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An improved V‑Net lung nodule 
segmentation model based on pixel 
threshold separation and attention 
mechanism
Xiaopu Ma 1*, Handing Song 2, Xiao Jia 1 & Zhan Wang 2

Accurate labeling of lung nodules in computed tomography (CT) images is crucial in early lung 
cancer diagnosis and before nodule resection surgery. However, the irregular shape of lung nodules 
in CT images and the complex lung environment make it much more challenging to segment lung 
nodules accurately. On this basis, we propose an improved V‑Net segmentation method based on 
pixel threshold separation and attention mechanism for lung nodules. This method first offers a data 
augment strategy to solve the problem of insufficient samples in 3D medical datasets. In addition, 
we integrate the feature extraction module based on pixel threshold separation into the model to 
enhance the feature extraction ability under different thresholds on the one hand. On the other hand, 
the model introduces channel and spatial attention modules to make the model pay more attention 
to important semantic information and improve its generalization ability and accuracy. Experiments 
show that the Dice similarity coefficients of the improved model on the public datasets LUNA16 and 
LNDb are 94.9% and 81.1% respectively, and the sensitivities reach 92.7% and 76.9% respectively. 
which is superior to most existing UNet architecture models and comparable to the manual level 
segmentation results by medical technologists.

Lung cancer is a common malignant tumor. According to the latest Global Cancer Research Association data, 
lung cancer has become one of the most deadly cancers  worldwide1. Up to 2016, the global incidence and mor-
tality rate of lung cancer has surpassed all other types of cancers, making it one of the most severe public health 
problems. This data shows lung cancer significantly threatens people’s health and social  development2. The 
early imaging manifestation of lung cancer is the presence of lung nodule  formation3. According to the different 
characteristics of lung nodules, they can be divided into seven categories: isolated nodule, juxta pleural nodule, 
juxta vascular nodule, cavitary nodule, calcific nodule, GGO nodule, and small  nodule4. The clinical features of 
various lung nodules are shown in Fig. 1.

Due to the concealment of lung cancer, most patients have missed the best stage of treatment when they are 
diagnosed with lung cancer. Therefore, timely detection of lung cancer and effective treatment under scientific 
intervention are the best strategies to improve the survival rate of lung cancer patients. Recent research has shown 
that low-dose computed tomography (CT) scans can be used to determine the morphology of lung nodules, 
allowing for accurate screening of early-stage lung cancer to reduce the risk of death in lung cancer patients 
 significantly1. Therefore, precise identification and segmentation of lung nodules have become a crucial part of the 
later treatment of lung cancer, and it is also a difficult point in clinical research. However, accurate segmentation 
and screening of many lung nodules is a massive test for clinicians ’ experience, technique, and energy. This leads 
to the lack of empirical misdiagnosis and missed diagnosis in manual lung nodular  segmentation5. Although 
deep learning has made some achievements in lung nodules segmentation, there are still many problems:

• CT medical datasets are very limited, and an effective method for data augmentation of 3D medical image 
datasets is still lacking.

• The volume of lung nodules is small, its proportion in CT images is low, and the general 3D neural network 
model is challenging to extract the fine and hierarchical features of the lesion area. Hence the segmentation 
effect of the traditional operation is not good.
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Based on the above disadvantages, the main contributions of this research are as follows: 

1. In the data processing stage, a method suitable for 3D medical data augmentation is proposed to augment 
the dataset by doing slice reverse order on the cross-section and matching plane graph transformation, which 
has solved the problem of insufficient medical data samples.

2. In the model construction stage, we propose a separation module based on pixel thresholds and also integrate 
the channel and spatial attention mechanisms into the model. The model strengthens the ability to extract 
hierarchical features and the learning ability of important feature information, respectively, and improves 
the segmentation ability and accuracy of the improved model.

The structure of this paper is as follows: In the Related Works section, we summarize the research work and 
progress of 2D segmentation, multi-view 2D segmentation (pseudo-3D segmentation), and 3D segmentation 
according to different segmentation methods, and compare the advantages and disadvantages of various tech-
nologies. In the section of “Materials and methods”, we introduce the methods and advantages used in this paper 
in detail, which mainly include improved model construction, input layer design based on pixel threshold feature 
separation, downsampling layer integrated with 3D-CBAM attention, and activation function replacement. The 
Experiments and Results section mainly introduces the experimental dataset and its processing and augmenta-
tion, experimental hardware and software environment configuration, and model evaluation index. In addition, 
this section also includes performance comparison experiments between the methods used in this paper and 
other methods on the same dataset, ablation experiments of model improvement and data augmentation meth-
ods, and specific analysis of each experiment. Finally, we briefly summarize the proposed methods and future 
work directions in the conclusion part.

Related works
In recent years, many deep learning methods have been proposed and applied to lung nodule segmentation, 
which can help doctors diagnose and treat lung cancer patients more accurately by learning a large amount of 
medical image data and extracting features of nodules from them to achieve automatic nodule segmentation 
while improving clinical efficiency and accuracy.

According to the different dimensions of input medical data, the segmentation of lung nodules based on 
deep learning can be divided into 2D segmentation for lung nodule slices and 3D segmentation for 3D medi-
cal volumes. For 2D segmentation works, Long et al.6 proposed the use of Full Connection Network (FCN) for 
image semantic segmentation, a network model that can accept image inputs of different sizes while enabling 
a large improvement in segmentation speed, providing a new idea for the task of lung nodule segmentation. 
In 2015, Ronneberger et al.7 proposed a UNet network based on encoder-decoder structure and applied to 
medical image data segmentation tasks. The architecture consists of a contracting path to capture context and a 
symmetric expanding path that enables precise localization. In addition, it creatively uses a method called Skip 
Connection to combine the low-level semantic information extracted from each layer of the encoder with the 
abstract semantic information of the decoder , which greatly improves the accuracy of segmentation. This work 
has been proved to significantly improve the accuracy of detection and segmentation of multiple biomedical 
images including pulmonary nodule segmentation. In 2017, Wang et al.8 presented a multi-view convolutional 
neural networks (MV-CNN) for lung nodule segmentation. The MV-CNN specialized in capturing a diverse set 
of nodule-sensitive features from axial, coronal and sagittal views in CT images simultaneously. The proposed 
network architecture consists of three CNN branches, where each branch includes seven stacked layers and takes 
multi-scale nodule patches as input. The average dice similarity coefficient (DSC) is 77.67%, and the average 
surface distance (ASD) is 0.24, which is superior to the traditional image segmentation method. Wang et al.9 
proposed an improved UNet segmentation network based on parallel attention and Long Short-Term Memory 
(LSTM)10. The network model uses a mixed loss function, which effectively alleviates the problem of category 
imbalance and achieves better segmentation results. In 2020, Varma et al.11 proposed an improved U-Net network 
combining bidirectional cross-scale connection, weighted feature module (Bi-FPN)12, and improved activation 
function. They achieved a Dice similarity coefficient (DSC) of 82.82%. Li et al.13 proposed an encoder-decoder 
structure model based on Transformer, which creatively uses the Cross-Transform model and the bidirectional 
vertebral module to extract features and effectively achieve a more accurate segmentation effect. Ma et al.14 pro-
posed a 2D Multi-level Dynamic Fusion Network (MDFN) to solve the problem of key space and edge detail loss 
in the process of pulmonary nodule segmentation. The network enriches the receptive field and captures multi-
scale context information by constructing a multi-scale spatial and channel feature selection module (MSCFS). 

Figure 1.  Legend of each morphological nodule.
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Finally, the test on the LUNA16 dataset reaches the level of DSC coefficient of 89.19%, which proves the effective-
ness of the scheme. In 2021, Dutande et al.15 proposed a network model SquExUNet, which introduced attention 
mechanism based on U-Net, for the segmentation of pulmonary nodules, and obtained a DSC coefficient of 0.80 
on LIDC, LNDb challenge dataset and purely independent Indian Lung CT Image Database (ILCID) clinical 
dataset. Sensitivity is 90.01%. In 2023, Deepajothi et al.16 proposed an improved segmentation model based on 
U-Net to accurately identify pulmonary nodules and determine their malignancy. The method is verified on the 
public dataset LUNA16, and the DSC coefficient of the segmentation result reaches 89%, which achieves reliable 
results. Hou et al.17, proposed a model named MSR-UNet, which is based on U-Net network model and integrates 
self-attention, multi-scale features and residual structure, and achieves a good Dice coefficient of 91.87% and 
an IoU of 86.8% on LIDC dataset. Tang et al.18 proposed a Res2Net50-based backbone network, which includes 
three modules : High-Level Feature Decoder Module (HDM), Low-Level Feature Decoder Module (LDM) 
and Complementary Module (CM). Through the recognition and fusion of high-level and low-level semantic 
information, more accurate edge segmentation is achieved. Finally, the DSC coefficient is 83.5% on the LUNA16 
dataset. The segmentation accuracy with a sensitivity of 86.5% is higher than most existing methods. Tang et al.19 
proposed a scale-aware-based multiattention-guided reverse network (SM-RNet), which extracts multi-scale 
features with channel and scale awareness, and mines detailed features through the scale-guided spatial attention 
(SSA) block and a new RE block attention mechanism. Finally, the DSC coefficients of the model on the public 
datasets FUSCC and LUNA16 reach 89.29% and 86.496%, respectively, and the model has strong robustness. 
Joshua et al.20 used the logical distribution model of three parameters in the feature extraction process and used 
the U-Net network structure as the benchmark model. The scheme achieved excellent results in the segmentation 
of pulmonary nodules. The DSC coefficient, sensitivity and specificity on the LUNA16 public dataset reached 
97.3%, 96.5% and 94.1%, respectively, which exceeded most of the existing methods.

Although the above segmentation method based on the 2D convolutional neural network has achieved good 
accuracy through various improvements, such methods can only learn the semantic features of plane images, 
lack feature extraction ability for high-dimensional data features, and are sensitive to feature changes caused by 
graphic deformation.

Based on the problems of 2D segmentation, some researchers use the multi-view segmentation fusion method 
to make up for the defects of the 2D segmentation model. Among them, Zhang et al.21 proposed a 2.5D-based 
segmentation method for medical image segmentation. This method enables the network to have a deeper and 
broader architecture while retaining some 3D semantic information. The results of training and testing on the 
dataset of Liver and Tumor Segmentation Challenge (LiTS) show that the method has an accuracy close to 
3D segmentation effect when the slice layer spacing is small. However, this method is greatly affected by the 
distance between slices. Zheng et al.22 proposed a model for 2.5D segmentation, which offered an association 
module for slices from different perspectives and designed a new loss function (Square Root Dice loss) to deal 
with the trade-off between Sensitivity and Specificity. Wardhana et al.23 explored the multi-view segmentation 
model’s model structure, parameter tuning, and the relationship between the number of network layers and the 
design. Networks are trained and tested by utilizing the dataset from the liver and tumor segmentation challenge 
(LiTS). The network performance was further evaluated by comparing the network segmentation with manual 
segmentation from nine technical physicians and an experienced radiologist. In 2023, Chen et al.24 proposed an 
end-to-end network called Fast Multiple Clipping Guided Attention (FMGA), which uses the fusion features 
in two directions of 2D slices to aggregate contextual feature information, and finally achieved good results. 
Ni et al.25 proposed a coarse-to-fine 2-stage framework consisting of the following 2 convolutional neural net-
works: a 3D multiscale U-Net used for localization and a 2.5D multiscale separable U-Net (MSU-Net) used for 
segmentation refinement. The proposed method achieved a Dice similarity coefficient (DSC) of 83.04% and an 
overlapping error of 27.47% on the dataset. The 2.5D multi-view segmentation model considers the speed of 2D 
segmentation and the three-dimensional feature information of 3D objects. However, it is still affected by the 
perspective direction of data slices and has a poor segmentation effect, and it is not suitable for object segmenta-
tion with strong spatial variation.

To address the deficiencies encountered in 2.5D segmentation, some scholars have tried to use 3D neural 
network architecture in semantic segmentation. Chen et al.26 proposed a model called ViT-V-Net, which uses 
Multi-Head Attention in  ViT27 networks to relate long-range spatial features in medical images. To accurately 
learn the location features of lesions and counteract the loss of detailed localization information due to continu-
ous downsampling, the authors combined the ViT-based image segmentation method with ConvNets to improve 
the recovery of detailed localization information and achieved superior performance. However, the technique 
uses more parameters and computer arithmetic power. Wang et al.28 proposed a multimodal medical segmenta-
tion model Med-DANet for the problem that 2D segmentation methods ignore the heterogeneity of image slice 
data in the segmentation process of 3D medical images (e.g. CT and MRI).The model based on adaptive model 
selection to achieve effective accuracy and efficiency trade-off. For each slice of the input 3D MRI volume, the 
proposed method learns a slice-specific decision by the Decision Network to dynamically select a suitable model 
from the predefined Model Bank for the subsequent 2D segmentation task.The proposed method finally achieved 
better segmentation results. Hatamizadeh et al.29 proposed a new architectural network UNEt TRansformers 
(UNETR), that utilizes a transformer as the encoder to learn sequence representations of the input volume and 
effectively capture the global multi-scale information, while also following the successful ”U-shaped” network 
design for the encoder and decoder. The transformer encoder is directly connected to a decoder via skip connec-
tions at different resolutions to compute the final semantic segmentation output. The model has demonstrated 
excellent performance on several medical datasets. Yu et al.30 found a 3D lung nodule segmentation network 3D 
Res U-Net that combines  ResNet31 and UNet. The model replaces the ordinary convolution in the encoder and 
decoder structure with the residual module, greatly improving the segmentation performance. The segmenta-
tion effect is higher than the 3D U-Net based on the residual mechanism. Tyagi et al.32 proposed a lung nodule 
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segmentation model CSE-GAN based on a GAN generation  network33, which obtained better segmentation 
results by learning data distribution. The Dice similarity coefficient of the model reached 80.74%, and the sensitiv-
ity reached 85.46%. Hou et al.34 proposed a combination of CRF (Conditional Random Field)35 and 3D-UNet36. 
The Dice score of this method got 93.25% on the LUNA16 dataset.

However, 3D segmentation also has a few shortcomings, such as significant sample demand and insufficient 
accuracy of edge information for irregularly segmented objects. On this basis, this paper proposes an improved 
V-Net37 segmentation model, based on pixel threshold separation and attention mechanism, named Dig-CS-
VNet, to overcome the above disadvantages.

Materials and methods
Dig‑CS‑VNet structure design
The improved V-Net model for lung nodule segmentation (Dig-CS-VNet) proposed in this paper is shown in 
Fig. 2. The cropped 3D CT image is first fed into the input layer, and the channel is expanded to 16 channels by 
the feature separation module (Dig_Sep) and the feature replication operation. To enable the encoder to be more 
fine-grained for specific semantic information acquisition and thoroughly learn the edge contour information of 
the nodule, we incorporate the Three-dimensional Convolutional Block Attention Module (3D-CBAM) atten-
tion module at the end of each downsampling layer. After four downsampling modules, the feature information 
is fed to the decoder. In this part, the feature image size of each output decoder is equal to the corresponding 
level encoder; the encoder splices the output features with the output features of the corresponding decoder as 
the input features of the next layer through a jump connection to fuse the underlying semantic information and 
achieve the purpose of fine segmentation.

Dig_Sep module
Inspired by the adaptive pyramid module Adaptive Structural Pyramid Pooling(ASPP)38 to extract multi-scale 
features of images. In this paper, we propose a network module Digit_Sep for multi-level feature separation and 
extraction based on pixel threshold. Dig_Sep is a new type of portable network module that almost does not 
occupy additional computational overhead. This module can improve the extraction ability of specific features 
and effectively improve the segmentation accuracy of the network by learning the separate parts.

Usually, images are stored in the computer as pixel values. Each pixel corresponds to a gray value, indicating 
the degree of brightness of the point, usually expressed as an integer between 0 and 255. The segmentation task 
in medical images is usually to separate the regions of interest in the picture, and these regions have apparent 
differences in gray level. Therefore, by reasonably dividing the gray threshold of the original image matrix and 
then performing algebraic operations on images of different gray levels, the image semantic features under dif-
ferent thresholds can be separated to separate the regions of interest effectively. In addition, this method can also 
screen out some invalid interference factors and improve the accuracy of image segmentation.

The specific operation of this module is as Fig. 3. Supposed the sample image is a gray image with a size of 
96 × 96. The gray value of each pixel in the image matrix P corresponding to it is represented by the 8-bit binary 
number Pij , and its number from high to low is p1 , p2 ,..., p7 , p8 . We take the image matrix from high to low 
one by one and binarize it according to the threshold to obtain the digital feature map. For example, we take 
p1 as the benchmark. If Pij ≥ 27 , it is assigned to 128; otherwise, 0. Thus the first digital feature map Digit1 is 
obtained. Then, we use the original image matrix to subtract the digital feature map, P = P − Digit1 . Then, based 

Figure 2.  Dig-CS-VNet network architecture.
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on the p2 bit, we repeat the above operation to obtain the second digital feature map Digit2 . Repeat the above 
steps to get eight digital feature maps finally. Finally, we select the retained digital feature map according to the 
specific characteristics of the gray data distribution as the input of subsequent image segmentation. Due to the 
different segmentation objects, the semantic information characteristics are different. Therefore, in the process, 
the representative feature layers with more representative feature information should be selected according to 
the specificity of the working object. In this work, because the high four bits of the separation feature map can 
best represent the texture features of the lung region, we only retain the high four bits of the separation layer as 
part of the input features of the subsequent model.

First, in the input module of Dig-CS-VNet, we use the Dig_Sep module to separate the input original feature 
map into four feature maps with different thresholds. Next, the four feature maps are replicated once in the 
channel dimension to double the final feature map tensor in the channel dimension. In the amplified feature 
map tensor, except for the four newly added feature maps, the remaining channels are still filled with the input 
original feature maps. This processing method aims to make full use of the information extracted from the fea-
ture maps under different thresholds, improve the network’s perception ability of features at different semantic 
levels, and thus improve the segmentation performance of the network. The improved input module processing 
is shown in Fig. 4:

Figure 3.  Dig_Sep block.

Figure 4.  Input model.
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3D‑CBAM attention mechanism
Convolutional Block Attention Module (CBAM)39 is an attention mechanism for enhancing convolutional neu-
ral networks. This attention mechanism consists of two modules: the channel attention module(CAM) and the 
spatial attention module(SAM).

In the CAM process, we first aggregate the spatial information of input features using average-pooling and 
max-pooling operations, generating two distinct spatial feature maps. Subsequently, with the aid of fully con-
nected layers, we perform channel dimension reduction and expansion on these two sets of feature maps, fol-
lowed by an element-wise summation operation. Finally, after a sigmoid activation operation, the ultimate 
channel attention feature is produced. The weights learned through this process are used to weigh the features 
of each channel, enhancing attention to important channels and reducing attention to less important ones. This 
contributes to the model’s improved capture of crucial information from different channels in the input images.

In the SAM stage, the output from the CAM phase serves as input features. Initially, global max pooling and 
global average pooling operations are applied along the channel dimension of the input feature map, resulting in 
two feature maps with dimensions D ×H×W× 1. Subsequently, these two feature maps are concatenated along the 
channel dimension. Following this, a 3 ×3× 3 convolution operation is employed to reduce the channel dimen-
sion to 1, yielding a tensor of size D ×H×W× 1. Finally, the sigmoid activation function is applied to generate the 
spatial attention feature. SAM utilizes the spatial relationships between elements to generate spatial attention 
maps, emphasizing spatial positional information on the feature map and complementing channel attention.

In lung CT images, the distribution of nodules in the lung parenchyma is relatively random. It has a small 
proportion, which leads to the problem of having too many feature maps when convolutional neural networks 
process such images. And most of these feature maps are node-independent and contain a lot of background 
information, which increases the computational and storage costs of the model and reduces the model’s accuracy 
and efficiency. Therefore, to solve this problem, we introduce the 3D-CBAM Attention Mechanism to minimize 
attention to many background regions while paying more attention to small nodule areas in the input image. The 
downsampling layer incorporating the 3D-CBAM attention mechanism is shown in Fig. 5.

To accommodate the task of segmenting 3D network models, we modify the 2D convolutional kernel of the 
CBAM attention mechanism into a 3D convolutional kernel and combined with its characteristics, it is placed 
at the end of each subsampling module, and these attention graphs are multiplied with input feature graphs to 
carry out adaptive feature refinement, to enhance the network model’s retention of low semantic information 
and the ability to express specific features in the subsampling process.

ELU activation function
Exponential Linear Unit (ELU)40 is an activation function. Because it can accelerate learning and improve classi-
fication accuracy, it is widely used in deep neural networks. Unlike other activation functions, ELU has a negative 
value, which helps to push the average unit activation near zero, thus accelerating learning. Specifically, when the 
input is positive, ELU is the same as ReLU; When the information is negative, ELU uses the exponential func-
tion to produce a small negative value. This nonlinear form of negative value can avoid the gradient vanishing 
problem and better handle negative input. This way, the gradient disappearance problem can be avoided, and 
the convergence can be faster during training.

Figure 5.  Sampling layer fusion 3D-CBAM attention mechanism.
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Experimentations
Experimental dataset
Datasets

• LUNA16 dataset: LUNA16 (Lung Nodule Analysis 2016) is a lung nodule analysis dataset, mainly used for 
medical image processing and computer-aided diagnosis research. This dataset comes from LIDC-IDRI (Lung 
Image Database Consortium and Image Database Resource Initiative), which is a large database containing 
lung computed tomography (CT scan) images. The LUNA16 dataset is extracted from LIDC-IDRI and focuses 
on the detection and segmentation of pulmonary nodules. The dataset contains CT image data of 888 cases 
in  total41.

• LNDb dataset: The LNDb dataset was collected by the São João Hospital in Porto, Portugal (CHUSJ) between 
2016 and 2018. The dataset contains a total of 294 CT scans and is used for research on the pulmonary nodule 
identification and diagnosis  system42.

Image preprocessing
In the pre-processing stage of the dataset, the histogram of CT values is first drawn according to the CT sample 
of cases (as shown in Fig. 6), and the distribution range of CT values in the histogram is observed. The content of 
CT values in the input image is screened and cut to between -1000Hu and 400Hu to remove irrelevant informa-
tion and noise, such as air and water. Next, the mask data of the lung parenchymal region provided in the dataset 
was used to further eliminate the areas outside the lungs in the CT image to preserve the lung parenchymal 
region accurately.

Secondly, the corresponding case label file image (3D) was drawn and generated according to the nodule 
contour coordinates stored in the annotation file in the case folder (Supplementary Information 1). Because 
lung nodules occupy a small proportion compared with the whole image layer, data imbalance will occur in the 
subsequent process, hurting the process and the effect of network training. Therefore, according to the coor-
dinates and maximum diameters of the nodule central site provided in the annotation file, the original image 
and its corresponding label image were cut into a cube with the size of 96*96*16 pixels to retain the information 
of a single nodule ultimately. Where 96*96 is the size of the single-layer image, and 16 is the number of image 
layers contained. Figure 7 shows the preprocessing effect of original image slices and corresponding label files.

Data augmentation
Data augmentation is essential in preventing model overfitting, enhancing generalization ability, improving 
segmentation quality, and enhancing model  robustness43. In this paper, in addition to conventional rotation and 
transpose methods, the reverse arrangement and mirror transformation of layers in the Z-axis direction is also 
carried out for the semantic information of data samples in at least three dimensions. Part of the data used in 
this paper to augment the cross-sectional effect is shown in Fig. 8. Various data augmentation methods expanded 
the two datasets to 8746 and 2968 nodule cubes, respectively.

(1)ELU =

{

x , if x > 0

α(ex − 1) , if x ≤ 0

Figure 6.  Histogram of CT values distribution for a case.
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Loss function and optimization strategy
In deep learning, selecting the appropriate loss function and optimization strategy for the model is very impor-
tant. Dice Loss was proposed and used for training in the V-Net network model. However, this function would 
cause profound shock when training samples with unbalanced categories. Therefore, the Cross-Entropy Loss 
function is used in this paper to measure the gap between model prediction results and accurate labels. The 
Cross-Entropy Loss function can effectively reduce the classification error and accelerate the convergence rate 
of the model in the training process. The function expression is as follows:

where N denotes the number of samples, C denotes the number of categories, yij denotes whether the jth category 
of the ith sample is the true category (0 or 1), and pij denotes the probability that the ith sample is predicted to 
be the jth category. This loss function implies that the closer the probability of each category the model indicates 
to the true label, the smaller the loss.

In addition, the Adam optimization  strategy44 is used to update model parameters, which is an adaptive 
learning rate optimization algorithm that can dynamically adjust the learning rate to optimize the model’s train-
ing. Compared with traditional stochastic gradient descent optimization algorithms, the Adam algorithm can 
converge faster and avoid falling into the local optimal solution.

Model training
The hardware environment used in this experiment is: the CPU model is Intel(R) Xeon(R) Platinum 8255C, 
the GPU model is RTX A5000*2, and the memory is 86G. The software environment is: the operating system is 

(2)LCE = −
1

N

∑N
i=1

∑C
j=1yijlog(pij)

Figure 7.  Data preprocessing.

Figure 8.  Cross-sectional data augmentation effect image.
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Ubuntu 18.04; the development environment is Anaconda3; code is compiled using Pycharm, and Python3.8 is 
used as the programming language; the deep learning framework and version are Pytorch-1.7.0, and the GPU 
driver version is CUDA-11.0.

We divided the dataset into 10 parts to verify the model’s accuracy. We adopted a ten-fold cross-validation 
method, of which 9 parts were used as training data and 1 part was used as test data for experiments. The initial 
learning rate init_lr was set to 0.001, and the Adam stochastic optimization algorithm was used. The network 
batch size was set to 16. During the training process, when the network model’s loss declined, and each indicator’s 
trend changed slowly or stagnated, the optimal parameters were saved, and the training process was manually 
terminated. The learning rate was adjusted to 0.1 times the initial value, and the optimal parameters were loaded 
to continue the training for 300 iterations. The loss function decline curve and accuracy curve are shown in Fig. 9.

Evaluation indicators
In this paper, four metrics are used to evaluate the model performance, namely the DSC (Dice Similarity Coef-
ficient), IoU (Intersection over Union), SEN (Sensitivity), and PPV (Positive Predictive Value). The DSC is mainly 
used to evaluate the proportion of overlapping parts between the segmentation results predicted by the model 
and the actual segmentation results. The calculation formulas are as follows :

IoU represents the proportion of the intersection of the prediction result and the accurate label to the union of 
the prediction result and the precise label. The calculation formulas are as follows :

SEN represents the proportion of the actual positive samples that the model correctly predicts as positive samples. 
The calculation formula is :

PPV represents the proportion of positive samples predicted by the model and the actual positive samples. The 
calculation formulas are as follows :

In the formula, TP is the number of true positives, FP is the number of false positives, and FN is the number of 
false negatives. The above four evaluation indicators are between 0 and 1. The higher the segmentation accuracy 
of the network model, the closer the value of each indicator is to 1.

Experimental analysis
Ablation experiments

(3)Dice =
2TP

2TP + FP + FN

(4)IoU =
TP

TP + FP + FN

(5)SEN =
TP

TP + FN

(6)PPV =
TP

TP + FP

Figure 9.  Loss function descent curve and accuracy curve.
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(1) Improved Model Ablation Experiments

To verify the effectiveness of each part of the method in this paper, four ablation experiments are done with 
V-Net as the base network to prove the effectiveness of each part of the improvement work. The results of various 
network segmentation indicators in ablation experiments are shown in Table 1.

Compared with the benchmark network model, V-Net+ELU improves the DSC coefficient by 1.3 percentage 
points compared to V-Net. The DSC coefficient reaches 92.5%. In addition, compared with V-Net + ELU, which 
only changes the activation function, the improved network with the Dig_Sep module and 3D-CBAM mod-
ule achieves 94.2% and 94% in the DSC coefficient, respectively. Compared with the PPV index, the attention 
mechanism is better for optimistic sample prediction than the Dig_Sep module, indicating that the 3D-CBAM 
attention mechanism enhances specific information’s attention and extraction ability. The final improved network 
model architecture Dig-CS-VNet shows significant improvement in the proportion of overlapping regions and 
optimistic sample prediction compared to other network models. The variation curves of IoU and DSC coef-
ficients for each model are shown in Fig. 10.

(2) Data Augmentation Ablation Experiments

To verify the effectiveness of data augmentation, we conducted experiments on the original and augmented 
datasets using the benchmark network V-Net and the improved model separately and compared the results.At 
this stage, we conducted a set of experiments on each of the baseline model and the improved model. Each set 
of experiments includes 3 tests. namely testing on the original dataset without data augmentation; testing on the 
dataset augmented using traditional methods such as rotation, scaling, translation, and grayscale transformation; 
testing on the using the dataset augmented by the method proposed in this article. Testing on the augmented 
dataset. The performance results before and after data augmentation are shown in Tables 2 and 3.

As shown in Table 2, by comparing the experimental indicators of the baseline, the method proposed in this 
paper is about 9.5 percentage points higher than the traditional method on IoU and 6.4 percentage points higher 
on DSC. SEN and PPV increased by 7.2 and 5.2, respectively. Compared with the unaugmented data, the accuracy 
of the first four indicators increased by 14.9, 9.7, 14.8 and 3.4 percentage points, respectively. It shows that the 
V-Net using the data augmentation method proposed in this paper has a higher improvement in the overlap 
ratio and positive prediction of the segmented region. The traditional data augmentation reduces the PPV index 
by about 1.8%, indicating that the traditional augmentation scheme is not conducive to the prediction of correct 
samples in the V-Net segmentation process.

Table 1.  Comparison of ablation experiments on each model.

Models IoU (%) DSC (%) SEN (%) PPV (%)

V-Net 83.9 91.2 88.5 94.1

V-Net+ELU 85.5 92.5 89.7 94.8

V-Net+ELU+Dig_Sep 89.1 94.2 91.9 96.8

V-Net+ELU+3D-CBAM 88.8 94 91.1 97.2

Dig-CS-VNet 90.3 94.9 92.7 97.2

Figure 10.  DSC and IoU accuracy variation curves.
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By comparison, Dig-CS-VNet using the data augmentation method proposed in this paper in Table 3, com-
pared with the experimental results of the original dataset, IoU increased by about 17.4 percentage points, DSC 
coefficient increased by about 10.3 percentage points, SEN and PPV increased by 11.3% and 8.7% respectively. 
Compared with the traditional data augmentation method, there is about 13.8 percentage points improvement in 
IoU, 8.9 percentage points improvement in DSC, and 9.9% and 7.4% improvement in SEN and PPV, respectively. 
Experiments show that the augmentation method proposed in this paper still has a great improvement in improv-
ing the network model. And the improved model does not appear PPV reduction phenomenon in the process of 
using the traditional augmentation method, which proves that the improved network has better positive sample 
prediction ability than V-Net. The above experiments prove that the data augmentation scheme designed in this 
paper is more effective in improving the segmentation accuracy and generalization ability of the model.

As shown in the table above, during the experiment, the IoU changed significantly. After repeated tests and 
comparisons, we found that the scaling operation was not conducive to improving the accuracy of the model 
during the research of this article. We tested the dataset without scaling augmentation., the baseline model and 
the improved model are up to 3.3% and 4.1% higher on DSC respectively, and the IoU performance is 4.4% and 
5.6% higher respectively. In addition, improvements in data augmentation methods and enrichment of data 
samples are also important reasons for the significant improvement in model performance.

The following Fig. 11 shows some of the nodule segmentation results (Supplementary Information 2) in the 
improvement stages from the benchmark network model to the complete improvement network. From top to 
bottom, we found that Dig-CS-VNet has far more advantages than other models for marginal micro nodules. For 
common solitary pulmonary nodules, the effects of each network are similar, among which V-Net + Dig_Sep and 
Dig-CS-VNet are almost consistent with Ground Truth (GT), indicating the effectiveness of extracting hierarchi-
cal features. In the comparison of the segmentation effect of irregular pulmonary nodules, both small pulmonary 
nodules and general pulmonary nodules performed best on the completely improved network. Finally, for pul-
monary nodules with unclear contours, V-Net + 3D-CBAM and Dig-CS-VNet have the best segmentation effect, 
and the edge contour is closer to GT, indicating that the attention mechanism has certain advantages for specific 
semantic information extraction. The segmentation effect verifies the effectiveness of the improved network.

Comparison of experimental effects of different algorithms
In this section, the algorithm is evaluated and compared with other algorithms of the same research work using 
the indicator of DSC introduced above.

In order to ensure the consistency of the experiment, Table 4 only compares with the segmentation method 
under the homologous dataset.The experimental comparison shows that the improved model in this paper per-
forms well on DSC indicator, and the performance is more prominent under the U-Net architecture.

Results
This paper proposes an Dig-CS-VNet model with a V-Net architecture for the lung nodule segmentation, which 
improved based on pixel threshold separation and attention mechanism. This model can effectively solve the 
problem that the small sample size of the medical dataset could be more conducive to training on the one 
hand. On the other hand, this model can utilize hierarchical feature information and detail feature informa-
tion to overcome resulting in poor robustness and inaccurate detail segmentation. The experimental results on 
the public datasets LUNA16 and LNDb demonstrate that our method has achieved significant segmentation 
accuracy. Specifically, the segmentation metrics, including the DSC and SEN, reached high precision at 94.9% 
and 81.1%, respectively. Furthermore, our method exhibited performance with sensitivity at 92.7% and 76.9%, 
respectively. These results surpass the majority of existing segmentation methods, highlighting the outstanding 
performance of our approach.

Table 2.  Comparison of ablation experiments on V-Net.

V-Net IoU (%) DSC (%) SEN (%) PPV (%)

Before augmentation 69 81.5 73.7 90.7

Traditional Method 74.4 84.8 81.3 88.9

Ours 83.9 91.2 88.5 94.1

Table 3.  Comparison of ablation experiments on Dig-CS-VNet.

Dig-CS-VNet IoU (%) DSC (%) SEN (%) PPV (%)

Before augmentation 72.9 84.6 81.4 88.5

Traditional Method 76.5 86 82.8 89.8

Ours 90.3 94.9 92.7 97.2
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Data availability
The datasets utilized and/or analyzed during the current study are accessible via their respective official desig-
nated websites. The LUNA16 dataset can be obtained from Website1 (https:// zenodo. org/ recor ds/ 37232 95) and 
Website2 (https:// zenodo. org/ recor ds/ 41219 26). Similarly, the LNdb dataset is accessible from Website3 (https:// 
zenodo. org/ recor ds/ 66137 14). For additional details about both datasets, please refer to the official websites of the 

Figure 11.  Nodule segmentation result image.

Table 4.  Comparison of model segmentation effects.

Method Dataset DSC(%)

BBCLstm-Unet9 LUNA16 90.83

U-Det11 LUNA16 90.83

CTBP-Net13 LUNA16 91.68

MDFN14 LUNA16 89.19

LNCDS15 LNDb 80.0

Multi-Feature  Fusion18 LUNA16 83.5

SM-RNet19 LUNA16 86.5

CSE-GAN32 LUNA16 80.74

3D-UNet+CRF34 LUNA16 93.25

DAS-Net45 LUNA16 92.05

AWEU-Net46 LUNA16 90.35

nnUNet+ SaTTCA 47 LNDb 71.46

Dig-CS-VNet (Ours) LUNA16/LNDb 94.9/81.1

https://zenodo.org/records/3723295
https://zenodo.org/records/4121926
https://zenodo.org/records/6613714
https://zenodo.org/records/6613714
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LUng Nodule Analysis 2016 (https:// luna16. grand- chall enge. org/) and the Grand Challenge on Automatic Lung 
Cancer Patient Management (https:// lndb. grand- chall enge. org/). In addition, other data information generated 
during the experiment will be collated and stored in the Luna-16-nodules-volume repository (https:// github. 
com/ DigCS/ Luna- 16- nodul es- volume). The datasets generated during and/or analysed during the current study 
are available from the corresponding author on reasonable request.
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