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Semantic representation 
and comparative analysis 
of physical activity sensor 
observations using MOX2‑5 sensor 
in real and synthetic datasets: 
a proof‑of‑concept‑study
Ayan Chatterjee 1,2*, Martin W. Gerdes 2, Andreas Prinz 2, Michael A. Riegler 1 & 
Santiago G. Martinez 3

The widespread use of devices like mobile phones and wearables allows for automatic monitoring of 
human daily activities, generating vast datasets that offer insights into long‑term human behavior. 
A structured and controlled data collection process is essential to unlock the full potential of this 
information. While wearable sensors for physical activity monitoring have gained significant traction 
in healthcare, sports science, and fitness applications, securing diverse and comprehensive datasets 
for research and algorithm development poses a notable challenge. In this proof‑of‑concept study, 
we underscore the significance of semantic representation in enhancing data interoperability and 
facilitating advanced analytics for physical activity sensor observations. Our approach focuses on 
enhancing the usability of physical activity datasets by employing a medical‑grade (CE certified) 
sensor to generate synthetic datasets. Additionally, we provide insights into ethical considerations 
related to synthetic datasets. The study conducts a comparative analysis between real and synthetic 
activity datasets, assessing their effectiveness in mitigating model bias and promoting fairness in 
predictive analysis. We have created an ontology for semantically representing observations from 
physical activity sensors and conducted predictive analysis on data collected using MOX2‑5 activity 
sensors. Until now, there has been a lack of publicly available datasets for physical activity collected 
with MOX2-5 activity monitoring medical grade (CE certified) device. The MOX2‑5 captures and 
transmits high‑resolution data, including activity intensity, weight‑bearing, sedentary, standing, low, 
moderate, and vigorous physical activity, as well as steps per minute. Our dataset consists of physical 
activity data collected from 16 adults (Male: 12; Female: 4) over a period of 30–45 days (approximately 
1.5 months), yielding a relatively small volume of 539 records. To address this limitation, we employ 
various synthetic data generation methods, such as Gaussian Capula (GC), Conditional Tabular General 
Adversarial Network (CTGAN), and Tabular General Adversarial Network (TABGAN), to augment 
the dataset with synthetic data. For both the authentic and synthetic datasets, we have developed 
a Multilayer Perceptron (MLP) classification model for accurately classifying daily physical activity 
levels. The findings underscore the effectiveness of semantic ontology in semantic search, knowledge 
representation, data integration, reasoning, and capturing meaningful relationships between data. 
The analysis supports the hypothesis that the efficiency of predictive models improves as the volume 
of additional synthetic training data increases. Ontology and Generative AI hold the potential to 
expedite advancements in behavioral monitoring research. The data presented, encompassing 
both real MOX2‑5 and its synthetic counterpart, serves as a valuable resource for developing robust 
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methods in activity type classification. Furthermore, it opens avenues for exploration into research 
directions related to synthetic data, including model efficiency, detection of generated data, and 
considerations regarding data privacy.

Keywords Semantic ontology, Semantic sensor network, General adversarial network, Gaussian Capula, 
MOX2-5, Multilayer perceptron, Synthetic data in healthcare

Abbreviations
StaRI  Standards for reporting implementation
DL  Deep learning
MLP  Multi-layer perceptron
GC  Gaussian Capula
CTGAN  Conditional Tabular General Adversarial Network
TBGAN  Tabular General Adversarial Network
OLS  Ordinary least squares
IMA  Physical activity intensity
LPA  Low physical activity
MPA  Medium physical activity
VPA  Vigorous physical activity
GDPR  General data protection regulation
SPARQL  SPARQL Protocol and RDF Query Language
UiA  University of Agder
HOST  Holistic systems

This section covers overview, motivation, novelty, and aim of the study.

Overview
Regular physical activity is one of the most important contributors to our health. Physical activity improves brain 
health, manages weight, reduces chronic disease risk (e.g., diabetes type II, metabolic syndrome, cardiovascular 
disease, cholesterol level, blood pressure, and some cancers), strengthens bones and muscles, lowers symptoms 
of mental health (e.g., depression, anxiety), and improves individual ability to perform everyday activities, irre-
spective of age, abilities, and  ethnicity1–3. The World Health Organization (WHO) defines physical activity as 
any body movement that requires energy-consuming skeletal muscles. Physical activities, including recreational 
sports, conveyance to and from places (movements), or as part of an individual’s work. Both moderate and vig-
orous physical activity can improve health. Popular ways to be active include walking, cycling, running, weight 
exercise, and active recreation, and it can be practiced at any intensity level or  age3. People who do not exercise 
enough have a 20–30% increased risk of death compared to those who are adequately  active3. More than 80% of 
young people worldwide are not physically active  enough3. WHO recommends that adults aged 18–64 should 
do at least 150–300 min (about 5 h) of moderate physical activity (MPA), or at least 75–150 min (about 2 and 
a half hours) of vigorous physical activity (VPA), or an equivalent combination of MPA and VPA throughout 
the  week3. One possible way to prevent a decrease in physical activity and an increase in sedentary behavior is 
to use physical activity monitoring  technology4. Monitoring daily physical activity towards the management of 
a healthy lifestyle goal has been a challenging task and one of the most prevalent research challenges in health 
informatics. However, this has been associated with more physical activity and less sedentary  behavior4. Different 
smart devices (e.g., Fitbit, Garmin, Smartwatches, Sensewear Mini Armband, My Wellness Key Accelerometer, 
Actigraph, Pedometer, smartphone with installed applications) are available in the market to monitor and track 
fitness-related metrics (e.g., steps, VPA, MPA, low physical activity (LPA), sedentary bouts, calorie burnt, distance 
covered via running or walking) and related vital health signs (e.g., heart rate variability, respiratory rate, heart 
rate). The collected activity data is often available preprocessed (e.g.,  PMData5, Zenodo activity  data6) or raw (e.g., 
UCI-HAR, WISDM, SHL, MD, HARTH, and AlgoSnap)7. Such data is seen as very important in the scientific 
research community. Several researchers have explored the use of sensors available in mobile devices to identify 
stationary activities for further applications in different scenarios related to ambient assisted living (AAL) and 
augmented living environments (ALE)7. Prior to this point, there has been a scarcity of openly accessible datasets 
capturing physical activity data using the MOX2-5 activity monitoring medical-grade (CE certified) device.

Motivation
According to the scientific database searches, many articles reported their experiments on activity datasets 
collected by different wearable activity devices; however, most of the datasets are private; therefore, results are 
difficult to replicate or extend. Furthermore, the availability of high-quality, diverse, and sufficiently large data-
sets for training and evaluating algorithms remains a bottleneck in research and development. To address this 
challenge, we present a proof-of-concept study that utilizes the MOX2-5 activity  sensor8 to generate a compre-
hensive dataset for physical activity monitoring. Synthetic datasets offer a promising solution to the problem of 
scarcity of real-world data, giving researchers and practitioners access to a wider range of scenarios and activities. 
This study not only releases the MOX2-5 dataset to the public but also showcases the viability and efficacy of 
synthetic datasets in enhancing the accessibility of training data for activity recognition models. The MOX2-5 
dataset featured in this article offers preprocessed daily physical activity data.
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One of the key aspects of our approach is the emphasis on semantic representation. We recognize the need 
for semantic enrichment of data to exploit the full potential of activity sensor observations. This semantic 
representation enables data interoperability, knowledge sharing, and advanced analytics. The Semantic Sensor 
Network (SSN) ontology represents sensor-related information (such as data repositories, processing services, 
and metadata) and observations and is therefore valuable in environments where sensor data and observations 
play an important role. SSN leverages Semantic Web technologies and ontologies to provide a standardized 
and machine-understandable way to describe, discover, and reason about sensors and sensor data. SSN is an 
important component of the Internet of Things (IoT) and the broader Semantic Web concept. They enable more 
intelligent, contextual, and data-driven applications by improving the understanding, discovery, and use of sen-
sor data in various fields. Integrating real-world ontologies with SSNs can be more complex and requires careful 
modeling and adjustment to domain-specific standards and requirements. Our study includes a comprehensive 
comparative analysis between real and synthetic datasets. We evaluate the performance of activity recognition 
models trained on both data types, considering factors such as accuracy, robustness, and generalizability. Results 
reveal the utility of synthetic datasets and their potential to accelerate research progress and algorithm develop-
ment in the field of physical activity monitoring.

Novel contribution
This is an extended version of our previous  study9. In this study, we have extended the semantic ontology design 
for annotating the sensor observations (e.g., our MOX2-5 physical activity datasets) with well-established SSN-
based semantic information, elaborate the data collection process, and make the dataset public with its synthetic 
version. SSN is intended to promote the semantic interoperability between sensors and data systems. It stand-
ardized the way they describe and comprehend sensor data, this facilitates the communication and sharing of 
information between different systems and applications. A universal ontology that is common to all sensors may 
not have the same degree of standardized data output. In large-scale sensor networks and IoT applications, SSN 
can offer a scalable infrastructure for the management and comprehension of sensor data. Using a flexible SSN 
ontology-based knowledge-graph design solution, we lay the foundation for cross-IoT-domain collaboration 
and innovative research.

Use case and baseline we used the MOX2-5 dataset for daily activity-level classification with an MLP model 
as derived from our previous  study9 where we compared the performance of the proposed MLP model with 
other state-of-the-art classifiers (such as Rocket, MiniRocket, MiniRocketVoting), and the proposed MLP model 
performed the best. Here, we explore how synthetic data enhanced training data to increase the performance 
of the used MLP model. We have shown a direction to predict daily physical activity levels into the following 
activity classes: sedentary (0), low (1), active (2), highly active (3), and vigorously active (4) with the MLP clas-
sification model. This proof-of-concept study addresses the generation of synthetic datasets based on the baseline 
MOX2-5 dataset and the semantic annotation of physical activity sensor observations with an SSN integrated 
OWL (Web Ontology Language) ontology. To verify the structural consistency, we use an ontology reasoner 
available in Protégé. We use SPARQL Protocol and RDF Query Language (SPARQL) for precise and efficient data 
retrieval and manipulation as a part of ontology  verification10,11. We anticipate that our findings will contribute 
to the broader discussion on the role of synthetic data in data-scarce domains and the importance of semantic 
enrichment for meaningful and interoperable data. Additionally, we aim to provide insights into the practical 
applications of original and synthetic datasets in real-world scenarios, particularly in healthcare, fitness, and 
sports science. According to the literature search, no similar studies have been found. Therefore, the contribution is 
novel. Furthermore, we make the real and synthetic MOX2-5 datasets public in GitHub to practice open-access 
research with MOX2-5 dataset as a first study.

Aim of the study
In healthcare, finding high-volume lifelogging data is challenging, and due to privacy and ethical issues, most 
datasets are private. Synthetic data generation techniques, such as  GC12,  CTGAN13, and  TABGAN14–16, have 
been used for synthetic data generation with a focus on large-scale data sharing, experimentation, and analysis 
without revealing sensitive information. We have performed a comparative study with statistical metrics to find 
the best synthetic data generation method from our real MOX2-5 dataset. Moreover, we generate synthetic data 
from the best performing data generation method and contribute for open access. The MOX2-5 activity dataset 
and its synthetic version can be beneficial for other researchers for sedentary pattern analysis, posture detection 
and step forecasting. Till date, not publicly available MOX2-5 activity datasets exist. Thus, the main contributions 
of this work are summarized as follows.

1) We design and develop an ontology for semantification of observable and measurable physical activity sensor 
data and predictive analysis on the data.

2) We provide and open dataset containing MOX2-5 activity measurements and provide a baseline analysis of 
the data.

3) We provide synthetic data too, generated from the real values of the MOX2-5 dataset, and describe empiri-
cally the advantages of synthetic data generation in healthcare using well-established generative methods.

4) We evaluate the quality and the usefulness of the synthetic data.
5) We capture the risks and challenges in participant recruitment for sensor-based activity data collection.
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Methods
This section describes how we conducted our research, including data collection, ontology development, data-
set generation, and analysis methods. Figure 1 represents the structure of the study for the data acquisition, 
processing, synthetic data generation and comparative analysis. This study used the Standards for Reporting 
Implementation (StaRI) checklist (see Supplementary Material-1). Data collection has been carried out in accord-
ance with relevant guidelines and regulations in the “Ethics approval and consent to participate” section under 
Declarations. We followed the rules of the General Data Protection Regulation (GDPR).

Data collection
Participants and related distributions
Initially, we recruited twenty-five participants (19 men and 6 women) aged between 18 and 64; however, nine 
participants dropped in the middle of data collection due to medical reasons (e.g., pregnancy), lack of self-
motivation, and device incompatibility issues. Therefore, the final data acquisition was performed with sixteen 
volunteering healthy individuals (12 men and 4 women) from Grimstad, Norway, for a period of 30–45 days 
(about 1 and a half months). We targeted normal-weight and overweight adults (based on BMI standards). The 
demographic statistics of the final population have been described in Table 1.

Regarding the gender distribution of our initially recruited participants for sensor-based data collection 
on physical activity, it has been important to emphasize that our study’s primary focus lies in understanding 
broad patterns of physical activity across a diverse age range (18–64) rather than specifically examining gender-
specific trends. While the initial participant demographics may skew toward a higher number of men, it has also 
been crucial to recognize that recruitment dynamics, individual preferences, and availability often influence the 
composition of study samples. Subsequent efforts will be made to actively address the gender balance in future 
participant recruitment to ensure a more representative dataset. Importantly, the study’s overarching objective 
remains the investigation of physical activity behaviors within the specified age range, and the inclusion of par-
ticipants from various genders is vital to achieving a comprehensive understanding of these patterns.

While the initial distribution may not perfectly mirror the general population’s educational demographics, 
our recruitment strategy prioritized diversity in age to capture a broad spectrum of physical activity behaviors. 
Additionally, studies in the field of physical activity have often faced challenges in achieving a perfectly bal-
anced representation across all demographic variables. The observed distribution may reflect the characteristics 
of individuals who were readily available and willing to participate in the study. Recognizing the importance 
of inclusivity, we acknowledge the feedback and intend to refine our recruitment strategies in future studies to 
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Figure 1.  Workflow of the real and synthetic dataset creation and comparative analysis.

Table 1.  Demographic characteristics of participants (N = 16).

Attributes N% Mean (µ) Std (σ)

Gender

 Female 18.75

 Male 81.25

Body composition

 Height 173.5 ± 8.13

 Weight 77.0 ± 16.42

 BMI 25.38 ± 3.97

Education

 Bachelors 25.00

 Master’s 16.66

 Above Master’s 58.30

Age 35.375 ± 6.98
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ensure a more representative sample across various demographic factors, including education level, to enhance 
the generalizability of our findings.

Device information, value type, and specification
Our used MOX2-5 version 5 (MOX2-5) collects accelerometer data and processes the data. The MOX2-5 provides 
the following services over BLE communication, and all the services have three types of unique user identifiers 
(UUID): base, service, and short.

• Device information

– Manufacturer information
– Model number
– Serial number
– Hardware revision
– Firmware revision
– Software revision

• Battery
– Battery level

• Device control

– Commands
– Status response

• Measurements

– Request activity data
– Activity data

The Measurement service is a custom service that reports the calculated algorithm values of the device to a 
host. The host requests the measured data by sending the “Request Activity Data” command with the correct 
parameters. Following this request, the device will continue to write collected values to the host until all write 
the host acknowledges actions and there are no values left. The device will now send an activity data update with 
the requested interval. The generated values of MOX2-5 algorithm are described in Table 2.

Sampling rate
Physical activity data in MOX2-5 sensors were collected continuously, throughout the day with Bluetooth (BLE) 
short-range wireless technology standard at a fixed sampling rate, which is typically around 1 Hz (1 sample per 
second) and in the comma-separated-version (CSV) format. The data was typically sampled and recorded at 
very short intervals, often in real-time or near-real-time.

Amplitude of the acceleration signal and movement intensity
The relationship between the amplitude of the acceleration signal and movement intensity (IMA) is directly 
proportional: as the higher the amplitude of the acceleration signal, the higher the movement intensity (IMA), 
and the higher the value of the counts per second will be. In the context of activity monitoring, the acceleration 
signal reflects the rate of change in velocity of a device or body part, which correlates with the intensity of physical 
movement. The Inertial Movement Analysis (IMA) quantifies this movement intensity based on the amplitude 
of the acceleration signal. When the amplitude is higher, it indicates more vigorous and energetic movements, 

Table 2.  Value populated through algorithm in MOX2-5.

Algorithm values Description Type

Timestamp The timestamp represents the start time of this activity data window 32-bit unsigned

Upload status
The status activity data upload:
H: History data, more data available in the device
L: Live data, this is the last available record at this moment

8-bit unsigned

IMA sum The sum of the calculated IMA values in this window [counts] 32-bit unsigned

Weight bearing Total time that weight bearing is detected in this window [s] 12-bit unsigned

Sedentary classification Total time that classification sedentary is detected in this window [s] 12-bit unsigned

Standing classification Total time that classification standing is detected in this window [s] 12-bit unsigned

Class-LPA Total time that classification LPA is detected in this window [s] 12-bit unsigned

Class-MPA Total time that classification MPA is detected in this window [s] 12-bit unsigned

Class-VPA Total time that classification VPA is detected in this window [s] 12-bit unsigned

Steps sum The sum of measured steps in this window [counts] 16-bit unsigned
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such as running or jumping, resulting in an elevated IMA value. To quantify and measure these movements 
over time, the concept of "counts per second" is introduced. As the amplitude increases, the device registers a 
higher count of acceleration events per second, further emphasizing the link between amplitude, movement 
intensity, and the counts per second metric. This relationship is fundamental in interpreting and analyzing data 
from accelerometers or sensors, providing valuable insights into the dynamic and kinetic aspects of physical 
activities. The correlation between IMA and energy expenditure can be expressed in metabolic (MET)) values 
and established as:

LPA: between 1.5 and 3 METS.
MPA: between 3 and 6 METS.
VPA: 6.0 or more METS.

For an upper leg MOX2-5 activity device placement, the corresponding IMA thresholds can be represented as:

4.5 < LPA ≤ 11.9 cycles per seconds (cps).
11.9 < MPA ≤ 26.8 cps.
VPA > 26.8 cps.

Based on the observation, the relation between sedentary time and activity (LPA/MPA/VPA) time can be 
written as:

∑(
sedentary, active, weight− bearing, standing

)
= 60s(sec.).

Based on the observation and data patterns, during sleeping, the sedentary minutes goes as high as (≈ 58–60 s.) 
with IMA ≈ 0–20, step count ≈ 0, and activity time = 0.

Device wear location
The MOX2-5 activity sensor should be worn and placed in accordance with specific guidelines to ensure accu-
rate data collection. The recommended placement typically involves securing the sensor to a specific part of the 
body as specified in Ref.8 (see Fig. 2), such as the thigh, hip, waist, and wrist, depending on the device design 
and the type of physical activity being monitored. It can also be worn on the chest; however, that is a separate 
version. Additionally, users were advised to wear the MOX2-5 sensor consistently during the designated period 
of data collection to maintain the integrity and reliability of the gathered information. Proper adherence to the 
specified wearing and placement instructions had been essential to obtain exact and significant insights into the 
individual’s physical activity patterns.

We provided each participant a MOX2-5 activity device and supporting MOX android application to collect 
and store daily activity logging data in their android smartphone in the comma-separated value (CSV) format. 
The device captured required activity data for physical activity classification (e.g., physical activity intensity or 
IMA, LPA, MPA, VPA), daily step forecasting, and posture detection (e.g., sedentary (lying or sitting), standing, 
weight bearing, step count). With low power consumption, the MOX2-5 BLE device seamlessly measures and 
transfers high-resolution activity parameters. The used MOX2-5 activity monitor has the following specifications: 
dimensions as 35*35*10 mm, ultra-lightweight as 11 g, dust, and waterproof as IPX8, and durability of 2 years. 
The device has a battery life of 7 days or 60 days (about 2 months), with a Lithium Ion125 mAh rechargeable 

Figure 2.  The wearing location of MOX2-5 activity sensor for data  collection8.
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battery. The datasets presented in this paper include accelerometer sensor with parameters: sensitivity as 4 mg/
LSB, sample rate as 25–100 H, and dynamic range of ± 8G.

Selection of activity sensor for this study case
Regarding the choice of MOX2-5 medical grade sensor for physical activity data collection, it has been essential 
to underscore the distinctive advantages offered by these sensors in the context of this study. MOX2-5 sen-
sors provide medical-grade precision in capturing physiological parameters during physical activity, enabling 
a nuanced analysis of participants’ responses. While alternative sensors such as accelerometers, video cameras, 
and gas chemical sensors are indeed valuable in specific applications, the MOX2-5 sensors specifically excel in 
offering real-time, high-fidelity data on physical activity changes. This level of granularity is crucial for under-
standing the intricacies of physiological responses during diverse physical activities. The selection of MOX2-5 
sensors aligns with the precise objectives of our research, allowing us to contribute in-depth insights into the 
physiological aspects of physical activity and the potential applications of medical-grade sensor technology in 
the health monitoring domain.

Data acquisition procedure
MOX2-5 activity monitoring devices are manufactured by Maastricht Instruments, a spin-off company of the 
Maastricht Hospital. They provided us with activity monitoring devices equipped with chargers and a MOX 
android mobile application. The MOX2-5 device is portable, has a unique MAC address, and a small internal 
storage for collecting activity data for a week. Before the MOX can be used, the mobile application must be 
installed on an android compatible smartphone and connected to the MOX2-5 activity device over BLE. After 
that, the MOX2-5 device can be placed on the preferred wearing location. The MOX2-5 device continuously 
monitors physical activities based on the accelerometer data and initially stores collected data in its internal stor-
age and followed by, based on connection establishment with the mobile application, transfers activity data to the 
smartphone for persistence in the CSV format. The accelerometer sensor is a tri-axial sensor with the co-ordinate 
variables X, Y, and Z. During the measurement, BLE connection and data must be checked continuously. The 
MOX2-5 device must be disconnected, removed from the wearing location, and charged when the LED will turn 
into “ORANGE”. The “Download” folder of the smartphone stores daily activity files in CSV format that holds 
activity records per minute. The provided MOX app by Maastricht Instruments is not compatible with android 
version > 9.0 and < 7.0. Therefore, it created version compatibility issues in certain participants.

Proposed ontology model for semantic representation
An ontology is a formal and unambiguous representation of knowledge or information about a specific domain 
of interest. It serves as a structured, common vocabulary or framework for describing concepts, entities, their 
properties, and their relationships within the domain.

Ontology vs. databases
Ontologies are suitable for knowledge representation, semantic search, data integration, reasoning, and applica-
tions where capturing the meaning and relationships between data entities is critical. They are commonly used 
in areas such as the Semantic Web, healthcare (for medical ontologies), and scientific research. The ontology 
knowledge graph can grow based on the open-world assumptions. In contrast, databases are ideal for applica-
tions that require efficient data storage, retrieval, and transaction management. They are widely used in business 
applications, e-commerce, finance, customer relationship management (CRM), and many other areas that require 
structured data management.

Ontology structure
Representing an ontology using tuples is a simple and intuitive approach where it uses ordered sets of elements to 
describe the ontology’s structure. Each tuple represents a fact or relationship within the ontology. The Mathemati-
cal representations of ontology involve formal logic and set theory. Ontologies describe concepts, relationships, 
and axioms that can be represented mathematically using symbolic notation. Some common mathematical 
representations and concepts used in ontology modeling are in Textbox 1. Ontologies written in Web Ontology 
Language (OWL) typically consist of several key components that define structures, classes, individuals, prop-
erties (data and object), axioms, restrictions, annotations, logical axioms, and namespaces. These components 
help formalize knowledge in a machine-readable format. OWL ontologies can become more complex by adding 
multiple classes, properties, axioms, and imports, allowing formal representation and automated reasoning of 
complex knowledge structures.

Textbox 1.  The mathematical representations and concepts used in ontology modeling.

1. Description Logic: It uses mathematical notations to represent concepts (classes), individuals, and relationships (properties)
2. First-Order Logic: It involves quantifiers (∀ for "for all" and ∃ for "there exists") and logical operators (¬ for "not," ∧ for "and," ∨ for 
"or," → for "implies")
3. Set Theory: It uses notation like ∪ (union), ∩ (intersection), and ⊆ (subset) to represent relationships between sets of individuals or concepts
4. Predicate Calculus: It involves predicates (relations) and variables
5. Graph Theory: It uses mathematical notation to represent nodes (concepts or individuals) and edges (relationships) in the ontology graph
6. Axiomatic Set Theory: It involves a set of axioms that define set theory mathematically, and ontological concepts can be mapped to sets
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Proposed ontology
Creating a complete ontology for observing physical activity sensors, integrating it with the SSN ontology, and 
deploying SPARQL queries to query the integrated ontology is a complex task that requires careful design and 
extensive development. In our designed and developed ontology model, we have integrated the concepts with SSN 
ontology and for the same, we align the classes and properties in our ontology with SSN’s classes and properties. 
We use “Observation” class to represent our “PhysicalActivityObservation” and properties like “observedBySen-
sor” with SSN’s properties for sensor observations. Our ontology model consists of the following elements as 
described in Textbox 2.

The proposed ontology supports personalization, and the OWL representation of the same concept has been 
captured in Supplementary Material-2 for an individual. For the verification of our ontology model, we use 
MOX2-5 activity sensor’s observation data. However, the proposed ontology can be aligned with other wearable 
sensors for behavioral monitoring.

Analyzing the complexity of the proposed ontology involves evaluating various aspects of the ontology’s 
structure, content, and reasoning requirements. We achieve the same with the following considerations—meas-
uring the size of the ontology in terms of the number of classes, individuals, properties, and axioms, analyzing 
the depth of the class hierarchy, assessing the number of object properties and data properties in the ontology, 
evaluating the number of axioms in the ontology, including subclass axioms, equivalence axioms, disjoint axi-
oms, and property restrictions, analyzing the use of cardinality constraints (e.g., min, max, some) on properties, 
considering the use of complex data types and restrictions on data properties, determining the type of reasoning 
and inference required, identifying the OWL profile (e.g., OWL Full in this case), assessing consistency, modular 
design patterns, and SPARQL query complexity.

Activity level classification with MLP model
The relevant features obtained from the MOX2-5 activity device are—timestamp, IMA, sedentary seconds, 
weight-bearing seconds, standing seconds, LPA seconds, MPA seconds, VPA seconds, and steps per minute. 
The “step” and “IMA” are the most valuable and robust features of the MOX2-5 sensor-based datasets, as other 
attributes (except the timestamp) are derived from these (e.g., LPA, MPA, and VPA are derived from IMA as 
defined in Table 3). IMA has a strong relation with steps where steps are primarily involved as a measure for 
activities. In the MOX2-5 sensor, sedentary time refers to the non-activity duration, including leisure and sleep. 
Therefore, one cannot see if it’s sleep or just not doing anything else.

To determine feature importance, we used traditional methods, such as the SelectKBest univariate feature 
selection with Chi-squared test from the sklearn Python  library4,17 and  ExtraTreesClassifier4,17 to cross verify the 
selected features. The data is non-gaussian in nature; thus, we used spearman  correlation4,17 analysis to explore the 
association between the features. We removed features with a high correlation coefficient (|r|) value. Moreover, 
we have used the forward and backward filling and averaging methods to handle missing data. We handled outli-
ers with boxplot analysis. After handling missing data and outliers, we converted individual activity data from 
/minute entry to /day entry. On the resulting dataset, we applied standard rules defined in Table 4 to generate 
an activity level class for a multi-class classification problem. Captured time-series activity data are continuous 
in nature; however, we converted it into discrete tabular form for such classification problem after removing the 
“Timestamp” feature. Both the final and processed tabular data and its synthetic versions are part of the dataset.

To classify real and its different combination with synthetic activity data, we designed and developed an 
MLP model which is inspired by the architecture of fully connected neural network (FCNN) with fivefold cross 

Textbox 2.  The elements in our ontology.

Classes
 PhysicalActivityObservation: Represents an observation of physical activity
 ActivityLevel: Represents different activity levels (e.g., sedentary, light, moderate, vigorous) based on the predictive analysis
 SedentaryTimeObservation: Represents an observation of sedentary time
 StepsObservation: Represents an observation of the number of steps taken
 Sensor: Represents the sensors used for observation
Object properties
 observedActivityLevel: Relates a PhysicalActivityObservation to an ActivityLevel
 observedSteps: Relates a PhysicalActivityObservation to a StepsObservation
 observedSedentaryTime: Relates a PhysicalActivityObservation to a SedentaryTimeObservation
 observedBySensor: Relates an observation to the Sensor
Data properties
 observationTime: Represents the time of observation
 predictedActivityLevel: Represents the predicted activity level for a person
 hasPerson: Relates an observation to a specific person

Table 3.  The relation between IMA and activity levels as per MOX2-5 algorithm.

Activity type Rule

LPA 0 ≤ IMA ≤ 400

MPA 401 ≤ IMA ≤ 800

VPA IMA ≥ 801
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validation and the “ReduceLROnPlateau”  method17. The designed and developed MLP model consisted of six 
layers (first five layers with ReLU activation function and the last layer with the SoftMax activation function). The 
ReLU function resolves vanishing-gradient problem and helps in efficient convergence. We used the categorical 
cross entropy loss function in our MLP model compilation as our dependent class had been one-hot encoded. 
We used ADAM optimizer as it is time and memory wise efficient. In Keras, the default ADAM configuration 
is α = 0.001, β1 = 0.9, β2 = 0.999, € = 1e − 08 and Decay = 0.0, and we used a similar configuration in this experi-
ment. We captured the loss histories to compare training and test losses over multiple epochs. ADAM adjusts 
the learning rate of each parameter individually, allowing it to cope with various optimization challenges, such 
as vanishing or exploding gradients. ReLU replaces negative input values with zeros, which adds nonlinearity to 
the model while enabling faster training and better convergence. Its piecewise linear behavior promotes sparsity 
in neural activations and enables the network to efficiently learn complex patterns and representations.

Synthetic tabular dataset generation
Creating synthetic data is becoming increasingly important due to privacy concerns and data availability. Syn-
thetic data can help to anonymize individuals while preserving the distributional nature of the data which could 
allow for easier sharing. Further, synthetic data can help to increase the number of samples in a dataset and 
increase the performance of models. We used the following methods with the tabular real MOX2-5 activity data 
to generate synthetic data efficiently.

Gaussian Capula (GC)
The Gaussian copula is a statistical modelling technique for data synthesis. Copula allows us to decompose a joint 
probability distribution into marginal values of uncorrelated variables and functions that "couple" these marginal 
values together. Copulas are multivariate distributions with embedded relevant information. Gaussian copulas are 
multivariate normal distributions with learned dependencies. The high-level steps for synthetic data generation 
with GC method have been detailed in Textbox 3. We used python SDV  package18 and “GaussianMultivariate” 
method to generate synthetic data with GC.

CTGAN
Conditional Tabular Generative Adversarial Networks (CTGAN) is a deep learning data synthesis technique. As 
the name suggests, this is a GAN-based approach. A standard GAN architecture consists of two neural networks: 
one acts as a generator, which takes some input and generates synthetic data. Then have a second neural network 
that serves as a discriminator to see if they can distinguish actual data from synthetic data. The results of the 
discriminator are fed back to the generator to help the generator produce better synthetic output. The CTGAN 
architecture introduces a conditional generator that generates rows conditioned on one of the discrete columns 
and the training data based on the protocol samples, instead of feeding the generator with random training data 
that may not adequately represent subcategories of highly imbalanced categorical columns—the frequency of 
each column category for this discrete column. This helps the GAN model to explore all possible discrete values 
uniformly (not necessarily uniformly). The CTGAN represents continuous columns with mode-specific nor-
malization. We used the python SVD package and “CTGANSynthesizer” module to generate synthetic tabular 
data with CTGAN.

TABGAN
Currently, GANs are widely used to generate image data; however, they can be used to create synthetic tabular 
data from scratch. GANs can generate synthetic data from scratch and consist of two parts: a generator and a 

Table 4.  “Activity Level” class creation based on standard rules for multi-class classification problem. 
*MPA = 2VPA.

Activity level Rule* Active (encoded)

Sedentary ((Steps < 5000) ∧ (VPA*2 + MPA)*7 < 90 ∧ LPA ≥ 0)) ˅  (Steps < 5000) 0

Low active ((Steps > 4999) ∧ (VPA*2 + MPA)*7 ≥ 90 ∧ (VPA*2 + MPA)*7 < 210) ˅  (Steps > 4999 ∧ Steps < 7500) 1

Active ((Steps > 4999) ∧ (VPA*2 + MPA)*7 ≥ 210 ∧ (VPA*2 + MPA)*7 < 300) ˅  (Steps > 7499 ∧ Steps < 10,000) 2

Medium active ((Steps > 4999) ∧ (VPA*2 + MPA)*7 ≥ 300 ∧ (VPA*2 + MPA)*7 < 360)) ˅  (Steps > 9999 ∧ Steps < 12,500) 3

Highly active ((Steps > 4999) ∧ (VPA*2 + MPA)*7 ≥ 360) ˅  (Steps > 12,499) 4

Textbox 3.  Steps for synthetic data generation with GC method.

1. Know the probability distribution for each column in the table
2. Use the inverse CDF transformation of the standard normal to them (i.e., convert the distribution of the column to a normal distribution)
3. Learn about the correlations of these newly generated random variables to create a copula model, and
4. Samples from a multivariate standard normal distribution with learned correlation
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discriminator. The generator is used to generate synthetic data from random noise in the input; the discrimina-
tor is used to classify whether a sample is real or synthetic (as generated by the generator). The power of the 
discriminator is used to update and optimize the generator and discriminator. We followed the steps as described 
in Textbox 4 to design and develop a TABGAN in Keras with TensorFlow as backend.

Our sequential Generator model had three Dense layers with two layers activated by the “ReLU” activation 
function. The output layer was activated by the “linear” function. We initialized the Kernel by “he_uniform”. We 
maintained the dimensions of the output layer like the dimensions of the dataset. The discriminator model con-
sisted of three Dense layers. The first two layers were activated by the “ReLU” activation function, and the output 
layer was activated by the “Sigmoid” activation function to discriminate the real (True or 1) and synthetic (False 
or 0) data. We compiled the Discriminator model with optimizer as “ADAM” and loss function as “binary_cros-
sentropy”. Moreover, the combined Generator and Discriminator model was compiled with “ADAM” optimizer 
and “binary_crossentropy” loss function.

Performance metrics
Classification
The performance of the designed and developed MLP classification model has been evaluated against precision, 
recall, specificity, accuracy score, F1 score, classification report, and confusion  matrix4,17,19,20. A confusion matrix 
is a 2-D table (“actual” vs “predicted”), and both dimensions have “True Positives (TP)”, “False Positives (FP)”, 
“True Negatives (TN)”, and “False Negatives (FN)”. Equations to calculate classification metrices are

Accuracy tells how close a measured value is to the actual one. Recall or sensitivity suggests the exact number 
of positive measures. Precision means how relative the measured value is to the actual one.

Synthetic data quality evaluation
We used “Classifier F1-scores and their Jaccard similarities” to evaluate the quality of the generated synthetic 
data with “Table_evaluator” python  library21. The Jaccard Similarity Score is a versatile and widely applicable 
metric that provides a simple and intuitive measure of similarity between sets. Here, it is used for comparing 
sets by measuring the similarity of their elements.

where, J = Jaccard distance, A = Set-1, B = Set-2, A and B are sets

Accuracy(A) =
(TP+ TN)

(TP+ FP+ FN+ TN)
, 0 ≤

(A)

(100)
≤ 1

Precision(P) =
(TP)

(TP+ FP)

Recall(R)or Sensitivity (S) or True positive rate =
(TP)

(TP+ FN)

Specificity(S) =
(
1− Sensitivity

)
=

(TN)

(TN+ FP)

F1 score(F1) =
(2*P*R)

(P+ R)
,≤

(F1)

(100)
≤ 1

Matthew’s correlation coefficient (MCC) =
(TP(TP*TN − FP*FN))

√
(TP+ FP)(TP+ FN)(TN+ FP)(TN+ FN)

,−1 ≤
(MCC)

(100)
≤ + 1.

J(A, B) = |A ∩ B|/|A ∪ B|

Textbox 4.  Steps for synthetic data generation with TABGAN method.

1. We created random noise in the latent space and reshaped it to the dimensions for matching the input of generator model using the gener-
ate_latent_points method
2. To produce “n” synthetic samples with class labels, we defined the generate_fake_samples method
3. We created input for the generator from latent points or random noise
4. The Generator model generated “n” samples based on predicting input random noise and label the real data with “1” and synthetic data 
with “0”
5. We created the discriminator model
6. We made weights in the discriminator not trainable and defined the GAN model with two input models—Generator and Discriminator
7. We trained the GAN model with generator, discriminator, GAN model, and latent dimension, and saved the based model for further use
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where Yi = actual, Ŷi = predicted, n = total population~

where Yi = actual, Ŷi = predicted, n = total population.
In the equation, X and Y are data objects represented by vectors. The similarity value is the dot product of 

X and Y divided by the squared magnitude of X and Y minus the dot product. The average nearest neighbor is 
calculated as the observed average distance divided by the expected average  distance21.

Moreover, we used the Ordinary Least Squares (OLS)22 using “Statsmodels” to compare the real and the 
synthetic datasets. The OLS used the following metrics for performance measurement:

where  R2 = coefficient of determination, RSS = sum of squares of residuals, TSS = total sum of squares

where  R2 = sample R-squared, N = total sample size, p = number of independent variables

where Yi = actual, Ŷi = predicted, df = degree of freedom.
F-value = Larger sample variance/Smaller sample variance = S

2
1

S22
 , Where S = standard deviation.

The main difference between Adjusted R-squared and R-squared is simple, adjusted value considers various 
independent variables and tests them against the model whereas R-squared does not. Adjusted R-squared is 
always less than or equal to R-squared. Larger R-squared means the model is better means the model is bet-
ter. RSE is the standard deviation of the residuals. An F-test is any statistical test in which the test statistic has 
an F-distribution under the null hypothesis. It is most often used when comparing statistical models fitted to 
a dataset to identify the model that best fits the population from which the data were sampled. A comparative 
analysis helped us to identify the best synthetic tabular data generation method in this context for further data 
augmentation perspective. Furthermore, it helped to determine if the samples are coming from the same dis-
tribution or not.

Ethical approval and consent to participate
We received approval from the Regional Committees for Medical and Health Research Ethics (REK) (#53224) 
to execute the project. We received ethical approval from the Norwegian Centre for Research Data (NSD) or 
Norwegian Agency for Shared Services in Education and Research (SIKT) (#797208). For the data collection, 
informed or signed consent has been obtained from all the participants. Overall, we used GDPR guidelines 
for personalized data security and privacy (data governance). Participants had the right to own and view their 
personal data without tampering.

Results
This section consists of data records, experimental setup, and experimental results. The experimental results 
elaborate evaluation of the proposed ontology and predictive analysis.

Data records
We collected physical activity data from 16 participants with MOX2-5 wearable activity device (MOX2_5_data_
unlabelled.csv and MOX2_5_data_labelled.csv in the Supplementary Material-3). The detailed description of the 
dataset is provided in Tables 5 and 6.

The total size of the datasets is 42 Kilobytes (KB) containing 539 unique measurements. Based on the feature 
ranking, we selected the best five features for predictive analysis—sedentary, LPA, MPA, VPA, and steps. The 
class distribution for the predictive analysis has been depicted in Fig. 3. We used a similar dataset for synthetic 
data generation with GC, CTGAN, and TBGAN. We termed the real data as R, GC populated synthetic data as 
FGC, CTGAN generated synthetic data as FC, and the TBGAN generated synthetic data as FT. It results in the 
following data in Supplementary Material-4 (synthetic_data_GC_labelled.csv, synthetic_data_CTGAN_labelled.
csv, and synthetic_data_TBGAN_labelled.csv) of total 88 KB in volume and they are used in this paper for experi-
ments. The class distribution of FGC dataset, FC dataset, and FT dataset have been described in Tables 7, 8 and 9.

All the datasets have been compared with real datasets against Ordinary Least Squares or OLS (see Fig. 4), 
Jaccard Similarity score (see Supplementary Material-5), absolute log means and standard deviations (Figs. 5 and 
6), cumulative sums per feature (Figs. 7 and 8), and distribution per feature (Figs. 9 and 10) between different 
datasets. We found no evidence of more than one class in FT datasets; therefore, the Jaccard Similarity score has 

RMSE =

√√√√
n∑

i=1

(
Yi − Ŷi

)2
/n

MAE =
n∑

i=1

∣∣∣Yi − Ŷi

∣∣∣
/
n

R2 = 1−RSS/TSS,

Adjusted R2 = 1−
((
1−R2

)
(N− 1)

)
/
(
N− p− 1

)
,

Residual Standard Error (RSE) =

√√√√
n∑

i=1

(
Yi − Ŷi

)2/

df
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not been compatible. OLS charts play a key role in linear regression analysis by providing visual insights into 
model fit, residuals, outliers, and compliance with model assumptions.

Metrics such as F1 score and Jaccard similarity score can be used for classification and measuring similarity, 
but they serve different purposes. The F1 score evaluates the performance of the classifier, and the Jaccard simi-
larity score quantifies the similarity between sentences. Although they can be used together to evaluate classifier 
performance and the similarity between predicted and actual label sets, they are not directly interchangeable.

Statistical measures such as cumulative sums per feature, distribution per feature, absolute log means and std 
between two datasets serve different purposes when comparing two data sets. Cumulative totals help to track data 
trends, distributions reveal data characteristics, absolute logs quantify average feature differences, and standard 
deviations highlight changes in data distributions. Together they provide valuable insights for data comparison, 
anomaly detection, and decision-making in a variety of analytical environments.

Experimental setup
We used Python 3.9.15 libraries, such as pandas (v. 1.5.2), NumPy (v. 1.22.4), SciPy (v. 1.7.3), Matplotlib (v. 
3.6.2), Seaborn (v. 0.12.0), Plotly (v. 5.11.0), Keras (v. 2.10.0), Statsmodels (v. 0.13.2), SDV (v. 0.17.1), and Graph 
Viz (v. 0.20.1) to process data and build the AI models. We have set up the Python environment in the Windows 
10 operating system using Anaconda distribution and used the Jupiter Notebook v. 6.5.2 for the development, 
model analysis, and data visualization. The targeted system consists of 16 GB RAM and 64-bit architecture. As 
the dataset is small, we performed the overall experiment on Central Processing Unit (CPU). Moreover, we used 
complementary open-source tools, such as Protege (v. 5.x) and Apache Jena for the design, development and 
management of semantic data and ontologies.

Table 5.  MOX2-5 activity data details for participants (N = 16).

Participant(s)
Duration of data 
collection (days)

Considered Total 
records Total sedentary seconds Total VPA seconds Total MPA seconds Total LPA seconds Total steps

P1 43 43 3,512,792 8510 52,196 183,702 392,512

P2 48 48 4,261,190 50,214 95,730 200,524 588,132

P3 30 30 2,293,208 24,248 62,502 65,494 273,708

P4 31 31 3,065,884 15,156 23,402 254,332 442,365

P5 30 30 2,402,790 43,104 57,606 123,170 398,029

P6 30 30 2,316,338 51,094 64,885 77,141 305,673

P7 39 39 3,784,340 78,908 53,876 245,160 398,296

P8 31 31 3,028,756 112 38,230 103,480 252,551

P9 32 32 2,623,966 30,722 72,308 153,174 419,063

P10 31 31 2,395,160 27,024 58,846 120,820 347,144

P11 33 33 3,061,236 15,432 45,440 247,896 436,404

P12 31 31 590,028 25,142 37,680 151,150 271,888

P13 31 31 2,297,915 10,006 27,487 135,314 269,258

P14 30 30 1,963,218 14,891 39,670 193,226 320,134

P15 38 38 925,614 256,896 58,212 32,272 411,033

P16 31 31 664,302 18,746 63,638 187,498 341,063

Table 6.  Participant characteristics (n = 16).

Factors Mean (µ) SD (σ) Min Max

Age 35.375 7.03 21 51

Height (cm) 173.5 8.02 158.5 184.0

Weight (kg) 77.0 16.36 55.0 107.0

BMI 25.38 3.93 19.41 31.604

Duration 33.6875 5.41 30 48

Total sedentary minutes 2,449,171 1,051,610.5 590,028 4,261,190

Total VPA minutes 41,887.81 60,688.5 112 256,896

Total MPA minutes 53,231.75 17,965 23,402 95,730

Total LPA minutes 154,647.1 66,540.6 32,272 254,332

Total steps 366,703.3 87,202.25 252,551 588,132
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Figure 3.  The class distribution for the MOX2-5 dataset in the pie-chart.

Table 7.  Description of the FGC datasets.

Count Mean Std Min 25% 50% 75% Max

Sedentary 539 75,539.8 33,222.5 − 12,580.6 57,511.8 77,359.9 92,221.6 186,288.3

LPA 539 4861.79 2951.31 322.38 2664.50 4399.28 6333.91 19,853.06

MPA 539 1520.64 1160.05 − 87.49 636.20 1193.40 2197.69 5804.55

VPA 539 730.65 1121.41 − 1028.60 33.30 495.21 1006.86 6921.35

Steps 539 10,588.66 5385.92 − 2376.91 6674.32 9865.35 13,758.37 32,111.69

Active 539 2.37 1.42 0.00 1.00 2.00 4.00 4.00

Table 8.  Description of the FC datasets.

Count Mean Std Min 25% 50% 75% Max

Sedentary 539 48,557.4 30,301.9 3172.0 20,627.5 59,056.5 69,996.5 156,329.0

LPA 539 7004.91 3820.56 126.0 4254.50 6317.0 8813.5 18,709.0

MPA 539 1496.56 1466.66 0.0 529.0 1084.0 2047.0 8038.0

VPA 539 885.49 1456.75 0.0 0.0 317.0 1075.5 9714.0

Steps 539 12,116.05 5956.09 345.0 6674.32 12,169.0 15,749.5 42,815.0

Active 539 2.76 1.43 0.00 2.00 3.00 4.00 4.00

Table 9.  Description of the FT datasets.

Count Mean Std Min 25% 50% 75% Max

Sedentary 539 8641.4 2127.3 4283.0 7166.7 8405.3 10,100.5 16,063.0

LPA 539 902.23 279.61 346.2 688.50 862.52 1081.63 1909.88

MPA 539 − 180.44 150.69 − 614.83 − 285.63 − 176.18 − 62.73 188.35

VPA 539 272.85 76.11 114.34 219.66 264.21 322.92 528.26

Steps 539 1836.82 425.53 852.06 1504.09 1793.63 2102.72 3397.36

Active 539 0.00 0.00 0.00 0.00 0.00 0.00 0.00
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Ontology evaluation and querying
Protege is typically used for the visual development and management of ontology, making it easier for ontology 
engineers and domain experts to create and edit. Once ontology was created, we used Apache Jena applica-
tions for semantic data processing and reasoning. Apache Jena leveraged for data integration, querying, and 
reasoning with RDF data management, ontology reasoning, SPARQL query, and integration. Jena helped in 
In-Memory ontology persistence with triple store database (TDB). The Fuseki server and ARQ engine helped 

Figure 4.  The comparison between R (1), FGC (2), FC (3), and FT (4) datasets.

Figure 5.  The absolute log means and std between the R and FC datasets.



15

Vol.:(0123456789)

Scientific Reports |         (2024) 14:4634  | https://doi.org/10.1038/s41598-024-55183-6

www.nature.com/scientificreports/

in remote federated querying and REST-style interaction during SPARQL query processing. The querying of 
subject, predicates in the ontology and the loading of ontology took approximated < 0.3 s. We used the Hermit 
reasoner from Protégé editor (V.5.x) for checking the structural consistency of the proposed ontology model as 
it performed the best (execution time ≈ 1 s) as compared to other reasoners, such as Pellet, RacerPro, Fact++. 
Supplementary Material-6 represents sample SPARQL queries that demonstrate we retrieved essential informa-
tion from the proposed ontology as presented in Supplementary Material-2. Our OWL ontology supports OWL 

Figure 6.  The absolute log means and std between the R and FGC datasets.

Figure 7.  The cumulative sums per feature between the R and FC datasets.
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Figure 8.  The cumulative sums per feature between the R and FGC datasets.

Figure 9.  The distribution per feature between the R and FC datasets.
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Full specification which is a variant of OWL with its own set of logic and reasoning characteristics. The OWL 
Document Manager facilitated the creation and management of OWL ontology, to leverage the expressiveness 
of predicate logic within OWL.

Evaluation outcomes
According to the result, the FT data produced biased values after 50,000 epochs. Therefore, we excluded the FT 
dataset to determine MLP classification model’s (see Fig. 11) performance in comparison with the real dataset 
(see Tables 7, 8, 9 and 10). To determine the model classification efficiency, we trained a MLP classifier using the 
following data samples—R, FGC, FC, FGC + R, FC + R and GC + FC + R. In FGC + R, FC + R and GC + FC + R, 
we trained the MLP model with synthetic data and perform classification on the real data, following the transfer 
learning approach. The average classification outcomes of four executions have been captured in Tables 7, 8, 9 and 
10. In our pervious  study9, we compared the predictive performances of our designed and developed MLP model 
with other state-of-the-art timeseries classification models, such as Rocket, MiniRocket, and MiniRocketVoting 
and our MLP model outperformed other classifiers on real. Furthermore, we have extended the study with a 
comparative predictive analysis on synthetic datasets. Therefore, in Tables 10, 11, 12 and 13, we have captured 
the results of these classifiers on different datasets to compare the performances. According to the results in in 
Tables 10, 11, 12 and 13, the synthetic datasets consistently lead to accuracy improvements.

The Rocket, MiniRocket, and MiniRocketVoting classifiers are all part of the "Rocket" family of algorithms, 
which are designed for efficient and effective timeseries classification. These algorithms were introduced to 
address challenges in processing timeseries data, such as high dimensionality and the need for computationally 
efficient feature extraction. While these classifiers offer advantages, it’s essential to note that their performance 
may vary based on the specific characteristics of the dataset and the requirements of the classification task.

The importance of traditional MLP models compared to other state-of-the-art classifiers depends on the 
specific problem, data set size, data set type, and available resources. Careful model selection and hyperparameter 
tuning are crucial to realize their full potential.

Discussion
This section discusses the outcome of the technical validation, the advantages of synthetic data generation in 
healthcare using well-established methods, such as GC, CTGAN, and TABGAN, and challenges associated with 
our data collection.

Principal findings
The proposed ontology with integrated SSN representation enables more detailed modeling and querying of 
physical activity observations, including activity level, number of steps, sensors, and observation time. The 

Figure 10.  The distribution per feature between the R and FC datasets.
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proposed ontology is a simplified structure that does not only support data integration, semantic understanding, 
sensory observation in a structured way, but also supports standardization, interoperability, semantic modeling of 
predictive analysis based on sensory observations, proper reasoning, and easy querying for knowledge retrieval.

Based on the experimental evaluation, Jaccard Similarity reveals that GC produced better synthetic data 
samples than the CTGAN method with a close cumulative sum per feature. According to the OSL statistics FGC 
and FC datasets are close to the real MOX2-5 d2ataset based on individual and cumulative variable evaluation. 
However, GC achieved a better pairwise correlation accuracy, whereas CTGAN achieved a better accuracy (see 

Figure 11.  The structure of the designed and developed MLP model for classification with 2405 trainable 
parameters.

Table 10.  MLP classification results on different subsets.

Datasets Records Accuracy (%) F1-score (%) Precision (%) Recall (%) MCC (%)

R 539 71.0 72.5 74.0 71.0 69.0

FGC 539 68.0 68.0 68.0 68.0 65.0

FC 539 73.3 73.0 73.0 73.0 67.0

FGC + R 1078 77.6 77.0 77.0 78.0 71.0

FC + R 1078 81.0 81.0 80.0 81.0 76.0

FGC + FC + R 1617 87.0 87.0 86.0 87.0 83.0

Table 11.  Rocket classification results on different subsets.

Datasets Records Accuracy (%) F1-score (%) Precision (%) Recall (%) MCC (%)

R 539 48.0 48.0 56.0 42.0 45.0

FGC 539 50.0 50.0 50.0 50.0 48.0

FC 539 51.0 51.0 51.0 51.0 50.0

FGC + R 1078 54.6 54.0 54.0 54.0 52.0

FC + R 1078 59.0 59.0 59.0 59.0 57.0

FGC + FC + R 1617 64.0 64.0 64.0 64.0 62.0

Table 12.  MiniRocket classification results on different subsets.

Datasets Records Accuracy (%) F1-score (%) Precision (%) Recall (%) MCC (%)

R 539 51.0 50.2 58.0 45.0 49.0

FGC 539 55.0 55.0 55.0 55.0 52.0

FC 539 58.3 58.0 58.0 58.0 54.0

FGC + R 1078 61.0 61.0 61.0 61.0 59.0

FC + R 1078 65.0 65.0 65.0 65.0 63.0

FGC + FC + R 1617 70.0 70.0 70.0 70.0 68.0
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Table 10). According to Table 10, CTGAN achieved a predictive performance that is better than what we achieved 
with real data and FGC data. Moreover, we have shown that the MLP model has improved its classification accu-
racy with increasing volume of data as it helped the MLP to understand the data pattern better. The TABGAN 
method has not been fruitful for this MOX2-5 datasets. In the future, we can extend this study for scalability 
analysis of deep learning models and other eHealth applications (e.g., eCoaching).

Modern smartphones are equipped with a variety of sensors, such as accelerometers, gyroscopes, and even 
barometers. These sensors are used to provide more advanced step counting functionality compared to traditional 
pedometers. While pedometers rely on relatively simple mechanisms and thresholds to count steps, smart-
phones, smartwatches, and smartphone apps use a combination of advanced sensors and complex algorithms 
to provide more accurate and versatile step counting capabilities. However, they all are not medically approved 
(CE-certified) like MOX2-5. As a part of calibration check we used our MOX2-5 sensor with other devices, such 
as modern smartphones (e.g., OnePlus 6 T, Samsung Galaxy, Nokia), smartwatches (e.g., Samsung Galaxy), and 
smartphone apps (such as pedometer, Racer, Pacer). We asked six individuals (Male: 4, Female: 2) to record 
step count over 2 km (km) for a duration of seven days. We found that MOX2-5 recorded 75–100 steps more 
on average. It seems that the accelerometry algorithm used in MOX2-5 is very sensitive in detecting thresholds.

Importance of synthetic data generation in healthcare
We have shown a direction to use GC, CTGAN, and TABGAN on top of the real MOX2-5 datasets to do a 
comparative analysis and show that MLP model efficiency grows with the increasing volume of training data. 
The synthetic data generation process will be helpful in the creation of a robust method for the classification of 
activity types. The use of synthetic data may open opportunities for large-scale data sharing, model scalability, 
model efficiency, quality control, diversity, experimentation, availability, and analysis without revealing sensi-
tive information.

Though the used real MOX2-5 dataset is small, we have shown a direction to use the best data synthetization 
method to use on real datasets for generating synthetic data in a large scale. It can be helpful for other research 
communities based on their research focus and needs. We would like to emphasize that such a synthetic dataset 
can provide unique benefits that may not be achievable with real data alone. The use of synthetic dataset may 
have the following advantages.

• Privacy: Synthetic data can help to address privacy concerns and protect sensitive information. In many 
cases, it may be difficult or impossible to access or share real data due to privacy regulations or ethical 
considerations. By using synthetic data, researchers can create realistic and representative datasets without 
compromising privacy.

• Adding more data points: The synthetic data can be used to augment existing datasets, providing more data 
points and a wider range of scenarios to test hypotheses. This can help to increase statistical power and 
improve the robustness of analyses.

• Cost Effectiveness: The synthetic data can be used to simulate scenarios that are not currently feasible to 
observe in real life. For example, it may be difficult or costly to collect data on rare diseases or events, or to 
study the effects of interventions that cannot be ethically or practically tested on human subjects. Synthetic 
data can be used to simulate these scenarios and generate valuable insights. Generating synthetic data can be 
less expensive than collecting and processing real data. This is especially useful in situations where the cost 
of obtaining real-world data is prohibitive, such in large-scale simulation or experimental studies.

• Diversity: Synthetic data can be used to create a wide variety of scenarios and conditions that may not be 
observed in real-world data. This is useful when the goal is to test the robustness of a model or algorithm 
under different conditions.

• Quality Control: Synthetic data can be used to create high-quality datasets with well-known ground-truth 
labels. This is useful for benchmarking algorithms and evaluating their performance in a controlled environ-
ment.

• Availability: In some cases, real data may not be available due to legal, ethical, or practical constraints. In 
these cases, synthetic data can be used as surrogate indicators so that researchers and practitioners can still 
make progress toward their goals.

Table 13.  MiniRocketVoting classification results on different subsets.

Datasets Records Accuracy (%) F1-score (%) Precision (%) Recall (%) MCC (%)

R 539 42.0 41.3 44.0 39.0 41.0

FGC 539 44.0 44.0 44.0 44.0 43.0

FC 539 47.0 47.0 47.0 47.0 44.0

FGC + R 1078 50.0 50.0 50.0 50.0 48.0

FC + R 1078 54.0 54.0 54.0 54.0 52.0

FGC + FC + R 1617 59.0 59.0 59.0 59.0 57.0
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Challenges associated with data collection
Recruiting participants for sensor-based activity data collection in Norway, like in any research involving human 
subjects, comes with its own set of challenges, such as—a. Privacy Concerns: Norway has strict data protection 
laws such as the GDPR, which requires researchers to obtain informed consent and ensure the privacy and 
security of participant data. Solving these problems can be time-consuming and complex, b. Informed Consent: 
Obtaining informed consent from participants is critical, but explaining the technical aspects of sensor data 
collection to non-technical participants can be difficult. It is important to ensure that participants understand 
what data is being collected and how it will be used, c. Recruitment Channels: Identifying appropriate recruit-
ment channels to reach potential participants can be challenging. It involves working with healthcare facilities 
and community organizations and online platforms to find suitable candidates, d. Sample Representativeness: It 
is difficult to ensure that the sample of participants is representative of the broader population. Bias may occur 
if certain groups are more willing or able to participate in sensor-based data collection studies, e. Technology 
Literacy: The success of sensor-based data collection depends on the ability of participants to interact with and 
understand the technology involved. Ensuring that participants have the necessary technological literacy can be 
challenging, especially for older or less tech-savvy populations, f. Participant Compliance: Participants must follow 
instructions to always wear or use the sensor. Maintaining participant compliance throughout the study can be 
challenging as some may forget to use the devices or feel uncomfortable, g. Data Quality: Ensuring the quality 
of the data collected is critical. Technical issues, sensor failure, or incorrect use by participants may cause data 
inaccuracies, h. Ethical Considerations: Researchers must consider the ethical implications of sensor-based data 
collection, especially when the data collected may reveal sensitive information about participants, i. Recruitment 
Costs: From purchasing and maintaining sensors to participant incentives, sensor-based data collection research 
can be costly. Securing adequate funding can be challenging, and j. Cultural and Social Factors: Norway has a 
diverse population, and various cultural and social factors may influence participants’ willingness to study. It is 
important to pay attention to these factors and adjust your recruitment strategy accordingly.

To address these challenges, it is important to work with local research ethics committees to ensure transpar-
ent communication with potential participants and to adopt strategies to make participation as accessible and 
engaging as possible.

Conclusions
In this work, we present the MOX2-5 dataset, its synthetic version, and some baseline experiments. We elaborated 
the semantification rule for annotating sensory observation in SSN Ontology for knowledge representation, 
semantic search, data integration, reasoning, and querying. The choice between SSN and a general ontology 
hinge on the particular use case and needs. General ontologies, such as RDF or OWL excel in broader knowl-
edge representation and may be better suited for applications beyond sensor data and IoT domains. Moreover, 
we explained the real physical activity data collection process with the MOX2-5 activity sensor from sixteen 
real participants and associated challenges. Secondly, we used different synthetic data generation methods, 
such as GC, CTGAN, and TABGAN for generating synthetic subsets of the real data (FGC, FC, and FT) as the 
data volume had been small. We then compared the real data (R) with the generated data (FGC, FC, and FT) 
for individual and cumulative features. We then used all the real data and the subsets (R, FGC, FC, FGC + R, 
FC + R, GC + FC + R. In FGC + R, FC + R, GC + FC + R) for predictive analysis with our designed and developed 
MLP model. We found that the TABGAN method is not suitable for this real MOX2-5 dataset, GC and CTGAN 
methods are neck-to-neck; however, the FC dataset produced better accuracy than the other subsets. All the real 
and synthetic subsets of the dataset and corresponding experiments are publicly available for study replication 
and future studies.

Data availability
All data generated or analyzed during this study in progress are available in the public GitHub repository. Moreo-
ver, datasets are available with this paper as supplementary files in CSV format. AC can be contacted if someone 
wants to have more clarification. GitHub: https:// github. com/ ayan1 c2/ Activ ityCl assifi cati on. git.

Received: 7 October 2023; Accepted: 21 February 2024

References
 1. Benefits of Physical Activity. Webpage: https:// www. cdc. gov/ physi calac tivity/ basics/ pa- health/ index. htm. (Acceded on 18th Sep-

tember 2023).
 2. Chatterjee, A. et al. ProHealth eCoach: User-centered design and development of an eCoach app to promote healthy lifestyle with 

personalized activity recommendations. BMC Health Services Res. https:// doi. org/ 10. 1186/ s12913- 022- 08441-0 (2022).
 3. Physical activity. Webpage: https:// www. who. int/ news- room/ fact- sheets/ detail/ physi cal- activ ity. (Acceded on 18th September 

2023).
 4. Barkley, J. E. et al. Impact of activity monitoring on physical activity, sedentary behavior, and body weight during the COVID-19 

pandemic. Int. J. Environ. Res. Public Health 18(14), 7518. https:// doi. org/ 10. 3390/ ijerp h1814 7518 (2021).
 5. Thambawita, V. et al. (2020) ‘PMDATA’. in Proceedings of the 11th ACM Multimedia Systems Conference [Preprint]. https:// doi. org/ 

10. 1145/ 33398 25. 33949 26.
 6. Crowd-sourced Fitbit datasets 03.12.2016-05.12.2016 (Acceded on 2nd January 2023). https:// doi. org/ 10. 5281/ zenodo. 53894.
 7. Pires, I. M. et al. Daily motionless activities: A dataset with accelerometer, magnetometer, Gyroscope, environment, and GPS Data. 

Sci. Data. https:// doi. org/ 10. 1038/ s41597- 022- 01213-9 (2022).
 8. MOX Accelerometer. Webpage: http:// www. accel erome try. eu/. (Acceded on 18th September 2023).
 9. Chatterjee, A. et al. An automatic and personalized recommendation modelling in activity eCoaching with deep learning and 

ontology. Sci. Rep. https:// doi. org/ 10. 1038/ s41598- 023- 37233-7 (2023).

https://github.com/ayan1c2/ActivityClassification.git
https://www.cdc.gov/physicalactivity/basics/pa-health/index.htm
https://doi.org/10.1186/s12913-022-08441-0
https://www.who.int/news-room/fact-sheets/detail/physical-activity
https://doi.org/10.3390/ijerph18147518
https://doi.org/10.1145/3339825.3394926
https://doi.org/10.1145/3339825.3394926
https://doi.org/10.5281/zenodo.53894
https://doi.org/10.1038/s41597-022-01213-9
http://www.accelerometry.eu/
https://doi.org/10.1038/s41598-023-37233-7


21

Vol.:(0123456789)

Scientific Reports |         (2024) 14:4634  | https://doi.org/10.1038/s41598-024-55183-6

www.nature.com/scientificreports/

 10. Chatterjee, A. et al. An automatic ontology-based approach to support logical representation of observable and measurable data 
for healthy lifestyle management: Proof-of-concept study. J. Med. Internet Res. https:// doi. org/ 10. 2196/ 24656 (2021).

 11. Chatterjee, A. & Prinz, A. Personalized recommendations for physical activity e-coaching (ontorecomodel): Ontological Modeling. 
JMIR Med. Inform. https:// doi. org/ 10. 2196/ 33847 (2022).

 12. Master of Induction. Webpage: https:// induc tioni st. com/ 2021/ 08/a- python- packa ge- to- gener ate- synth etic- data- sdv- examp le- 
with- gauss ian- copula/. (Acceded on 18th September 2023).

 13. Shiotani, M., Iguchi, S. and Yamaguchi, K. (2022) Research on data augmentation for vital data using conditional gan. in 2022 
IEEE 11th Global Conference on Consumer Electronics (GCCE) [Preprint]. https:// doi. org/ 10. 1109/ gcce5 6475. 2022. 10014 132.

 14. Rustad, A. (2022). tabGAN: A Framework for Utilizing Tabular GAN for Data Synthesizing and Generation of Counterfactual 
Explanations (Master’s thesis, NTNU).

 15. Xu, L., & Veeramachaneni, K. (2018). Synthesizing tabular data using generative adversarial networks. arXiv preprint arXiv: 1811. 
11264.

 16. Goodfellow, I. (2016). Nips 2016 tutorial: Generative adversarial networks. arXiv preprint arXiv: 1701. 00160.
 17. Goodfellow, I., Bengio, Y. & Courville, A. Deep Learning (MIT Press, 2016).
 18. SDV. Webpage: https:// pypi. org/ proje ct/ sdv/. (Acceded on 18th September 2023).
 19. Chatterjee, A., Gerdes, M. W. & Martinez, S. G. Identification of risk factors associated with obesity and overweight—A machine 

learning overview. Sensors 20(9), 2734. https:// doi. org/ 10. 3390/ s2009 2734 (2020).
 20. Chatterjee, A. et al. ‘A statistical study to analyze the impact of external weather change on chronic pulmonary infection in South 

Norway with machine learning algorithms. Commun. Comput. Inform. Sci. https:// doi. org/ 10. 1007/ 978-3- 030- 71711-7_ 10 (2021).
 21. Niwattanakul, S., Singthongchai, J., Naenudorn, E., & Wanapu, S. (2013). ‘Using of Jaccard coefficient for keywords similarity’. in 

Proceedings of the International Multiconference of Engineers and Computer Scientists (Vol. 1, No. 6, pp. 380–384).
 22. Horrace, W. C. & Oaxaca, R. L. Results on the bias and inconsistency of ordinary least squares for the linear probability model. 

Econ. Lett. 90(3), 321–327 (2006).

Acknowledgements
The authors acknowledge University of Agder, Norway, to purchase MOX2 activity monitors. AC invited par-
ticipants and handed over the MOX2-5 devices for anonymous activity data collection following the ethical 
guidelines and consent signing from Grimstad, Norway. Experiments have been carried out at HOST, SimulaMet.

Author contributions
A.C.: Conceptualization, Ideation, Methodology, Data Collection, Data Analysis, Writing—original draft, Writ-
ing—review & editing. M.G.: Ethical Approval, Sensor Budgeting, Sensor Purchasing, and Data Collection. A.P.: 
Ethical Approval and Sensor Purchasing. M.R.: Writing—review & editing. S.M.: Ethical Approval and Sensor 
Purchasing.

Funding
Open access funding provided by University of Agder. This research work is funded by University of Agder (UiA), 
Norway, and UiA will pay the open-access (OA) charge.

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https:// doi. org/ 
10. 1038/ s41598- 024- 55183-6.

Correspondence and requests for materials should be addressed to A.C.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2024

https://doi.org/10.2196/24656
https://doi.org/10.2196/33847
https://inductionist.com/2021/08/a-python-package-to-generate-synthetic-data-sdv-example-with-gaussian-copula/
https://inductionist.com/2021/08/a-python-package-to-generate-synthetic-data-sdv-example-with-gaussian-copula/
https://doi.org/10.1109/gcce56475.2022.10014132
http://arxiv.org/abs/1811.11264
http://arxiv.org/abs/1811.11264
http://arxiv.org/abs/1701.00160
https://pypi.org/project/sdv/
https://doi.org/10.3390/s20092734
https://doi.org/10.1007/978-3-030-71711-7_10
https://doi.org/10.1038/s41598-024-55183-6
https://doi.org/10.1038/s41598-024-55183-6
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Semantic representation and comparative analysis of physical activity sensor observations using MOX2-5 sensor in real and synthetic datasets: a proof-of-concept-study
	Overview
	Motivation
	Novel contribution
	Aim of the study
	Methods
	Data collection
	Participants and related distributions
	Device information, value type, and specification
	Sampling rate
	Amplitude of the acceleration signal and movement intensity
	Device wear location
	Selection of activity sensor for this study case
	Data acquisition procedure

	Proposed ontology model for semantic representation
	Ontology vs. databases
	Ontology structure
	Proposed ontology
	Activity level classification with MLP model

	Synthetic tabular dataset generation
	Gaussian Capula (GC)
	CTGAN
	TABGAN

	Performance metrics
	Classification
	Synthetic data quality evaluation

	Ethical approval and consent to participate

	Results
	Data records
	Experimental setup
	Ontology evaluation and querying
	Evaluation outcomes

	Discussion
	Principal findings
	Importance of synthetic data generation in healthcare
	Challenges associated with data collection

	Conclusions
	References
	Acknowledgements


