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General model of nonradiative 
excitation energy migration 
on a spherical nanoparticle 
with attached chromophores
L. Kułak 1, A. Schlichtholz 2 & P. Bojarski 2*

Theory of multistep excitation energy migration within the set of chemically identical chromophores 
distributed on the surface of a spherical nanoparticle is presented. The Green function solution to 
the master equation is expanded as a diagrammatic series. Topological reduction of the series leads 
to the expression for emission anisotropy decay. The solution obtained behaves very well over the 
whole time range and it remains accurate even for a high number of the attached chromophores. 
Emission anisotropy decay depends strongly not only on the number of fluorophores linked to the 
spherical nanoparticle but also on the ratio of critical radius to spherical nanoparticle radius, which 
may be crucial for optimal design of antenna-like fluorescent nanostructures. The results for mean 
squared excitation displacement are provided as well. Excellent quantitative agreement between 
the theoretical model and Monte–Carlo simulation results was found. The current model shows clear 
advantage over previously elaborated approach based on the Padé approximant.

Nowadays, various spherical nanoparticles are being intensively studied as nanomaterials. One example is 
core–shell spherical nanoparticles, which find wide applications in fields related to smart nanomaterials. These 
nanoparticles are used in targeted drug delivery, biosensing, bioimaging, DNA/RNA interaction, targeted gene 
delivery, photodynamic therapy, and plasmonically enhanced fluorescence1–9. Spherical nanostructures with 
multiple attached chromophores, achieved through covalent bonds, electrostatic interactions, or van der Waals 
forces, can serve as artificial light harvesting systems at the nanoscale. In these systems, excitation can repeatedly 
jump among the chromophores before being trapped in the reaction center.

Of particular interest is the scenario where multiple chemically identical fluorophores are present on the 
surface of the nanoparticle’s shell. In this case, these fluorophores can exchange energy through a long-range 
dipole–dipole mechanism after the initial excitation. This implies that the excitation energy can “jump” several 
times from one site to another, eventually reaching sites that are distant from the initially excited fluorophore. The 
path followed by the initial excitation among these sites before deexcitation can be complex. The main challenge 
lies in deriving an analytical expression for the fluorescence decay of the initially excited fluorophores, denoted 
as GSD(t) , which is closely linked to the decay of emission anisotropy. This is because only the fluorophores that 
are initially excited contribute to the emission anisotropy10–12. However, finding a solution to this problem is 
difficult due to the immense number of possible excitation paths, which necessitates the use of approximations. 
The accuracy of the obtained expression heavily relies on the validity of these approximations.

Previous theories regarding the transport of electronic excitation between molecules in a solution have pri-
marily focused on systems with infinite volume V  and an infinite number of particles N , which is known as the 
thermodynamic limit, (  lim

N→∞,V→∞
N
V = const ). However, there are numerous experimental systems in which 

the volume or the number of chromophores is too small to apply the theory based on infinite volume solutions. 
Such cases frequently occur in the nanoscale regime and encompass situations such as chromophores attached 
to insulated polymer coils, photosynthetic antenna complexes, hybrid porous nanoparticles, nanolayers, and 
core–shell systems incorporating fluorophores, among others13–17.

An approximate theory has been developed to address the problem of excited state energy transport for 
chromophores confined to a microscopic-sized spherical finite volume14. In this theory, a truncated expansion 
in powers of the chromophore density is employed as an approximation for a one-component system. However, 
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molecules located near the edge of the finite volume exhibit different neighbor distributions compared to those 
located inside the volume. This poses a challenge for the direct application of the diagrammatic technique since 
the finite volume breaks the translational invariance of the Green function, a property crucial for the topological 
reduction that allows for the inclusion of high-order terms in the chromophore density expansion.

Nevertheless, in the case of chromophores randomly distributed on the surface of a spherical nanoparticle, 
the appropriate Green function exhibits translational invariance. It is important to note that the diagrammatic 
method is highly flexible and can potentially be applied to any system where the molecule distribution is uniform 
and the system dynamics is described by a master equation (Chapman–Kolmogorov equation). This method 
provides an excellent framework for analyzing and understanding stochastic processes, such as multistep charge 
or energy transport in natural and artificial photosynthetic systems, dependencies of angular momentum on 
pressure and temperature, or the study of excitonic Rabi rotation in driven quantum dots.

Previously, the excited state transport on a spherical nanoparticle was treated using a simple Padé approxim-
ant to the density expansion of the system’s Green function18. However, this approximant only yields acceptable 
results for weak energy migration, which is applicable to relatively large nanoparticles with a small to moderate 
surface density of fluorophores.

In this work, the proposed three-body diagrammatic approach demonstrates excellent predictive capabili-
ties regardless of the strength of energy migration. A comparison of the new results with the previous ones and 
Monte–Carlo simulations will be presented.

Theory
Description of the model
The problem of excited state transport in a one-component infinite disordered system in the thermodynamic 
limit, has been conveniently formulated by Haan and Zwanzig19. Gochanour, Andersen, and Fayer20 further 
extended this treatment by employing the diagrammatic technique to approximate the system’s Green func-
tion, which enables the calculation of various transport properties. However, when analyzing the chromophore 
system within a finite volume, the theoretical complexity of the excitation transport problem increases. In an 
infinite volume system, the ensemble-averaged Green function solution to the master equation is independent 
of the initial excitation position. This property allows for highly accurate approximations using nonperturbative 
techniques21. On the other hand, when chromophores are randomly distributed on the surface of a finite sphere, 
such as a core–shell nanoparticle, the local distribution of chromophores differs significantly from that in an 
infinite volume system. Additionally, the finite volume theory needs to account for the finite number of particles 
present in the system. Therefore, addressing the excited state transport problem within a finite volume requires 
a theoretical framework capable of handling these specific challenges. To establish notation and clearly define 
the problem, we will follow the initial steps outlined in our previous work18. We consider a system consisting of 
N chemically linked chromophores (referred to as donors) randomly distributed on the surface of a spherical 
nanoparticle with radius R and surface area S . Let us denote the donor molecules from 1 to N . The individual 
configurations of the chromophores are described by the vector R = (r1, r2, . . . , rN ), where ri represents the 
position of the ith donor molecule. Each of the excited donor molecules, denoted as D∗ , can undergo deactivation 
through various physical processes, including fluorescence emission, non-radiative transitions, and non-radiative 
energy transfer from D∗ to another donor molecule D . The dynamics of excitation transfer in this core–shell 
system can be described by master equation

In the master equation, Pxixj (t) represents the conditional probability density of finding the excitation on 
molecule xi at time t  given that molecule xj was initially excited at time t = 0 . The transfer rate wDD

xixj
 corresponds 

to the distance-dependent excitation transfer rate, which denotes the probability of transition per unit time from 
donor molecule j to donor molecule i . It is important to note that wDD

xixi
 is defined as zero (wDD

xixi
≡ 0) to exclude 

self-transitions. The initial condition for the master equation is given by P′xixj (0) = δij , where δij represents the 
Kronecker delta. By substituting P′xixj (t) = Pxixj (t)exp

(

− t
τ0D

)

 , where τ0D represents the lifetime of a donor 
molecule in the absence of other molecules, we eliminate natural decay from the considerations. Then the master 
equation written in the matrix form is

where

The searched Green function expressed by elements of matrix W is of the form20

where the bracket 〈. . . 〉R signifies the ensemble average over the donor distribution R.

(1)
dP′xixj (t)

dt
= −

1

τ0D
P′xixj (t)+

N
∑

k=1,k �=i

wDD
xixk

P′xkxj (t)−
N
∑

k=1,k �=i

wDD
xkxi

P′xixj (t), 1 ≤ i ≤ N

(2)
dP(R, t)

dt
= W ◦ P(R, t)

(3)W jk = wDD
xjxk

− δjk

N
∑

i=1

wDD
xixk

, j ≤ N , k ≤ N

(4)G(r, r′, t ) =
S

N

N
∑

j=1

N
∑

k=1

�δ(r j − r)exp(tW)jkδ(rk − r
′)�
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The Green function mentioned above represents the conditional probability density of finding an excitation 
at a point with coordinate r at time t  , given that the donor was initially excited at a point with coordinate r ′ . 
The components in the double sum in Eq. (4) can be classified into two categories: diagonal terms where j = k , 
denoted as GSD(r, r′, t ) , and non-diagonal terms where j  = k , denoted as GDD(r, r′, t ).

The components of the Green function can be expanded into diagrammatic series. To do this it is convenient 
to work with the Fourier–Laplace transforms of GSD(r, r′, t ) and GDD(r, r′, t ) , which are given by

where I is the identity matrix. The Green functions ̂GDD(k, ǫ) and ̂GSD(ǫ) are not independent. In order to main-
tain physical consistency and preserve probability, it is necessary for a physically acceptable solution that 
lim
k→0

̂G(k, ǫ) = 1
ǫ
. This requirement leads us to derive the following equation, which connects these Green func-

tions and is commonly known as the self-consistent equation

The diagrammatic series for both Green functions, ̂GDD(k, ǫ) and ̂GSD(ǫ) , can be obtained by expanding the 
matrix (ǫI−W)−1 in powers of ǫ and W (for more detailed information, refer to the Supporting Information A)20. 
In the equation for ̂GSD(ǫ) , each n− th term is composed of an n-fold product of W1i1W i1i2 ...W in1 . Examining 
the definition of the matrix W reveals that individual elements, W ij , can be a single term when i = j or a sum of 
N terms when i  = j . Consequently, each n-fold product of W ij , where m of them are diagonal (i = j) , generates 
Nm products of n-element transfer rates wDD

xixj
.

To obtain the appropriate Green function, a specialized computational technique is necessary when summing 
all these products as n approaches infinity. The diagrammatic method is the appropriate approach for this pur-
pose. To establish the notation and provide a precise definition of the diagrammatic method, we follow the initial 
steps of the GAF theory20,22, which we have adapted for finite-volume systems. For this purpose, we define a 
diagrammatic representation, or graph, to depict the transfer rates wDD

xixj
 . The vertices of the graph are marked 

with donor numbers, while directed arrows represent each transfer rate wDD
xixj

 . In this representation, arrows wDD
xixj

 
representing the transfer rate from donor molecule j to donor molecule i are drawn as continuous lines, whereas 
arrows corresponding to ( −wDD

xixj
 ) are initially drawn as solid lines and then changed to dashed lines. The sign 

( + or − ) assigned to the arrow wDD
xixj

 indicates an increase or decrease in the transfer rate wDD
xixj

 during a given 
transition. A path in the graph that begins and ends at the same vertex is referred to as a loop. It can be observed 
that the multigraphs corresponding to the products wDD

x2x1
wDD
x3x2...

wDD
xin xin−1

 , form paths in the graph. We assign the 
value ǫ−1 to the vertices corresponding to the donors. To each multigraph, we assign a numerical value by taking 
the ensemble average of the product formed by a factor of ǫ−1 for each donor vertex, a factor of wDD

xixj
 for each 

solid arrow, and a factor of (−1) for each dashed arrow. As a result, the Green function ̂GSD(ǫ) can be represented 
by the following diagrammatic series: ̂GSD(ǫ) = ǫ−1+ sum of all multigraphs consisting of loops starting from 
vertex number 1 . Similarly, the Green function ̂GDD(k, ǫ) can be represented by the diagrammatic series: 
̂GDD(k, ǫ) = sum of all different (topologically different) multigraphs consisting of paths starting from vertex 
number 1 and ending at vertex number 2 . The complexity of the diagrammatic series can be reduced through a 
topological reduction procedure. This involves examining the topological structures of the diagrammatic series 
for ̂GDD(k, ǫ) to identify a smaller set of diagrams from which all other diagrams can be generated. One observa-
tion is that some diagrams in the series contain loops. By removing the maximal subgraph that forms a loop 
within a given diagram and replacing its beginning and end with a single vertex, the multigraphs with loops can 
be renormalized. The resulting transformed multigraph represents the class of all multigraphs with the same set 
of donors connected by arrows and loops. The value of the transformed multigraph (without loops) is calculated 
by substituting the factors ǫ−1 associated with the vertex with ̂GSD(ǫ) . Another topological property of the mul-
tigraphs in the series, representing the Green function ̂GDD(k, ǫ) , is the presence of nodes. A node is defined as 
a vertex in the multigraph that separates it into two disjoint subgraphs. The value of any multigraph (without 
loops) containing nodes is obtained by multiplying the values of the individual subgraphs into which it is divided. 
Donor nodes are assigned a factor of 1/̂GSD(ǫ) . Finally, the diagrammatic series can be further renormalized 
through the loops and node removal procedure. By introducing the diagrammatic series ̂�DD

(

k, ǫ, ̂GSD(ǫ)

)

 
which is the sum of all multigraphs with no loops and no nodes starting at any fixed donor (e.g. 1 ) and ending 
at any fixed donor different from the initial donor (e.g. 2 ), we obtain20,22

In the self-consistent approximation20,22, we treat the function ̂GSD(ǫ) as an unknown function. We partially 
sum the diagrammatic series for ̂�DD

(

k, ǫ, ̂GSD(ǫ)

)

 to obtain approximations to the function ̂GDD(k, ǫ) in terms 
of the unknown ̂GSD(ǫ) . Substituting this approximation into Eq. (7), the resulting equation involves only known 
quantities and the function ̂GSD(ǫ) , allowing us to solve for ̂GSD(ǫ) . In the considered case, it leads to a third-
degree polynomial equation, which always has one real root. This root can be calculated using Cardano’s 
formulas.

(5)̂GSD(ǫ) = �
[

(ǫI−W)−1
]

11
�
R

(6)̂GDD(k, ǫ)= (N − 1)�exp(ikr12)
[

(ǫI−W)−1
]

21
�
R

(7)ǫ

[

̂GSD(ǫ)+ ̂GDD(k = 0, ǫ)
]

= 1

(8)̂GDD(k, ǫ) =
̂�DD

1− ̂�DD/̂GSD
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We can provide a physical interpretation of the function ̂�DD
(

k, ǫ, ̂GSD(ǫ)

)

 . It represents the Fourier–Laplace 
transform of the transition probabilities per unit time (transfer rates) for energy ”jumps” that are not correlated 
with past and subsequent jumps. In an ensemble of molecules, energy excitation jumps occur until it reaches a 
node, and once it leaves that node, it never returns to the same assembly. Therefore, ̂�DD

(

k, ǫ, ̂GSD(ǫ)

)

 is associ-
ated with the migration of excitation energy within the set of donors. It is important to note that 
̂�DD

(

k, ǫ, ̂GSD(ǫ)

)

 does not represent an energy jump in a single step. This is because the series is already 
renormalized, meaning that the vertex is assigned ̂GSD(ǫ) , which contains loops. These loops, in theory, can even 
consist of an infinite number of energy jumps. Furthermore, based on the definition of a loop, there is no limit 
to the number of jumps that can occur until a node is reached. We can establish a connection between the theo-
retical results and experimentally measured physical quantities. Firstly, the decay of primarily excited donor 
fluorescence can be determined using the formula I(t) = I0exp

(

− t
τ0D

)

GSD(t) , where τ0D represents the donor 
lifetime in the absence of other molecules. To obtain the time-domain expression for the function GSD(t) we 
need to invert the Laplace transform of ̂GSD(ǫ) , i.e. GSD(t) = L−1

ǫ

(

̂GSD(ǫ)

)

 . Next, the parallel and perpendicular 
components of the decay of donor fluorescence can be obtained from the following equations12

Finally, we can calculate the experimentally measurable decay of the emission anisotropy using the following 
formula

By evaluating this equation, we can obtain the time-resolved decay of the emission anisotropy, which provides 
valuable information about the rotational dynamics and molecular interactions of the fluorophores.

Two‑ and three‑body approximation: general equations
In order to obtain the time decays and stationary values of the observables that characterize the studied system, 
it is sufficient to know the values of the diagrammatic series ̂�DD

(

k, ǫ, ̂GSD(ǫ)

)

 . However, this series cannot be 
exactly summed up, necessitating the use of approximate methods. One such method is the two-body approxi-
mation, which involves restricting calculations of the function ̂�DD

(

k, ǫ, ̂GSD(ǫ)

)

 to only two-body multigraphs. 
Similarly, in the three-body approximation, we consider both two-body and three-body multigraphs. Subse-
quently, we employ the self-consistent method for the fundamental observables. This method involves treating 
the function ̂GSD(ǫ) as the variable to be determined after obtaining an approximate expression for 
̂�DD

(

k, ǫ, ̂GSD(ǫ)

)

 . This is achieved by substituting Green’s functions ̂GDD(k, ǫ) , which depend on 
̂�DD

(

k, ǫ, ̂GSD(ǫ)

)

 , into the self-consistent Eq. (7). By following this procedure, the accuracy of the calculations 
is significantly enhanced, and it is simpler compared to other methods that involve approximating both the 
functions ̂GDD(k, ǫ) and ̂GSD(ǫ) using appropriate expansions into diagrammatic series.

In the two-body approximation adapted for finite-volume systems, the function ̂�DD
(

k, ǫ, ̂GSD(ǫ)

)

 is repre-
sented as the infinite sum of a series of two-body multigraphs that do not contain loops or nodes20,22

In the three-body approximation adapted for finite-volume systems, it is necessary to sum all three-body 
multigraphs ̂ADDD

3  and then subtract the three-body multigraphs with loops ̂LDDD3  and the three-body multi-
graphs with nodes ̂NDDD

3  . This process ensures that the resulting calculation includes the contributions from all 
three-body interactions while excluding the effects of loops and nodes.

The individual multigraph series are as follows.
– Sum of all three-body multigraphs

The function under the integral A(r12, r13, ǫ) = AL(r12, r13, ǫ)/AM(r12, r13, ǫ) is

(9)I�(t) = e−t/τ0D

(

1+
4

5
GSD(t)

)

(10)I⊥(t) = e−t/τ0D

(

1−
2

5
GSD(t)

)

(11)r(t) =
I�(t)− I⊥(t)

I�(t)+ 2I⊥(t)

(12)̂�DD
2

(

0, ǫ, ̂GSD(ǫ)

)

=
N − 1

S

∫

dr12

(

̂GSD
)2

wDD
x2x1

1+ 2̂GSDwDD
x2x1

(13)̂�DDD
3

(

k, ǫ, ̂GSD(ǫ)

)

= ̂A
DDD
3

(

k, ǫ, ̂GSD(ǫ)

)

− ̂L
DDD
3

(

k, ǫ, ̂GSD(ǫ)

)

− ̂N
DDD
3

(

k, ǫ, ̂GSD(ǫ)

)

(14)�A
DDD
3 (k, ǫ) =

(N − 1)(N − 2)

S2

�

dr12exp(ikr12)

�

dr13










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�
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SD
�

−

�
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wDD
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– Sum of all three-body multigraphs with loops

where

– Sum of all three-body multigraphs with nodes

where

The values of the above diagrammatic series can be calculated numerically by evaluating the corresponding 
quadruple integrals for the finite-volume system. The computation results are presented in Supporting Informa-
tion B.

Results and discussion
Numerical calculations
In the following discussion, we will consider dipole–dipole mechanism of energy migration within the set of 
donors. For this physical process, the transfer rate is given by wDD

xixj
= 1

τ0D

(

RDD0
rij

)6
23. In this formula, τ0D is a donor 

lifetime in the absence of other molecules, RDD
0  is the critical radius (distance) for energy transfer.

Then, for k = 0 , after calculating the appropriate integrals in spherical coordinates (see Supporting Informa-
tion B), we obtain the result for the two-body approximation

In the three-body approximation we have

The above function can be obtained by numerically calculating the appropriate quadruple integrals in Eq. (13) 
(see Supporting Information B), resulting in

The self-consistent Eq. (7) expressed by the diagrammatic series ̂�DD
(

0, ǫ, ̂GSD(ǫ)

)

 takes the form of

By inserting the expression for ̂�DD
(

0, ǫ, ̂GSD(ǫ)

)

 into Eq. (24), substituting x =
(

̂GSD(ǫ)
τ0D

)
1
3 and introducing 

the parameter ξ = RDD
0 /R we obtain a third-degree polynomial equation

(15)AL

(

r12, r13, ̂G
SD
)

=
(

̂GSD
)2[

wDD
x2x1

+ ̂GSD
(

wDD
x2x1

wDD
x3x1

+ wDD
x2x1

wDD
x3x2

+ wDD
x3x1

wDD
x3x2

)

]

(16)
AM

(

r12, r13, ̂G
SD
)

= 1+ 2̂G
SD(

wDD
x2x1

+ wDD
x3x1

+ wDD
x3x2

)

+3
(

̂GSD
)2

(

wDD
x2x1

wDD
x3x2

+ wDD
x2x1

wDD
x3x1

+ wDD
x3x1

wDD
x3x2

)

(17)̂L
DDD
3

(

k, ǫ, ̂GSD(ǫ)

)

= 2
(N − 1)(N − 2)

S2
BSD2 (ǫ)

∫

dr12exp(ikr12)

̂GSDwDD
x2x1

(

1+ ̂GSDwDD
x2x1

)

(

1+ 2̂G
SD
wDD
x2x1

)2

(18)BSD2 (ǫ) = −
∫

dr12

(

̂GSD
)2

wDD
x2x1

(

1+ 2̂GSDw
DD
x2x1

)

(19)̂N
DDD
3

(

k, ǫ, ̂GSD(ǫ)

)

=
(N − 1)2

S2

(

̂GSD
)3

∫

dr12

∫

dr13exp(ikr13)N
(

r12, r13, ̂G
SD
)

(20)N
(

r12, r13, ̂G
SD
)

=
wDD
x2x1

1+ 2̂GSDwDD
x2x1

·
wDD
x3x2

1+ 2̂GSDwDD
x3x2
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2

(
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)
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̂GSD
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3
√
2
√
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(
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1
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2
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This equation always has one real root, which can be found using Cardano’s formula.

Comparison with Monte Carlo simulation results
Below, sample graphs are shown comparing the results of Monte-Carlo simulations with the previous model 
based on the Padé approximant and a general diagrammatic model.

As shown in Fig. 1, the superiority of the diagrammatic method over the Padé approximant becomes clear at 
long times after excitation, as evidenced by the Monte-Carlo results which are in excellent agreement with the 
new model in any case. The advantage of new approach is especially evident for higher values of ξ corresponding 
to smaller nanoparticles (Fig. 1a and b) and strong energy migration (high number of fluorophores). Comparable 
outcomes predicted by both models are limited to the case of weak energy migration especially well illustrated 
in Fig. 1c and d (larger nanoparticles with relatively low number of fluorophores attached to the surface).

From the mathematical point of view Padé approximant considers only three-body diagrams of the type 
̂A
DDD
3  , supplemented by the substitution of ̂GSD(ǫ) → ǫ−1 . Consequently, the Padé approximant’s capability to 

encompass a broader range of excitation energy transport pathways is significantly limited. Conversely, when 
the diagrammatic method incorporates loops ̂LDDD3  and nodes ̂NDDD

3  into the calculations, the obtained results 
align well with those of the Monte–Carlo method.

It is intriguing to explore the extent to which energy migration on a spherical nanoparticle can be considered 
a local effect. To address this Fig. 2 illustrates the results of the Monte–Carlo simulation, depicting the relative 
mean squared displacement of the excitation, 〈r2〉1/2/RDD

0  , as a function of the number N of attached donors, 
for various values of the parameter ξ = RDD0

R  , where R is the nanoparticle radius.
The findings from the Monte–Carlo simulation, as depicted in Fig. 2, reveal that the relative mean squared 

displacement of the excitation, 〈r2〉1/2/RDD
0  , exhibits a nonlinear relationship with the number N of donor mol-

ecules attached to the spherical nanoparticles. For a very small nanoparticle ( ξ = RDD0
R = 1) the mean squared 

displacement of the excitation grows very rapidly and reaches plateau value equal to about 1,5 times the radius 
of the nanoparticle. This indicates that the energy migration, even within a relatively small set of fluorophores 

Figure 1.   (a–d) Comparison of the Monte Carlo simulation results with Eq. (11) for a different number 
of donors attached to spherical nanoparticle and various values of the parameter ξ = RDD

0 /R . (a) ξ = 0.5, 
(b) ξ = 0.25 , (c) ξ = 0.125 and (d) ξ = 0.1 . Dashed curves correspond to simplified model based on Padé 
approximant. Theoretical calculations of donor fluorescence anisotropy decay r(t)/r0 in the three-body 
approximation obtained from Eq. (11) were made by inverting Laplace transform of ̂GSD(ǫ) in Eq. (25).
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(N = 50), is a nonlocal process, occurring across the entire surface of nanoparticle. As the size of nanoparticle 
increases, mean squared displacement grows less dynamically and for three lowest values of ξ it does not reach 
plateau even for very a high number of fluorophores. For large nanoparticle (ξ = 0.1 ) energy migration becomes 
localized. In this case the relative mean squared displacement is about 0.03 R for N = 50 and it increases only to 
0.2 R even for extremely high number of fluorophores N = 1000. This means that we should treat energy migra-
tion as a process occurring in the vicinity of primarily excited site (local process).

Conclusions
In summary, the presented model of energy migration on a spherical nanoparticle with randomly distributed 
donors on its surface demonstrates strong sensitivity to the number of donors and the nanoparticle’s radius. 
The Monte Carlo simulations validate the model across all simulated scenarios, providing excellent agreement 
in terms of relative emission anisotropy decay. Furthermore, the simulations validate the universality of the 
diagrammatic method used in this study. It consistently produces results that align remarkably well with the 
Monte Carlo simulations, regardless of the ratio of nanoparticle radius to critical distance or the number of 
fluorophores. In contrast, the three-body Padé approximant is limited in its effectiveness, delivering satisfactory 
results only for weak energy migration. Thus, the developed model is a valuable tool for estimating the mean 
number of chromophores bound to spherical nanoparticles and designing optimal nanoparticles in terms of 
radius and critical distance for energy migration ( RDD

0  ). The results show that on large nanoparticles, excitation 
mostly occurs at sites close to the initially excited one, indicating a local process. This is in contrast to small 
nanoparticles where excitation occurs at sites distal from the primarily excited molecule.

Currently, we are working on specific extensions and applications of the primary model presented here. The 
model for energy migration on a spherical nanoparticle has potential for extensions, including energy transport 
models in specific nanostructures containing several chemically different fluorophores with broadband emission. 
Such systems may be suitable as sources of white light in nanoscale. Further modifications to the model may 
include core–shell nanoparticles with metallic cores designed to enhance energy transfer through plasmonic 
resonance, as well as aggregated core–shell nanosystems as a part of energy transfer-based plasmonic platforms 
for highly sensitive detection of biospecies.

Data availability
No new data were generated or analyzed in the presented research.
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