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A disulfidptosis‑related lncRNA 
signature for predicting prognosis 
and evaluating the tumor immune 
microenvironment of lung 
adenocarcinoma
Zipei Song 1,4, Xincen Cao 1,4, Xiaokun Wang 2,4, Yuting Li 3,4, Weiran Zhang 1, Yuheng Wang 1 & 
Liang Chen 1*

As a novel form of regulated cell death (RCD), disulfidptosis offering a significant opportunity in 
better understanding of tumor pathogenesis and therapeutic strategies. Long non‑coding RNAs 
(lncRNAs) regulate the biology functions of tumor cells by engaging with a range of targets. However, 
the prognostic value of disulfidptosis‑related lncRNAs (DRlncRNAs) in lung adenocarcinoma (LUAD) 
remains unclear. Therefore, our study aimed at establishing a prognostic model for LUAD patients 
based on DRlncRNAs. RNA‑seq data and clinical information were obtained from The Cancer Genome 
Atlas (TCGA) database. Subsequently, a prognostic model based on DRlncRNAs was constructed using 
LASSO and COX regression analysis. Patients were stratified into high‑ and low‑risk groups based on 
their risk scores. Differences between the high‑risk and low‑risk groups were investigated in terms 
of overall survival (OS), functional enrichment, tumor immune microenvironment (TIME), somatic 
mutations, and drug sensitivity. Finally, the role of lncRNA GSEC in LUAD was validated through 
in vitro experiments. Using the prognostic model consists of 5 DRlncRNAs (AL365181.2, GSEC, 
AC093673.1, AC012615.1, AL606834.1), the low‑risk group exhibited a markedly superior survival in 
comparison to the high‑risk group. The significant differences were observed among patients from 
different risk groups in OS, immune cell infiltration, immune checkpoint expression, immunotherapy 
response, and mutation landscape. Experimental results from cellular studies demonstrate the 
knockdown of lncRNA GSEC leading to a significant reduction in the proliferation and migration 
abilities of LUAD cells. Our prognostic model, constructed using 5 DRlncRNAs, exhibited the 
capacity to independently predict the survival of LUAD patients, providing the potentially significant 
assistance in prognosis prediction, and treatment effects optimization. Moreover, our study 
established a foundation for further research on disulfidptosis in LUAD and proposed new perspectives 
for the treatment of LUAD.
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Lung cancer, a globally malignant neoplasm, stands as the leading contributor to cancer-related  mortality1. 
Conventionally, it is classified into two histopathological subtypes: non-small cell lung cancer (NSCLC) and 
small cell lung cancer (SCLC), with NSCLC accounting for approximately 85% of the total  incidence2,3. Among 
NSCLC cases, the most common pathological subtype is lung adenocarcinoma (LUAD). The choice of treat-
ment for LUAD primarily depends on its TNM stage, with surgical resection being the preferred approach for 
early-stage patients. However, patients with advanced LUAD have a poor prognosis, even with targeted  therapy4. 
Therefore, the development of reliable biomarkers and prognostic indicators for early LUAD detection is con-
sidered essential to enhance patient outcomes.
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Regulated cell death (RCD) plays a pivotal role in both tumorigenesis and the progression of tumors. Further-
more, research focused on Regulatory cell death (RCD) contributed significantly to our understanding of tumor 
pathogenesis and provided essential strategies for tumor  treatments5,6. It has been reported that the biological 
behavior and therapeutic response of LUAD were affected by kinds of RCD, such as apoptosis, necroptosis, 
pyroptosis, ferroptosis and cuproptosis and so  on7. Disulfidptosis, recently identified as a novel subtype of RCD, 
stands apart from other categories of RCD, such as ferroptosis and cuproptosis. Liu et al. observed cancer cells 
with high SLC7A11 expression, induced by glucose starvation, resisted classification within established cell death 
categories. This novel form of cell death was unresponsive to common cell death inhibitory drugs and resisted 
the suppression of key genes associated with ferroptosis or apoptosis. Nevertheless, the application of thiol oxi-
dizers, such as diamide and diethyl maleate, significantly accelerated this unique cell death process, leading to 
its identification as  disulfidptosis8. Additionally, the tumor microenvironment (TME) assumes an essential part 
in the tumorigenesis, immune evasion, and the responses of LUAD  treatment9. Disulfidptosis has also shown 
potential effects on immune  infiltration10, however, the specific role of disulfidptosis in LUAD remains to be 
further clarified. LncRNAs are defined as transcripts exceeding 200 nucleotides in length that do not code for 
 proteins11. Increasing evidence highlights the significant role of lncRNAs in LUAD progression and resistance to 
therapies through their regulation of  RCD12,13. However, the mechanisms through which lncRNAs may modulate 
disulfidptosis in the context of LUAD await further elucidation.

In this research, we conducted a comprehensive exploration aimed at assessing the clinical significance of 
disulfidoptosis and lncRNAs in LUAD. Firstly, we established a disulfidoptosis-related lncRNA-based signature, 
denoted as DRLS, by employing LASSO analysis and Cox analysis. Secondly, a series of analyses were conducted 
to investigate functional enrichment, immune cell infiltration, immunotherapeutic potential, drug sensitivity, 
and somatic genomic mutations among patients characterized by different DRLS scores. Subsequently, cellular 
experiments were conducted to validate the differential expression of five lncRNAs which were utilized in the 
construction of DRLS. Finally, the results of in vitro experiments confirmed the inhibitory impacts on LUAD 
cell proliferation and migration upon GSEC knockdown. In summary, our study introduced a novel prognostic 
indicator for LUAD patients and provided valuable guidance for therapeutic decision-making, meanwhile shed 
light on the potential mechanisms involving DRlncRNAs in LUAD.

Materials and methods
Data acquirement and processing
The transcriptomic data, somatic mutation data, and clinical information of LUAD were obtained from the Can-
cer Genome Atlas (TCGA) database (http:// portal. gdc. cancer. gov/) and then under pretreatment for subsequent 
analyzes. The copy number variation (CNV) information was downloaded from Xena database (http:// xena. 
ucsc. edu/)14. Ultimately, a cohort consisted of 507 patients was included in our investigation and was randomly 
divided into the training set (355 patients) and testing set (152 patients) at a ratio of 7:3 using the R package 
“caret”. The comparative analysis of clinical information between these two sets was performed utilizing the 
chi-square test methodology.

Identification of disulfidptosis‑related lncRNAs
According to present  research8, 16 genes which implicated in disulfidptosis pathways were selected and denoted 
as disulfidptosis-related genes (DRGs) (Table S1). Utilizing a lncRNA annotation data from the GENCODE 
database (http:// www. genco degen es. org/), a comprehensive cohort of 16,876 lncRNAs linked to disulfidptosis 
processes was extracted by the use of the Perl programming language. Subsequently, a comprehensive set of 
104 lncRNAs associated with disulfidoptosis was identified and validated through Pearson’s correlation analysis 
(|Pearson R| > 0.4, P < 0.001).

Building and evaluating the DRLS
The training set served as the foundational basis for constructing the DRLS, while the testing and entire sets were 
employed to assess and validate the prediction accuracy of the DRLS. Prognostic lncRNAs were screened and 
examined through a series of analytical methodologies, encompassing univariate and multivariate Cox regres-
sion  analysis15, LASSO regression  analysis16, by utilizing the “glmnet” package. Additionally, the DRLS score for 
each LUAD patient was computed via the formula as follow:

Coef and Expr represent the coefficient and the DRlncRNAs expression respectively.
Patients in the training, testing as well as entire sets were respectively categorized to the low and high risk 

groups based on the DRLS score by using the “survminer” package. Subsequently, the Kaplan–Meier (K–M) 
analysis and log-rank test were employed for the assessment of disparities in overall survival (OS) among these 
two groups, along with using the “survival” package for statistical analyses. Receiver operating characteristic 
(ROC) was applied for the accuracy evaluation of the developed signature in predicting OS of LUAD patients 
using the package “timeROC”. Principal Component Analysis (PCA)17 and t-distributed Stochastic Neighbor 
Embedding (t-SNE) were applied for further facilitating dimensionality reduction and visualize the distinctions 
between these two risk groups. Furthermore, univariate and multivariate Cox regression analyses were employed 
to evaluate the independent prognostic significance of the DRLS score.

DRLS score =

∑
Coef lncRNAs × Expr lncRNAs.

http://portal.gdc.cancer.gov/
http://xena.ucsc.edu/
http://xena.ucsc.edu/
http://www.gencodegenes.org/
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Construction of the nomogram
Nomograms were constructed through the combination of the risk scores and clinical variables including gen-
der, age, and stage, with the aim of predicting the 1-, 3-, and 5-year OS of LUAD patients. The nomograms were 
developed using the “RMS” package. Furthermore, the Hosmer–Lemeshow test was applied to generate calibra-
tion plots for depicting the assistance between actual outcomes and predictive results. Additionally, we generated 
Decision Curve Analysis (DCA) curves and ROC curves for further validation of the nomogram.

Functional enrichment analysis
The “LIMMA” R package was employed to discern the differentially expressed genes (DEGs) in the high and low 
DRLS groups (|Log2FC| > 2.0, P < 0.05). Subsequently, functional analyses encompassing Gene Ontology (GO) 
and Kyoto Encyclopedia of Genes and Genomes (KEGG)18–20 were carried out utilizing the ‘ClusterProfiler’, ‘org.
Hs.eg.db’, ‘enrichplot’, ‘ggplot2’, ‘RColorBrewer’, ‘dplyr’, ‘ggpubr’, and ‘ComplexHeatmap’ packages. The “GSVA” R 
package was used to conduct Gene Set Variation Analysis (GSVA) for exploring potential variations in biological 
functions. The gene set files utilized for these analyses were acquired from the Molecular Signatures Database 
or previously published research. Additionally, the “c2.cp.kegg.Hs.symbols.gmt” gene set file was employed as a 
reference dataset for performing Gene Set Enrichment Analysis (GSEA).

Analysis of tumor mutation burden (TMB)
The “maftools” package was employed to quantify tumor mutation burden (TMB). Following this, all LUAD 
patients were stratified into two groups based on distinct TMB levels determined by the median TMB score. 
Additionally, the association between DRLS and TMB was investigated using Spearman correlation analysis.

Evaluation of the tumor immune microenvironment
Firstly, the “ESTIMATE” R package was applied for calculation of the immune scores, stromal scores, and 
ESTIMATE scores of each patient to evaluate the population of immune cells and stromal cells between distinct 
groups. And then, the relationship between the three scores and DRLS were further evaluated using Spearman 
correlation analysis. Subsequently, 8 distinct algorithms, including TIMER, xCELL, CIBERSORT, CIBERSORT-
ABS, quanTIseq, MCP-counter, EPIC, and ssGSEA were employed to access the infiltration of immune  cells21–28. 
Finally, the comparative analysis focused on the immune checkpoints (ICs) expression was conducted to explore 
the potential utility of DRLS in predicting responses to immunotherapy.

Immunotherapeutic response prediction and drug sensitivity
The tumor immune dysfunction and exclusion (TIDE) algorithm was accessed and utilized online (http:// tide. 
dfci. harva rd. edu/)29. The lower TIDE scores tend to associated with more favorable responses toward Immune 
Checkpoint Inhibitors (ICIs) therapy. Immunophenoscores (IPS) for LUAD were acquired from the Cancer 
Immunome Atlas (TCIA) database (http:// tcia. at/ home)30. The Cancer Drug Sensitivity Genomics of Cancer 
Cell Lines (GDSC) database (https:// www. ancer rxgene. org/) were applied for assessment of potential clinical 
application of DRLS, along with the calculation of half-maximal inhibitory concentration (IC50) for commonly 
used anti-tumor drugs using the R package “pRRophetic”. The predictive results were estimated applying ridge 
regression analysis, as for the prediction precision was measured via tenfold cross-validation.

Consensus clustering analysis
All patients diagnosed with LUAD were stratified into two clusters based on the expression levels of DRlncRNAs, 
employing the “ConsensusClusterPlus” R package. This classification aimed to investigate potential molecular 
subtypes. Following this, distinctions between the two clusters regarding survival rates, time-related parameters, 
immune infiltration, and response to immune therapy were assessed using the methodologies previously outlined.

Cell lines culture
The human bronchial epithelial cell line BEAS-2B and two human lung adenocarcinoma cell lines (A549 and 
H1975) were procured from the Institute of Biochemistry and Cell Biology of the Chinese Academy of Sciences. 
All the cells were cultured in RPMI-1640 medium (Gibco; Thermo Fisher Scientific, Inc.) supplemented with 10% 
fetal bovine serum (FBS) (Gibco; Thermo Fisher Scientific, Inc.) and 1% penicillin–streptomycin. The culture 
conditions were maintained at a temperature of 37 °C, a  CO2 concentration of 5%, and a humidity level of 95%.

Cell transfection
Short interfering RNAs (siRNAs) were synthesized by KeyGEN (Nanjing, China). Transfection procedures were 
performed employing Lipofectamine 2000 (Invitrogen, USA), following the manufacturer’s instructions. The 
assessment of transfection efficiency was conducted 48 h after transfection, utilizing quantitative real-time poly-
merase chain reaction (qRT-PCR). The target sequences are as follows:

GSEC si-1:5′-AGC TAC CAG ATT CCT TGT GAA-3′;
GSEC si-2:5′-GAC TGG CTG ATA TCC AAC TAT-3′.

RNA extraction and quantitative real‑time polymerase chain reaction assays
Total RNA was extracted from the cells using TRIzol® reagent (Invitrogen; Thermo Fisher Scientific, Inc.) in 
accordance with the manufacturer’s instructions. Subsequently, reverse transcription was carried out utilizing a 
PrimeScript Reverse Transcription Kit (Takara Bio, Inc.). For RT-qPCR, an StepOnePlus™ Real-Time PCR System 

http://tide.dfci.harvard.edu/
http://tide.dfci.harvard.edu/
http://tcia.at/home
https://www.ancerrxgene.org/


4

Vol:.(1234567890)

Scientific Reports |         (2024) 14:4621  | https://doi.org/10.1038/s41598-024-55201-7

www.nature.com/scientificreports/

(Applied Biosystems; Thermo Fisher Scientific, Inc.) was employed. The conditions for the RT-qPCR reaction 
involved an initial step at 95 °C for 5 min, following 40 cycles comprising denaturation at 95 °C for 15 s, anneal-
ing at 60 °C for 30 s, and extension at 72 °C for 45 s. The  2−ΔΔCt computing method was employed to calculate 
the relative mRNA expression, which was normalized using β-actin as a reference. All reactions were conducted 
in triplicate. The gene primers applied within the study are as follows:

AL365181.2  F:5′-ACA CTT GGC CAT ATG TGT CTTC-3′;

  R:5′-TGA GAC AGG AGG TTC TAC CTGA-3′;
GSEC  F:5′-CTG AGC TAC CAG ATT CCT TGTG-3′;

  R:5′-GCT CAT CTG CAG AAG GTC TAAG-3′;
AC093673.1  F:5′-CAA ATC CGG CTA CAC TCT ACTG-3′;

  R:5′-CAA CCA GAT CTG ACA CCA GTTT-3′;
AC012615.1  F:5′-TGT GTT CAG GTG CAC AGA GTAG-3′;

  R:5′-GCC CCA AGT AAA GTA ACT GACC-3′;
AL606834.1  F:5′-ACA AAG GAG AGG GAA GAG TCAG-3′;

  R:5′-ATA TAG GTG GGA AAG GTG AACG-3′.

Cell counting kit‑8 (CCK‑8) experiment
The CCK-8 assay was conducted employing CCK-8 solution (Dojindo Laboratories, Inc.), in strict accordance 
with the manufacturer’s instructions. Cells were seeded into 96-well plates at a density of 2 ×  103 cells/100 µl 
per well. Following incubation periods of 0, 24, 48, 72, or 96 h, 10 µl CCK-8 per well solution was added to the 
96-well plates to measure the relative number of viable cells, with the absorbance at 450 nm was evaluated by a 
microplate reader.

Colony formation
In the colony formation assay, LUAD cells were seeded in 6-well plates at a density of 1 ×  103 cells/well. Subse-
quently, these plates were incubated at 37 °C with a 5%  CO2 for a duration of 14 days. Following the incubation 
period, colonies were fixed using 4% paraformaldehyde and stained with 0.1% crystal violet obtained from 
Beyotime Institute of Biotechnology. The population of colonies in each well was counted, with each colony 
comprising more than 50 cells. The experiments were performed in triplicate.

Wound‑healing assay
LUAD cells were seeded in 6-well plates when the concentration reached 90%. A linear scratch wound was gener-
ated within the monolayers of cells using a 20 µl pipette tip. Subsequently, cells were cultured within an FBS-free 
medium and followed by carefully washing with PBS to remove debris and suspended cells. The images of each 
wound were recorded at 0 and 36 h by the use of an inverted microscope.

Transwell assay
Transwell chambers (8-µm pore size; Corning, Inc.) were applied for the migratory capabilities evaluation of 
LUAD cells. In each upper Transwell chamber, 4 ×  104 cells were seeded with 300 µl of serum-free medium, while 
the lower chamber was filled with 700 µl of RPMI-1640 medium supplemented with 10% FBS. After a 2-day 
incubation period, cells were fixed using 4% paraformaldehyde and subsequently stained with 0.1% crystal violet 
obtained from Beyotime Institute of Biotechnology. Non-migratory cells residing on the upper insert chamber 
membrane were carefully eliminated using a cotton swab. Following this, images of the stained cells were acquired 
using an inverted microscope. Cell counts were then performed in five randomly selected fields for the evaluation 
of the LUAD cells migratory potential. All experiments were replicated in triplicate.

Statistical analysis
Statistical analyses were conducted using the R, Perl, and GraphPad Prism 8 platforms. Group differences were 
assessed using Student’s t-test and the Wilcoxon rank sum test. The association between two variables was 
evaluated using Pearson’s and Spearman’s correlation methodologies. A significance threshold of P < 0.05 was 
considered indicative of statistical significance in this study.

Results
The landscape of DRGs and DRlncRNAs in LUAD
According to the research focused on disulfidptosis, there are 16 key genes which take an important part in the 
process of disulfidptosis, therefore we selected these 16 disulfidptosis-related genes (DRGs) for further study, 
Fig. 1 depicted the flowchart of this research.
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Firstly, we studied the expression levels of 16 DRGs in 58 normal samples and 524 LUAD tumor samples 
from TCGA database (Fig. 2A). It was observed that, except for FLNB, the remaining 15 DRGs displayed dif-
ferential expression between tumor and normal tissues. Subsequently, protein–protein interaction (PPI) net-
works for the 16 DRGs were constructed applying the String website and Cytoscape software. And the findings 
revealed tight interactions among these 16 DRGs (Fig. 2B). In addition, we also investigated the frequency of 
copy number variation (CNV) mutations, and found that all of the 16 DRGs contained a large number of CNV 
mutations. The decreased extensive CNVs were observed in OXSM, FLNB, SLC7A11, NDUFA11, GYS1, while 
the overall enhancement of CNVs were presented in ACTB, TLN1, NUBPL, FLNA (Fig. 2C). We illustrated 
the CNV alteration locations on the chromosomes for these 16 DRGs (Fig. 2D). Next, we extracted 16,876 

Figure 1.  The workflow of this study.
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Figure 2.  Characteristics of DRGs in LUAD and Identification of DRlncRNAs. (A) The differential expression 
of 16 DRGs between normal and LUAD samples. (B) A PPI network established based on 16 DRGs. (C) 
Assessment for the frequency of CNV among the 16 DRGs. (D) The circular plot depicts the chromosomal 
distribution of the 16 DRGs. (E) A Sankey diagram presented the co-expression of the 16 DRGs and 
corresponding lncRNAs. (F) The forest plot illustrates the prognostic DRlncRNAs selected through univariate 
Cox regression analysis. (G) The interaction network of the 17 lncRNAs depicted with distinct colors indicating 
differences in correlations.



7

Vol.:(0123456789)

Scientific Reports |         (2024) 14:4621  | https://doi.org/10.1038/s41598-024-55201-7

www.nature.com/scientificreports/

lncRNAs from the GENCODE database using Perl-based methods. Subsequently, 104 lncRNAs associated with 
disulfidptosis were identified by the use of Pearson’s correlation analysis (|Pearson R| > 0.4, P < 0.001, Table S2), 
and their co-expression network with DRGs was visualized in a Sankey’s plot (Fig. 2E). Furthermore, LUAD 
patients were involved in our study, which categorized into the training set and testing set. The training set was 
applied for identifying prognostically relevant LncRNAs and constructing DRLS, while the testing set served as 
the validation of the predictive efficacy of DRLS. There was no significantly statistic difference observed in the 
comparative analysis in age, stage, gender, and TNM between the two groups (P > 0.05, Table S3). Subsequently, 
17 DRlncRNAs highly correlated with prognosis through univariate COX regression analysis were identified 
(Fig. 2F). Finally, we generated a prognostic correlation network diagram for these 17 DRlncRNAs (Fig. 2G), 
identifying all DRlncRNAs as risk factors, except for PTPRN2-AS1, AC009065.4, AC012615.1, and AC090559.1, 
which were considered protective factors.

Construction and validation of a prognosis signature in the training set
According to the univariate COX regression analysis, 17 DRlncRNAs were identified and then applied in LASSO 
regression analysis. Subsequently, 12 DRlncRNAs were identified as significantly linked to the LUAD patients 
prognosis using the optimal lambda value (Fig. 3A,B). Finally, 5 DRlncRNAs were determined via multivari-
ate COX regression analysis (Table S4). Among these, AC012615.1 was a prognostic protective factor, while 
AL365181.2, GSEC, AC093673.1, AL606834.1 were prognostic risk factors (Fig. 3C). In addition, we examined 
the correlation of the five DRlncRNAs with clinical data and DRGs (Fig. 3D,E). Our findings revealed a negative 
correlation between AC012615.1 and the majority of DRGs, whereas the remaining four DRlncRNAs exhibited a 
positive correlation with most DRGs (Fig. 3E). Following that, the disulfidptosis-related lncRNA-based signature 
(DRLS) score of each patient was computed applying the formula below: DRLS Score (Risk Score) = 0.1523233
68591861 × expr AL365181.2 + 0.228911037835446 × expr GSEC + 0.203628306081756 × expr AC093673.1 + (− 
0.44972537859839) × expr AC012615.1 + 0.292888245903172 × expr AL606834.1.

The patient cohort was stratified into high-risk and low-risk groups according to the optimal cut-off value 
of DRLS score. Subsequently, K–M analysis was performed among the training set, and the results revealed 
a significant improvement in OS of LUAD patients with low DRLS score compared to those with high DRLS 
score (Fig. 3F, P < 0.001). Further investigation involved assessing the distribution of survival times, survival 
statuses, and risk scores between the two groups. Simultaneously, the expression profiles of five DRlncRNAs 
were compared within these two sets (Fig. 3G). Our results highlighted remarkably increased expression levels 
of AL365181.2, GSEC, AC093673.1, and AL606834.1 in the high-risk group, consistent with their respective 
positive correlation coefficients in the DRLS score calculation formula, indicating their role as risk factors. 
Additionally, in the time-based ROC curves, the area under the curve (AUC) values of 1, 3, and 5 years were 
0.701, 0.668, and 0.618, respectively. As for the combined ROC curves, the AUC values considering clinical 
features were 0.668 (Risk), 0.658 (Stage), 0.523 (Gender), and 0.519 (Age) (Fig. 3H). Ultimately, the t-SNE and 
PCA were utilized to reduce dimensionality and visualize the distinct characteristics between the two groups. 
The results conclusively showed significant and consistent differences in the distributions of the high-DRLS and 
low-DRLS groups (Fig. 3I).

Evaluation of the DRLS model
We further examined the reliability and predictive capacity of established DRLS by calculating DRLS scores (risk 
scores) for LUAD patients among the testing and entire sets utilizing the same computational formula. Similar 
to the training set, patients in the two sets were stratified into high and low risk groups. Subsequent K–M analy-
ses were conducted among the two sets, and the findings consistently revealed the low-risk groups displayed 
markedly superior OS compared to the high-risk groups (Fig. 4A,B, P < 0.001). Additionally, the progression-
free survival (PFS) was demonstrated notably enhanced in the groups with low DRLS score in comparison to 
the high-DRLS groups (P < 0.001) among the entire set. An evaluation for the distribution of survival time and 
survival status, based on DRLS scores, was also conducted in the two groups among both the testing and entire 
sets. The expression profiles of these 5 DRlncRNAs in the two groups displayed consistent outcomes with those 
observed in the training sets (Fig. 4D,E). Subsequently, ROC curves of the two sets reflected the same trends 
observed in the training sets. As for the AUC values at 1, 3, and 5 years in the testing set were 0.669, 0.681, and 
0.671, respectively. While the corresponding AUC values were 0.690, 0.671, and 0.631 within the entire set 
(Fig. 4F). Furthermore, PCA and t-SNE were also applied in the two sets to visualize the sample distributions of 
high-DRLS and low-DRLS groups (Fig. 4G,H). These findings implied the DRLS based on 5 DRlncRNAs could 
consistently and accurately predict the outcomes for LUAD patients with a high level of dependability.

Establishment and validation of a nomogram combined with clinical characteristics
Considering the widespread clinical application of TNM staging and the reliable predictive ability of DRLS, 
we constructed a nomogram through combining TNM staging with DRLS in the training set. Subsequently, 
this nomogram was used to compute scores of each patient, enabling better prediction of their 1, 3, and 5-year 
prognoses (Fig. 5A). We also generated a forest plot based on the nomogram, which highlighted T stage, N stage, 
and risk score as the primary prognostic factors (P < 0.05, Fig. 5B). Next, we plotted calibration curves to further 
assess the predictive accuracy of this nomogram among the training and testing sets. These curves illustrate a 
concordance between the observed and predicted values (Fig. 5C,D). DCA was employed to assess the utility and 
effectiveness of this prediction model. The findings indicated the potential of this nomogram for accurate predic-
tion of the LUAD patients’ survival probabilities at various time intervals. (Fig. 5E). Furthermore, time-dependent 
ROC curves were constructed using this nomogram among the training and testing sets. In the training set, the 
AUC values for 1, 3, and 5 years were 0.715, 0.7, and 0.705, respectively (Fig. 5F). While in the testing set, the 
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corresponding AUC values were 0.831, 0.74, and 0.677 (Fig. 5G). In summary, this nomogram demonstrated 
the ability for accurate prognosis prediction and the potential in refining clinical treatment decisions for LUAD 
patients. Finally, patients were stratified into early-stage (I–II) and advanced-stage (III–IV) groups, and K–M 
analysis was applied for validating the disparities in survival of the high and low-risk groups among patients in 
each stage. We found that regardless of the stage, LUAD Patients categorized within the low-risk group exhibited 
notably superior survival rates in comparison to those in the high-risk group (P < 0.05, Fig. 5H,I).

Underlying molecular mechanisms of the DRLS
An investigation employing 513 DEGs that differentiated between the high-risk and low-risk groups (|Log2FC| 
> 1.0, P-value < 0.05) were conducted to unravel the underlying molecular mechanisms responsible for the marked 
distinctions observed in our multifaceted analyses between the two groups (Table S5). The GO analysis unveiled 

Figure 3.  Construction and validation of a prognosis signature in the training set. (A,B) Further selection of 
prognostic DRlncRNAs was performed through LASSO regression analysis. (C) 5 DRlncRNAs were screened 
through the multivariate COX regression analysis. (D) A clinical correlation heatmap depicted the association 
between the prognostic signature of DRlncRNAs and clinical outcomes. (E) The correlation analysis for 16 
DRGs and 5 DRlncRNAs used to prognostic signature construction. (F) K–M analysis for predictive capacity of 
DRLS. (G) The distribution of DRLS scores as well as survival status and time of each LUAD patient, along with 
the clustering heatmap of the 5 DRlncRNAs. (H) ROC curves for predicting the OS of 1, 3, and 5-years, along 
with clinical ROC curves. (I) PCA and t-SNE analyses were performed on LUAD patients based on the risk 
score.
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significant enrichment of these DEGs in cellular components (e.g., cytoplasmic region and plasma membrane 
bounded cell projection cytoplasm) and molecular functions (e.g., oxidoreductase activity and serine-type 

Figure 4.  Evaluation of the DRLS model. (A,B) K–M analysis for the testing set and the entire set. (C) The 
PFS curve was constructed for the entire set. (D,E) The distribution of DRLS scores as well as status and time of 
survival for each LUAD patient, along with the clustering heatmap of the 5 DRlncRNAs in the two sets. (F) ROC 
curves for predicting the OS of 1, 3, and 5-years, along with clinical ROC curves in the two sets. (G,H) PCA and 
t-SNE were performed on LUAD patients in the two sets.
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endopeptidase inhibitor activity) (Supplementary Fig. S1A). Furthermore, the KEGG analysis revealed a pre-
dominant association of these DEGs with pathways pertinent to biological process of tumors, such as the PI3K-
Akt signaling pathway, and pathways linked to metabolic processes, including arachidonic acid metabolism 
(Supplementary Fig. S1B). Subsequently, we explored the differences in pathways enriched with DEGs in the 
low- and high-risk groups through GSVA analysis. Notably, we observed significant enrichment of DEGs in the 
high-risk group across a spectrum of metabolic pathways, encompassing glycolysis gluconeogenesis, pentose 
phosphate pathway, and galactose metabolism. Furthermore, these DEGs exhibited enrichment in pathways 
associated with p53 signaling, cell cycle, and DNA replication, which could potentially promote tumor progres-
sion in the high-risk cohort (Supplementary Fig. S1C).

Subsequently, correlation analysis was performed to examine the association between five DRlncRNAs 
employed in constructing the DRLS and the risk score with regard to tumor-related pathways. Our analysis 
revealed positive correlations between AC093673.1, AC606834.1, and the risk score with tumor-related pathways. 
Conversely, AC012615.1 exhibited negative associations with all tumor-related pathways, thereby reinforcing 
our earlier conclusion that AC012615.1 functions as a protective factor (Supplementary Fig. S1D). Furthermore, 
the results of GSEA revealed notable pathway enrichments in the high-DRLS group, including cell cycle, focal 
adhesion, metabolism of xenobiotics by cytochrome P450, the P53 signaling pathway, and steroid hormone 
biosynthesis (Supplementary Fig. S1E). On the contrary, the low-risk group demonstrated significant pathway 
enrichments in areas such as allograft rejection, asthma, and the immune network for IgA production (Supple-
mentary Fig. S1F). In summary, the DEGs identified between the two groups with distinct risk score may exert 
a significant influence on the pathogenesis of LUAD.

Somatic mutation landscape
Tumor mutational burden (TMB) was the measure used to assess mutation frequency within tumor cells, and 
we conducted an analysis of somatic mutations of the high and low risk groups. This analysis unveiled 15 genes 
with the highest mutation frequencies in both groups, including TP53, TTN, MUC16, CSMD3, RYR2, LRP1B, 
ZFHX4, USH2A, and KRAS (Fig. 6A,B). The specifics of these mutations are visually presented in Fig. 6C. The 
most prevalent mutation type was missense mutations, characterized by a greater frequency of single nucleotide 

Figure 5.  Establishment and validation of a nomogram combined with clinical characteristics. (A) A 
nomogram for OS prediction of LUAD patients at 1, 3, and 5-years, constructed by integrating DRLS, age, 
and TNM stage in the training set. (B) T stage, N stage, and risk score as the major prognostic factors of the 
nomogram in a forest plot. (C,D) Calibration curves based on the nomogram in the training (C) and testing (D) 
sets. (E) DCA curves of the nomogram for survival prediction among LUAD patients. (F,G) Time-dependent 
ROC curves based on the nomogram in the training (F) and testing (G) sets. (H,I) Kaplan–Meier survival 
analyses for patients with Stage I–II (H) and Stage III–IV (I).
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polymorphism (SNP) compared to insertions (INS) and deletions (DEL). Unlike C > T and C > G transitions, 
C > A mutations emerged as more frequent. The top 10 mutated genes of LUAD were displayed in the horizontal 
bar graph. Additionally, a quantitative assessment of TMB indicated the patients with high-DRLS scores displayed 
notably elevated TMB scores in comparison to those with low-risk scores (Fig. 6D, P < 0.05). To investigated the 
impact of TMB on prognosis, whole LUAD patients were categorized into high and low TMB groups, with the 
median TMB score serving as the cutoff point. The results of K–M analysis revealed the patients with high TMB 
scores exhibited improved OS in comparison to those with low TMB scores (Fig. 6E, P < 0.05). Interestingly, our 
subsequent analysis, which sought to predict the outcomes of LUAD patients by combining TMB level and risk 
scores, revealed that patients with low-risk score and high TMB score exhibited markedly improved prognoses 
in comparison to patients in all other groups. This observation suggested the risk score surpassed TMB in pre-
dicting individual outcomes (Fig. 6F, P < 0.001). Finally, we examined the relation between the risk score, TMB, 
and immune cell infiltration, visually representing the results through a correlation chord diagram (Fig. 6G).

Immune cell infiltration landscape
Over the past few decades, a large number of studies has highlighted the predominance of TME in the develop-
ment and progression of various types of tumors. Immune cells, as essential components of the TME, engage in 
complex interactions and regulatory processes with tumor cells, subsequently influencing tumor progression and 
treatment outcomes. Therefore, the immune score, stromal score, and ESTIMATE score were computed for each 
patient employing the ESTIMATE algorithm, with the aim of exploring potential distinctions in immune cell 
infiltration within the high- and low-risk groups. The results indicated an increased level of immune cell infiltra-
tion within the low-risk group, characterized by significantly improved immune and ESTIMATE scores when 
compared to those of the high-risk group (Fig. 7A). In correlation analysis, it was observed that the risk score 
exhibited a negative correlation with the immune score, stromal score, and ESTIMATE score, while positively 
related to tumor purity (Fig. 7B). Following this, the association of risk score and tumor-infiltrating immune cells 
was investigated using 7 distinct algorithms, in order to ensure a more dependable assessment (Fig. 7C). Our 
findings indicated that infiltration levels of diverse immune cell types, including CD8+ T cells, B cells, NK cells, 
macrophages, and mast cells, exhibiting an inverse correlation with the risk score. This observation suggested the 
possibility of increased immune cell infiltration within the TME of patients categorized by low-DRLS score. Next, 
the ssGSEA algorithm was utilized for evaluating the immune status of TME in the two groups with distinct risk 
scores. Our results implied the low-risk group manifested higher ssGSEA scores in diverse immune cells, such 

Figure 6.  Somatic mutation landscape. (A,B) The mutation landscapes of the top 15 genes in the low (A) 
and high-risk (B) groups, ranked by mutation frequency. (C) The visual representation of mutation details 
was provided. The top 10 mutated genes in LUAD were illustrated in a horizontal bar graph. (D) The TMB 
distinctions of the two risk groups were displayed in a violin plot. (E,F) Survival analysis for LUAD patients 
based on the TMB (E) and the integration of risk scores and TMB (F). (G) The relationships between risk scores, 
TMB, and immune cell infiltration were depicted in a correlation chord diagram.



12

Vol:.(1234567890)

Scientific Reports |         (2024) 14:4621  | https://doi.org/10.1038/s41598-024-55201-7

www.nature.com/scientificreports/

as activated CD8 T cells, mast cells, NK cells, and effector memory CD4 T cells, in comparison to the high-risk 
group (Fig. 7D, P < 0.05). Additionally, the enhanced immune function scores were observed among the low-
risk group, such as activated Dendritic Cells, B cells, Human Leukocyte Antigen, inactive Dendritic Cells. These 
findings suggested that patients categorized by low DRLS exhibited a more proactive immune response against 
tumor progression, which in turn may lead to a more favorable outcome (Fig. 7E, P< 0.05). Furthermore, the 
evaluation of 50 immune checkpoints (ICs) expressions was conducted within the two groups with different level 
of risk score (Fig. 7F). We identified differential expression in 18 ICs within the two groups (P < 0.05). Notably, 

Figure 7.  Immune cell infiltration landscape. (A) Differences in Stromal Score, Immune Score, and ESTIMATE 
Score between the high and low risk groups were portrayed in violin plots. (B) The correlation between the risk 
score and the three scores were depicted in the scatter plots. (C) The relationship between risk scores and tumor-
infiltrating immune cells was evaluated through correlation analysis employing 7 algorithms. (D,E) ssGSEA 
scores were calculated for immune cells and immune function in both risk groups. (F) Prevalent immune 
checkpoint markers were assessed for differential expression among various risk groups. (G) The correlation of 
the 5 DRlncRNAs, risk score, and 37 immune checkpoint markers. ***P ≤ 0.001, **P ≤ 0.01, and *P ≤ 0.05.
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immune checkpoints such as CD27, CD28, CD48, CD160, CD244, CD40LG, ADORA2A, BTLA, BTNL2, IDO2, 
and CD200R1 exhibited significantly higher expression levels in patients of the low-risk group. This suggests that 
patients categorized by low DRLS scores may potentially benefit from immunotherapies targeting these specific 
ICs. Finally, analyses were conducted for exploring the correlation of 5 DRlncRNAs and risk scores with 38 
immune checkpoints. The findings revealed a tightly positive correlation between AC093673.1 and AC012615.1 
with most ICs, while AL365181.2, GSEC, AL606834.1, and risk scores exhibited a negative correlation with the 
most ICs (Fig. 7G). These findings indicated the elevated levels of immune infiltration within low-risk group, 
which could potentially contribute to an enhanced prognosis. Additionally, patients with elevated expression 
levels of most ICs demonstrated the potential to benefit from specific immunotherapies.

Estimation of immunotherapy response and drug sensitivity
The TIDE website was utilized to assess tumor immune evasion and the impact of immunotherapy on both the 
low- and high-risk groups. The considerably higher scores were observed in the high-risk group, suggesting that 
patients characterized by high DRLS score could be more susceptible to immune evasion, potentially result-
ing in a less favorable response to immunotherapy (Fig. 8A). Following this, we obtained Immunophenoscore 
(IPS) for LUAD patients from the TCIA database with the aim of evaluating the predictive value of DRLS in 
the context of immunotherapy. This assessment aimed to estimate patients’ immunogenicity, predicting their 

Figure 8.  Estimation of immunotherapy response and drug sensitivity. (A,B) The TIDE scores and IPS 
scores of the high and low risk groups were observed in the violin plots respectively. (C) The IC50 values for 
chemotherapy and targeted drugs in the two groups were displayed.
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potential responsiveness to immune checkpoint blockades (ICBs). The findings showed elevated IPS scores in 
the low-risk group, suggesting the potential of patients characterized by low DRLS scores might more favorably 
respond to ICBs (Fig. 8B). Given that chemotherapy and targeted therapies are standard treatments for inter-
mediate and advanced stage LUAD, we conducted an additional investigation to assess how patients categorized 
by DRLS respond to commonly used antitumor agents. Interestingly, when comparing the IC50 values of these 
agents between the two groups, a significant improvement was observed in response to targeted therapies (e.g., 
Dasatinib, Erlotinib, Oretinib, Savolitinib, Trametinib, and Ulixertinib) and chemotherapeutic treatments (e.g., 
5-Fluorouracil, Cisplatin, and Cytarabine) in the low-risk group. These findings indicated that patients charac-
terized by elevated risk scores might respond more favorably to these drugs (Fig. 8C).

Identification of molecular subtypes
We employed an unsupervised consensus clustering method to investigate distinct molecular subtypes accord-
ing to the DRlncRNAs expression. Two clusters were generated for patients with LUAD, and we confirmed an 
optimal cluster stability at k = 2 (Fig. 9A). We employed PCA to evaluate the sample distribution within cluster 
A and cluster B (Fig. 9B). Subsequently, we explored the associations between the clusters and two groups. The 
findings revealed that cluster A primarily included patients categorized to the low-risk group, whereas cluster 
B was predominantly composed of patients characterized with high-risk score (Fig. 9C). Subsequent survival 
analysis indicated a significantly better prognosis of cluster A in comparison to cluster B (Fig. 9D). We generated 
a clinically relevant heat map by integrating clinical data, the expression levels of 5 DRlncRNAs, and the cluster-
ing results (Fig. 9E). Similarly, we assessed immune cell infiltration within the two clusters using 7 algorithms 
utilized in previous investigation. Our findings revealed higher levels of immune cell infiltration, such as B cells 
and CD4+ T cells within the TME of cluster A (Fig. 9F). This implied that the TME of cluster A recruited a greater 
number of immune cells and initiated a more adaptive immune response, thereby fostering an inflammatory 
tumor microenvironment. Analyzing the TME scores for the various clusters revealed the enhanced immune 
scores, stromal scores, and ESTIMATE scores among the cluster A when compared to cluster B. Nonetheless, 
cluster A exhibited lower tumor purity than cluster B (Fig. 9G).

Validation of GSEC expression and biological function in LUAD
In this study, we assessed the expression of five DRlncRNAs, which were utilized in our model construction, 
in LUAD cell lines including A549, H1975, and BEAS-2B using RT-qPCR (Fig. 10A). Among these, four DRl-
ncRNAs exhibited upregulation in both LUAD cell lines (AL365181.2, GSEC, AC093673.1, AL606834.1), while 
AC012615.1 showed significant downregulation in both LUAD cell lines. According to our research, GSEC is 

Figure 9.  Identification of molecular subtypes based on the expression of 5 DRlncRNAs. (A) All LUAD patients 
were classified into two clusters (k = 2). (B) The distribution of two clusters were depicted using PCA. (C) The 
correlation of two clusters and the groups with distinct risk scores was visualized in a Sankey plot. (D) K–M 
analysis for the OS prediction of the two clusters. (E) Clinical information integrated with clustering results 
were visualized in a clinical correlation heatmap. (F) A heatmap was used to illustrate variations in immune cell 
infiltration using 7 different algorithms. (G) The differences in stromal score, immune score, ESTIMATE score, 
and tumor purity between the two clusters were presented in box plots.
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one of the four highly expressed DRlncRNAs in tumor samples and related to a relatively higher hazard ratio 
(HR 1.257), indicating an unfavorable prognosis for LUAD patients. Furthermore, we observed an association 
between GSEC and ferroptosis, cuproptosis and disulfidptosis. Consequently, we conducted in vitro experiments 
for investigating the role of GSEC in LUAD progression. Firstly, GSEC was effectively silenced in A549 cells 
(Fig. 10B). Subsequently, we evaluated the impact of GSEC downregulation on LUAD cell proliferation through 
CCK-8 experiments. We found that the proliferation capacity of A549 cells decreased upon GSEC knockdown 
in comparison to the control group (Fig. 10C), implying that GSEC may promote LUAD cell proliferation. 
Similarly, colony formation experiments demonstrated a marked reduction in the number of colonies within 
GSEC downregulation group in comparison to the control group (Fig. 10D). Transwell assays also implied that 
GSEC knockdown significantly inhibited the migration of A549 cells (Fig. 10E). Wound healing experiments 
revealed that GSEC downregulation significantly delayed wound healing (Fig. 10F). These results implied the 

Figure 10.  The validation of GSEC expression and its biological function in LUAD. (A) Expression levels of 
the 5 DRlncRNAs were evaluated between BEAS-2B, NCI-H1975 and A549 cells using RT-qPCR. (B) The 
knockdown efficiency of GSEC in the A549 cell line, validated using RT-qPCR. The CCK-8 assay (C) and colony 
formation assay (D) were applied to determine the influence GSEC knockdown on LUAD cell proliferation. The 
transwell assay (E) and the wound healing assay (F) were adopted to explore the migration of LUAD cells upon 
GSEC knockdown.
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involvement of GSEC in the proliferation and migration of LUAD cells, highlighting its potential in promoting 
LUAD progression.

Discussion
With the high morbidity and mortality, lung cancers threat human life at a high  extent31, especially for LUAD, 
the most common pathological type of NSCLC. Surgical resection continued to be the optimal approach for the 
majority of early-stage LUAD patients, while some patients with advanced-stage (IV) LUAD exhibited improved 
prognostic outcomes with treatments such as  immunotherapy32. Nevertheless, the treatment effects and prognosis 
of the majority of advanced LUAD patients generally remain to be unsatisfied. As a consequence, the exploration 
of new prognostic biomarkers and novel therapeutic agents for LUAD remain to be crucial and urgent. In past 
decades, increasing research revealed lncRNAs were involved in variety of key biological processes of LUAD 
with profound influence on progression and treatment of  LUAD33. The induction of RCD including apoptosis, 
pyroptosis, necroptosis, ferroptosis and cuproptosis proved to be a promising anti-tumor  mechanism5,6. It has 
been demonstrated that lncRNAs could affect the progression and sensitivity to therapy of lung cancer via regu-
lation of RCD. For example, lncRNA LINC00336 highly expressed in lung cancer and inhibited ferroptosis via 
binding to the RNA-binding protein  ELAVL134. In addition to ferroptosis, cuproptosis is another key point of 
RCD research. Furthermore, several cuproptosis-related lncRNA-based signatures have been developed for the 
prognosis prediction of LUAD  patients35,36.

Disulfidptosis, distinct from established forms of regulated cell death (RCD) such as ferroptosis and cuprop-
tosis, represents a recently reported and novel subtype of RCD. This discovery opens up new avenues for explor-
ing potential therapeutic strategies in cancer treatment. Liu’s research revealed that cancer cells overexpressing 
SLC7A11 undergo a unique form of cell death when exposed to glucose deprivation, distinct from recognized 
cell death subtypes. Conventional drug-based approaches for inhibiting cell death and knockdown of essential 
genes associated with ferroptosis or apoptosis do not impede this novel form of cell death. Instead, thiol oxidiz-
ing agents like diamide and diethyl maleate significantly enhance this form of cell demise. Hence, this unique 
cell death phenomenon was denoted as “disulfidptosis”8. However, disulfidptosis has not been comprehensively 
studied in lung cancer, meanwhile there is no research exploring the correlation between disulfidptosis, lncRNAs 
and LUAD. Therefore, our study developed a disulfidptosis-related LncRNA-based signature (DRLS) to predict 
the prognosis of LUAD as well as to explore its relationship with TIME and immunotherapy response.

In the initial phase, we screened all the lncRNAs correlated to 16 genes which reported to be associated with 
disulfidptosis and further developed a prognostic prediction signature, referred to as DRLS, with the aim of 
predicting the prognosis of LUAD patients, using transcriptome data and clinical information of LUAD acquired 
from TCGA (Fig. 2). The signature comprised 5 disulfidptosis-related lncRNAs (DRlncRNAs): AL365181.2, 
GSEC, AC093673.1, AC012615.1, and AL606834.1, which were identified and validated through a screening 
process involving LASSO, univariate and multivariate Cox regression analyses among the training, testing as 
well as entire sets. Of these DRlncRNAs, AL365181.2, GSEC, AC093673.1, and AL606834.1 were determined as 
prognostic risk factors, whereas AC012615.1 was identified be a protective factor. GSEC, one of the DRlncRNAs, 
has previously been indicated as an oncogene in diverse tumors. In the case of LUAD, GSEC played an active role 
in the promotion of tumor progression through the GSEC/miRNA-101-3p/CISD1 Axis and showed a significant 
association with ferroptosis, as confirmed by previous  research37. Additionally, several research reported GSEC 
could promote the malignant process of triple-negative breast cancer and hepatocellular carcinoma via the GSEC/
miR-202-5p/AXL axis and the GSEC/miR-101-3p/SNX16/PAPOLG  axis38,39, respectively. Furthermore, lncRNA 
AL606834.1 has been used for prognostic models of lung adenocarcinoma and pancreatic  cancer40,41, AL365181.2 
has been applied in multiple prognostic models of lung  adenocarcinoma42,43, and AC012615.1 has been studied 
in a prognostic model of  glioblastoma44. These findings provided the robust evidence for the construction of 
our DRLS score based on these 5 lncRNAs. Subsequently, risk scores for each patient were calculated using our 
signature and enabled the classification of LUAD patients categorized by this score. The DRLS score exhibited the 
reliable predictive capacity for prognosis of LUAD patients both in the training, testing and entire sets through 
a series of analyses such as survival analysis, ROC analysis and so on (Figs. 3, 4).

TMB takes a pivotal part in the clinical response of tumors to  immunotherapy45,46. Elevated TMB levels may 
result in increased effectiveness of ICIs. The results demonstrated heightened mutation frequencies in TP53, 
TTN, and MUC16 within the high and low risk groups (Fig. 6). TP53, functioning as a transcription factor, was 
involved in various cancer-suppressive biological processes, including apoptosis and DNA damage  repair47–49. 
In the survival analysis, patients characterized by high TMB and low risk scores exhibited the most favorable 
prognosis. Future studies should aim to delve deeper into whether the enhanced prognosis can be attributed to 
an increased occurrence of mutations in genes such as TP53 and TTN.

The tumor immune microenvironment (TIME) constitutes a pivotal element within the tumor microenviron-
ment (TME), exerting a substantial impact on the biological processes of tumors and the outcomes of anticancer 
therapies. As a result, an evaluation of disparities in the TIME between high and low-risk groups was undertaken 
using eight distinct algorithms (Fig. 7). This analysis demonstrated the risk score negatively correlated with the 
infiltration level within the most immune cells, indicating an elevated presence of immune cell infiltration in the 
TME of patients within the low-risk group. Immunotherapy, which mostly relies on ICIs, has exhibited notable 
improvements in prognostic outcomes for advanced cancer  patients50,51. In our research, several ICs displayed 
differential expression within the high and low risk groups (Fig. 7). Notably, we found the significantly elevated 
expression levels of numerous ICs among patients with low DRLS scores, such as Cluster of differentiation 27 
(CD27) and CD28 which significantly involved in T-cell activation and diverse T-cell processes, indicating the 
probability of these patients for more favorable immune  responses52,53. In addition, IPS and TIDE scores were 
calculated to estimate the immunogenicity and immune evasion probability of each patient in two groups with 
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distinct risk score levels (Fig. 8). Our results implied the potential for more favorable immunotherapy responses 
in patients with lower DRLS score. Since chemotherapy and targeted therapy are conventional therapeutic strate-
gies for intermediate and advanced LUAD, we further determined the responses of low- and high-risk groups to 
common antitumor agents. Our results showed the IC50 values of targeted therapeutic agents such as Dasatinib, 
Erlotinib, oretinib, Savolitinib, Trametinib and Ulixertinib and chemotherapeutic agents such as 5-Fluorouracil, 
Cisplatin and Cytarabine exhibited a notable increase in patients with low DRLS scores, implying that these 
patients may display a more favorable treatment response to these drugs.

In our investigation, we observed a substantial upregulation of GSEC expression in tumor cells, and identified 
its correlation with ferroptosis, cuproptosis, and disulfidptosis. Consequently, we selected GSEC for subsequent 
experimental validation. During the in vitro experiments, we conducted CCK8, colony formation, transwell, 
and wound-healing assays, and ultimately demonstrated that downregulating GSEC inhibited LUAD cell pro-
liferation and invasion. Our findings implied that GSEC could potentially serve as a novel therapeutic target 
for LUAD patients.

Certainly, certain limitations were encountered within the study, as is often the case. Firstly, this study mainly 
used bioinformatics analysis, and the conclusions need further experimental validation. Secondly, our cellular 
experiments remained insufficient as we only preliminarily explored the functional phenotype of GSEC in LUAD 
cells, therefore in vivo experiments could be performed in the future for further validation. Thirdly, the molecular 
interactions between lncRNAs and disulfidptosis-related genes need to be further characterized. Finally, our 
data were derived from the TCGA database and lacked external dataset validation, and there were some bias 
caused by the relatively small sample size. In summary, an independent prognostic prediction for LUAD patients 
can be made through the utilization of the DRlncRNAs signature, potentially offering valuable insights for the 
immunotherapeutic management of LUAD patients.

Conclusions
An extensive bioinformatics analysis was conducted to develop a prognostic model for assessing the prognosis 
of patients with LUAD. This model relies on the identification of five DRLncRNAs. This model, referred to as 
the disulfidptosis-related lncRNA-based signature (DRLS), is expected to facilitate a deeper understanding of 
the roles played by disulfidptosis and lncRNAs in LUAD, with the potential to enhance the prognosis of LUAD 
patients.

Data availability
RNA-sequencing data and clinical data of LUAD were downloaded from The Cancer Genome Atlas (TCGA) 
(https:// portal. gdc. cancer. gov/). Further inquiries can be directed to the corresponding author.
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