, 0.6, 1.
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Figure 6.  Soliton shape of the imaginary part of U7

(
x, y, z, t

)
 for the parameters q = 0.5, r = −0.5, s = 0.5,

y = 0, z = 0, γ = 0.3, 0.6, 1.
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Water molecules close to one another interact, exchanging momentum and energy. These oscillations are spread 
throughout the water by the cohesive forces (surface tension) and gravity in conjunction with slight horizontal 
water molecule displacement. The wave’s wavelength and water depth are two variables that affect the pace at 
which a water wave moves. The acceleration caused by gravity and the depth of the water are the main factors 
that affect the wave speed of deep-water waves. The movement of the water wave moves energy from one area 
to another. Without moving a sizable quantity of water mass in the direction of propagation, the wave spreads 
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Figure 7.  Multiple soliton shapes of the imaginary part of U13

(
x, y, z, t

)
 for the parameters q = 0.5, r = −0.5,

s = 0.5, y = 0, z = 0, γ = 0.3, 0.6, 1.
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Figure 8.  The lump-kink shape of the imaginary part of U17

(
x, y, z, t

)
 for the parameters q = 0.5, r = −0.5,

y = 0, z = 0, γ = 0.3, 0.6, 1.
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Figure 9.  Kink-double soliton shape of the imaginary part of U31

(
x, y, z, t

)
 for the parameters q = 0.5,

r = −0.5, s = 0.5, y = 0, z = 0, γ = 0.3, 0.6, 1.
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Figure 10.  Kink shape of the imaginary part of U36

(
x, y, z, t

)
 for the parameters q = 0.5, r = −0.5, s = 0.5,

y = 0, z = 0, γ = 0.3, 0.6, 1.
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the significance of the original disturbance over the water’s surface. Water waves may interact with other waves 
and cause interference patterns. This is known as dissipation. While destructive interference can result in wave 
cancellation, constructive interference increases wave amplitudes, resulting in more giant waves. Long-distance 
water waves eventually lose energy due to friction and viscosity as they move through the water, which causes 
the waves to dissipate. Water waves are essential in coastal dynamics, maritime transportation, and engineering. 
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Figure 11.  The cusp shape of the imaginary part of U38

(
x, y, z, t

)
 for the parameters q = 0.5, r = −0.5,

s = 0.5, y = 0, z = 0, γ = 0.3, 0.6, 1.
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Figure 12.  Kink-soliton shape of the imaginary part of U65

(
x, y, z, t

)
 for the parameters p = 0.5, q = 0.5,

r = −0.5, y = 0, z = 0, γ = 0.3, 0.6, 1.
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Foreseeing coastal erosion, constructing maritime constructions, and ensuring marine safety depend on under-
standing how ocean waves behave.

Graphical explanation
The various forms of the 3D fractional WBBM equation solution are represented in Figs. 2, 3, 4, 5, 6, 7, 8, 9, 10, 
11, 12 and 13. For each figure, the first row stands for the 3D surface plot, and the second stands for the contour 
plot. Here, we displayed the contour and 3D surface plots of many solutions. We have established some new 
solutions: kink shape, multiple kink shape, soliton shape, singular soliton shape, multiple soliton shape, dark 
soliton shape, double soliton shape, lump shape, etc. All the figures have been changed for the different values 
of γ , (0.3 ≤ γ ≤ 1) . For changing the value of γ from 0.3 to 1 , sometimes the solution shapes turn into singular 
soliton shapes to multiple soliton shapes, singular kink-soliton shapes to multiple kink-soliton shapes, soliton 
shapes to dark soliton shapes, and so on. The nonlinearity of the wave causes its profile to vary over time as it 
passes through the medium, but dispersion balances this change and keeps the wave from spreading out or los-
ing its form. In sum, solitary waves are fascinating phenomena that result from a careful balancing act between 
dispersion and nonlinearity in a medium. These waves are essential in many branches of physics and engineering 
because of their ability to keep their form and travel great distances without dispersing or losing energy, thanks 
to this equilibrium.

Conclusion
Using the rational sine-Gordon expansion method, we identified the travelling wave solution for the 3D frac-
tional WBBM issues family. The rational sine-Gordon expansion is a well-proven method for solving nonlinear 
partial differential equations. Numerous illustrated solitons, including singular, singular kink, periodic, lump, 
and asymptotic type solitons built using exponential, hyperbolic, and trigonometric structures, may be seen when 
the wave profile is examined for the generated generic parametric values. We have notably emphasized how the 
values or quantities of changes for different values of only one parameter ( γ ) impact the dynamic behavior of the 
water waves. Exponential and trigonometric functions are used to express the determined solutions. The physical 
meaning of the travelling wave solutions in this study will be explained by the space–time fractional NLS+, NLS−, 
and UNLS models from nonlinear optics, fluid mechanics, quantum theory, and other theoretical and numerical 
disciplines. This approach applies to intricate nonlinear physics, engineering, and applied mathematics models. 
It’s possible that not every kind of nonlinear problem can be solved using this technique. It may not be able to 
solve solutions for more broad or intricate nonlinear systems, but it functions effectively for some particular types 
of equations. Use alternate techniques to validate the derived answers, such as asymptotic analysis, numerical 
simulations, or, if available, comparison with experimental data. This contributes to ensuring the dependability 
and correctness of the produced solutions. As a component of a more comprehensive toolset, apply the logical 
Sine-Gordon expansion approach. Combine it with additional perturbation, analytical, or numerical techniques 
to counterbalance its shortcomings and strengthen its points.
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Figure 13.  Dark-soliton shape of the imaginary part of U73

(
x, y, z, t

)
 for the parameters p = 0.5, q = 0.5,

r = −0.5, y = 0, z = 0, γ = 0.3, 0.6, 1.
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