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Point biserial correlation symbiotic 
organism search nanoengineering 
based drug delivery for tumor 
diagnosis
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Amal Al‑Rasheed 4, Mohammed S. Alqahtani 5,6 & Ben Othman Soufiene 7*

Nanoparticulate systems have the prospect of accounting for a new making of drug delivery systems. 
Nanotechnology is manifested to traverse the hurdle of both physical and biological sciences by 
implementing nanostructures indistinct fields of science, particularly in nano‑based drug delivery. 
The low delivery efficiency of nanoparticles is a critical obstacle in the field of tumor diagnosis. 
Several nano‑based drug delivery studies are focused on for tumor diagnosis. But, the nano‑based 
drug delivery efficiency was not increased for tumor diagnosis. This work proposes a method called 
point biserial correlation symbiotic organism search nanoengineering‑based drug delivery (PBC‑
SOSN). The objective and aim of the PBC‑SOSN method is to achieve higher drug delivery efficiency 
and lesser drug delivery time for tumor diagnosis. The contribution of the PBC‑SOSN is to optimized 
nanonengineering‑based drug delivery with higher r drug delivery detection rate and smaller drug 
delivery error detection rate. Initially, raw data acquired from the nano‑tumor dataset, and nano‑
drugs for glioblastoma dataset, overhead improved preprocessed samples are evolved using nano 
variational model decomposition‑based preprocessing. After that, the preprocessed samples as 
input are subjected to variance analysis and point biserial correlation‑based feature selection model. 
Finally, the preprocessed samples and features selected are subjected to symbiotic organism search 
nanoengineering (SOSN) to corroborate the objective. Based on these findings, point biserial 
correlation‑based feature selection and a symbiotic organism search nanoengineering were tested 
for their modeling performance with a nano‑tumor dataset and nano‑drugs for glioblastoma dataset, 
finding the latter the better algorithm. Incorporated into the method is the potential to adjust the 
drug delivery detection rate and drug delivery error detection rate of the learned method based on 
selected features determined by nano variational model decomposition for efficient drug delivery.

Keywords Nanotechnology, Nanoparticles, Variational model decomposition, Point biserial correlation, 
Nanoengineering

There has been a boost in the prevailing methods envisaging new applications over the past few years as far 
as nanotechnology conceptions, materials, and mechanisms are concerned. The current study focuses on the 
evolution of molecular communication (MC) in nanomedicine for an extensive scope of uses. Drug delivery 
refers to a distinct form of drug delivery system wherein the medication is individually delivered only to its site 
of action and not to the target organs.

A compartmental model for the Internet of Bio-Nano Things (IoBNT) was proposed  in1 that in addition to 
the targeted wireless body area networks (BANs) represented by the target tissue, concentric efforts were also 
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made to dispatch therapeutic medicines to a particular diseased cell. With this type of disease, the side effects 
were minimized to a greater extent. Also, a high-affinity legend was designed with the purpose of increasing the 
binding rate with the concerned receptors at the target cell surface that in turn, not only improved the delivery 
rate but also with minimum side effects. Despite improvement in delivery rate with minimum side effects, were 
not found to be sensitive towards noise due to the presence of both categorical and numerical attributes, therefore 
compromising the overhead involved in drug delivery.

Nano-based drug delivery system is hypothesized as one of the most fascinating solutions for cancer treat-
ment due to its low dose and side effects. Nevertheless, both active and passive drug delivery depend on systemic 
blood circulation and diffusion. On the other hand,  in2, an ant-behavior-inspired nanonetwork was proposed. 
On one end, the big intelligent nanomachine acquired small intelligent nanomachines and drugs to the neigh-
boring tumor area and on the other hand, the small intelligent nanomachines cooperated with each other to 
identify the most efficient route to the tumor cell for delivering the drug efficiently, therefore improving the 
convergence speed. Over the past few decades, nanotechnology, in specific nanoparticle manufacturing, has 
found a revolutionary awareness in wide areas of science. The optimal utilization of nanoparticles has made 
possible how drugs are delivered.

Nanotechnology is contemplated as a multi-disciplinary scientific domain appertaining engineering and 
manufacturing techniques at molecular level. This is inferred in the recent research areas where nanotechnology’s 
application in medicine, particularly where nanoparticles have been formulated in altering biological processes.

To reduce time and cost in animal anatomy, an activity relationship based on the quantitative structure was 
designed  in3 by providing a review of techniques and algorithms employed for predicting real-time environ-
ments.  In4, another method for treating cancer employing a swarm of bioinspired nanomachines was utilized 
to target cancer therapy. Though accuracy was improved, the time process involved in targeting cancer therapy 
was not focused. By means of the swarm intelligence mechanism, accurate therapy was ensured. Also, mecha-
nisms were introduced  in5 by sustaining the drug delivery process by minimizing the dosing of patients. Despite 
improvement observed in drug delivery efficiency, the computational complexity involved in the overall process 
was not focused.

As a state-of-the-art cancer therapeutics, targeted drug delivery possesses features of high significance, fewer 
side effects and minimum drug receptivity for patients. Nevertheless, there exist numerous disadvantages to the 
prevailing targeted therapies, like, few druggable targets, scalability in addressing the entire patient population, 
and the shortfall of substitute feedback on drug resistance in patients.

In6, a review of artificial intelligence techniques in identifying anticancer targets and drug discovery was 
presented. However, biological barriers were not navigated. To address this aspect, a drug delivery optimiza-
tion mechanism was introduced  in7. Fusing nanotherapeutics and ingrained machine-learning techniques can 
streamline the evolution of antiviral-drug development systems by analyzing the automation process. Here, a 
machine learning algorithm was employed in generating graphs with predictions of provided datasets. Moreo-
ver, the Gaussian Process, a substitute to the probabilistic machine learning  model8 that identified a prior over 
function, saved time and improved efficiency. Despite the fact that the method was proven to be computationally 
efficient, the drug delivery rate was not focused.

Research problem
Nanoparticles tumor delivery efficiency is essential for barrier in the field of cancer nanomedicine. Many nano-
technologies were designed for tumor diagnosis. Strategies on how to improve NP tumor delivery efficiency 
remain to be determined. However, the drug delivery efficiency was not sufficient. In addition, the relevant feature 
was not selected with minimum time by performing feature selection. But, it failed to consider computational or 
communication complexity. To address this issue, the proposed PBC-SOSN method is developed with maximum 
drug delivery efficiency and less computational or communication complexity.

Objectives and goals of proposed PBC‑SOSN

• To increase the drug delivery efficiency for tumor diagnosis, the proposed PBC-SOSN method is introduced.
• To enhance preprocessed samples with minimum communication complexity, nano variational model 

decomposition-based preprocessing is applied.
• To pick highly correlated features with less drug delivery time, variance analysis and point biserial correlation-

based feature selection is utilized.
• To achieve higher drug delivery detection rate and smaller drug delivery error detection rate, symbiotic 

organism search nanoengineering-based drug delivery model is employed.

Contributions of the work
The contributions of the proposed PBC-SOSN method are given below.

• To propose a PBC-SOSN method for increasing the drug delivery efficiency in humans towards efficient 
tumor diagnosis by incorporating three distinct processes: preprocessing, feature extraction, and nanoengi-
neering-based drug delivery.

• To design nano variational model decomposition-based preprocessing to normalize a target tumor nano-
particle and provide restricted variation by means of nano variational mode decomposition separately for 
categorical and numerical feature variables.
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• To present variance analysis and point biserial correlation-based feature selection for extracting robust fea-
tures via variance analysis and point biserial correlation and avoiding irrelevant features for drug delivery. 
The feature selection of PBC-SOSN method reduces the drug delivery time with a high accuracy rate.

• Finally, the symbiotic organism search nanoengineering-based drug delivery model is presented to ensure 
optimal drug delivery by utilizing nanoengineering formulates via symbiotic mechanism with minimal 
human intervention. This process enhances the drug delivery detection rate and drug delivery error detec-
tion rate in a significant manner.

• Extensive experimental evaluations are performed using distinct quantitative performance factors like accu-
racy, computational complexity, drug delivery detection rate, and drug delivery error detection rate by com-
paring the PBC-SOSN method with the state-of-the-art methods.

The paper is organized into different parts: “Related works” provides a detailed review of drug delivery systems 
based on nanoparticles using learning techniques. The proposed PBC-SOSN method is explained in detail in 
“Proposed methodology” with the aid of algorithms and architecture diagrams. “Experimental setup” presents 
the experimental setup and detailed quantitative analysis of the experimental results with different performance 
metrics by making comparisons with the conventional methods. Lastly, “Conclusion” provides the concluding 
remarks.

Related works
Conventional pharmaceutical drug delivery processes heavily depend on hit-and-miss processes that are not only 
said to be laborious but also found to be time-consuming process. Moreover, they are constrained by exploratory 
state of affairs like inflated equipment supplies, constrained experimental frameworks and empirical experience. 
Therefore, there necessitates a pivotal requirement in designing a novel mechanism that is efficient in terms of 
both time and accuracy as far as nanomaterials science is concerned.

A drug delivery mechanism employing genetic artificial intelligence techniques was presented  in9. Genetic 
kidney diseases status was discussed by using emerging technological strategies. Yet another method in cancer 
therapy was designed  in10 based on ant behavior. Based on the application of ant behavior for targeted drug deliv-
ery improved the overall accuracy. But, it failed to determine an optimal path solution. An imaging technique 
employing a convolutional neural network was introduced  in11 with liver cancer for targeted therapy. This type 
of design improved the accuracy of targeted drugs in an extensive manner. Magnetic particle imaging employ-
ing virtual field free points was presented  in12 to facilitate drug delivery in an accurate manner. The magnetic 
force direction and magnitude controlled with aid of field free point. A reception model was designed  in13 for 
drug delivery based on the communication between biological nanomachines. With this type of design optimal 
release rate of the molecule was said to be released.

Over the past few years, targeted drug delivery has become a significant state-of-the-art in anticancer therapy 
research. However, in the case of nano-based drug delivery, a nanomachine possessing relevant anticancer drugs 
moves towards cancer cells and kills the cancer cells by appropriate drug release. However, with constrained 
space in carrying drugs, the cancer cells possess only finite receptors for finding the corresponding drugs. Hence, 
to effectively employ cancer drugs,  in14, quantitative analysis was made in measuring and optimizing the drug 
release with the purpose of generating drugs in targeted drug delivery. Nevertheless, a significant amount of 
error was found. To reduce the error rate, a deep learning technique was applied  in15 whereby focusing on the 
overfitting aspects, the error involved in drug delivery was reduced considerably. But more time was taken for 
drug delivery by using deep learning methods.  In16, a thorough investigation was made in analyzing the charac-
teristics of nanoparticle physicochemical characteristics, different tumor models, and cancer types in measuring 
the delivery efficiency employing learning techniques. The significance of the Internet of Nano Things (IoNT) 
was focused  in17 with respect to drug delivery. IoNT was a recent advancement in the field of medicine and 
healthcare services. The development in nanotechnology was resulting in nanomanufacturing insurrection and 
was making an important impact, especially on healthcare and medical field along by other sectors namely the 
economy, social, environmental, and military-based real-time applications. In the medical field, many key chal-
lenges are included such as limited computational capabilities, limited memory storage and lack of accuracy.

Disorders in the central nervous system and the issues related to focusing the drug delivery were analyzed 
 in18. Existing methods combining machine learning (ML) into molecular dynamic simulation though improved 
the overall procedure. They ensured effective analysis but, however, did not have the potential to provide straight 
perceptions without the absolute simulation process.  In19, an ML-based mechanism was introduced with the 
purpose of predicting solvent-accessible surface area (SASA). With this type of design, data size and computa-
tional complexity were said to be reduced in an extensive manner.  In20, a hypothesis of current progress in the 
field of nanoparticles towards efficient drug delivery was investigated in depth. The time was minimized for 
cancer treatments.

Innovative delivery systems are designed, usually termed smart drug delivery systems  in21. The drug delivery 
system has been evolving very fast with time through the implementation of innovative technology. However, 
the designed method reduced the unnecessary cost rise of drugs. A high-grade serous ovarian cancer (HGSOC) 
method was proposed  in22 to increase the recurrent disease and chemotherapy resistance. But the systemic 
toxicities were minimized by the designed method. Multiple novel drug delivery systems (NDDS) have been 
established  in23 to improve medication bioavailability, prevent adverse impacts, and prevent drug degradation. 
Interacting with G protein-coupled receptors system was carried out  in24 to play a major regulatory role in the 
development of cancer. A microfluidics-based tumor-on-a-chip (TOC) system was introduced  in25 to afford a 
promising approach to address these challenges.
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Sodium alginate hydrogel was examined  in26 for minimizing programmed death-ligand 1 to include elesclo-
mol-Cu and galactose. Sensitization of tumor was enhanced for radiotherapy and immunotherapy. Mn-based 
cGAS-STING activation was developed  in27 for increasing the sensitivity. Bone-targeted nano-delivery system 
was utilized  in28 with higher immunotherapy. Green-synthesized Ag and Cu-doped Bismuth oxide nanoparticles 
were designed  in29 for biomedical advancements.

Proposed methodology
There are numerous reasons why utilizing nanoparticles for diagnostic reasons and the evolution of drug delivery 
is significant and much required. One is that conventional drugs obtainable in recent years for administration are 
only sometimes manufactured as the optimal observation for each drug. On the other hand, each drug neces-
sitates a more ingenious type of carrier system to improve its efficiency and safeguard them from unfavorable 
degradation. With this objective, after identifying the significance of nanoparticle manipulation to achieve a 
successful drug delivery system, in this work, a PBC-SOSN method is designed for the evolution of nano-based 
targeted drug delivery. The detailed description of the PBC-SOSN method is designed following the dataset 
description.

Nano variational model decomposition‑based preprocessing model
Data preprocessing is crucial prior to its actual utilization. Data preprocessing refers to converting the raw data 
into a clean data set. The raw nano-tumor dataset is preprocessed to examine missing values and instabilities 
before executing it to the existing nano-based drug delivery system. In general raw data include incomplete, 
redundant, or noisy. By using data preprocessing methods, all these mentioned issues are resolved. Hence, in our 
work, the nano variational mode decomposition (NVMD)-based preprocessing model is suitable for eradicating 
the noise with minimum communication complexity for avoiding missing values. First, an input matrix is for-
mulated with the raw nano-tumor dataset, nano-drugs for glioblastoma dataset and is mathematically stated as

From Eq. (1), the input vector ‘ IV  ’ matrix is formulated based on the ‘ m ’ samples and ‘ n ’ features, respec-
tively. With the aid of the above input vector matrix, this work proposes a nano variational mode decomposition 
(NVMD)-based preprocessing model to normalize a target tumor nanoparticle to enhance its prediction from 
Physiologically based pharmaco kinetic (PBPK) model. Figure 1 shows the structure of nano variational model 
decomposition-based preprocessing model.

As illustrated in the above figure, the original target tumor nanoparticle formalized as an input vector in the 
preprocessing stage is decomposed into multiple intrinsic mode functions (IMFs). The normalized target tumor 
nanoparticle is constructed from the decomposed IMFs by eliminating missing values and instabilities. NVMD is 
a non-periodic decomposition model to decompose a nanoparticle into several band-limited (i.e., drug delivery 
efficiency—24 h/168 h/last sampling/maximum hours) IMFs having sparsity properties (i.e., possessing distinct 
cancer types ‘ CT’). Then, with these formulates as constraints, a mode in our work to perform preprocess is 
modelled in terms of a sinusoid comprising time-varying phase and amplitude as given below.

(1)IV =







S1F1 S1F2 . . . S1Fn
S2F1 S2F2 . . . S2Fn
. . . . . . . . . . . .

SmF1 SmF2 . . . SmFn







(2)f (t) =

K
∑

k=1

fk(t) =

K
∑

k=1

IVk(t)βk(t)

Nano-Tumor dataset, 

Nano-Drugs for 

glioblastomo dataset

Decompose nano 

particles with 

distinct sparsity

Obtain restricted variation 

Preprocessed samples with 

less noise and overhead

Formulate input 

vector matrix

Perform preprocess

Figure 1.  Structure of nano variational model decomposition-based preprocessing.
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From Eq. (2), ‘ f (t) ’ represents the modes obtained for different nanoparticles, each possessing different 
identifiers ‘ ID ’ with respect to a number of band-limited (24 h/168 h/ last sampling /maximum hours) and input 
vector ‘ IVk ’, respectively. Also, ‘ αk(t) ’ refers to the instantaneous frequency (i.e., the core material) change much 
slower than the non-decreasing phase ‘ βk(t) ’ respectively (i.e., drug delivery). NVMD controls the drawbacks  of1, 
like sensitivity toward noise. The decomposed modes are proficient in acquiring the input vector with minimal 
noise. Then, the restricted variation problem subject to numerical and categorical data with minimal noise is 
mathematically stated as

From Eq. (3), both the numerical and categorical data with minimal noise and overhead are retrieved using 
Hilbert transform using partial derivative with respect to different time instances ‘ ∂t ’, respectively. The pseudo-
code representation of the nano variational model decomposition-based Preprocessing is given in Algorithm 1.

Input: Dataset ‘ ’, Features ‘ = { 1, 2, … , }’, Samples ‘ = { 1, 2, … , }’

Output: Overhead improved preprocessed samples ‘ ’

1: Initialize ‘ = 350’, ‘ = 14’

2: Begin

3: For each Dataset ‘ ’ with Features ‘ ’ and Samples ‘ ’

4: Formulate input vector matrix as given in (1)

5: Formulate sinusoid including time-varying phase and amplitude for executing preprocessing 

as given in (2)

6: Formulate restricted variation problem subject to both numerical and categorical data with 

minimal noise as given in (3)

7: Return preprocessed samples ‘ ’

8: End for
9: End

Algorithm 1.  Nano variational model decomposition-based preprocessing.

As given in Algorithm 1, a novel mechanism is introduced to split the original input vector matrix into distinct 
modes according to nanoparticle tumor delivery efficiency, focusing on the overhead incurred in nano-based 
drug delivery. With the raw data values obtained from the nano-tumor dataset and nano-drugs for glioblastoma 
dataset, the input vector matrix is formulated for the samples involved in the simulation process. Second, a 
sinusoid is formulated for each identifier according to time-varying phase and amplitude with instantaneous 
frequency and non-decreasing phase. Finally, both the numerical and categorical variables are subjected to 
restricted variation problems so that the processed (i.e., preprocessed) samples are obtained as output with 
minimal overhead.

Variance analysis and point biserial correlation‑based feature selection
Feature selection mechanisms are employed in obtaining a reduced set of molecular descriptors from a high 
quantity of them. To be more specific, in these feature selection mechanisms, with the aid of a combinatorial 
optimization problem, alternative subsets of molecular descriptors are selected and measured to identify a group 
of descriptors (i.e., features) highly correlated with a target property (i.e., drug delivery for Tumor detection). 
Though the advantages of using feature selection in drug delivery were included  in2, it required high computa-
tional effort to measure alternative mixtures of molecular descriptors.

The proposed work utilizes the filter-based feature selection model to select the best features (i.e., subsets 
of molecular descriptors) from the preprocessed samples. Filtering models estimate the data subset quality by 
examining the inherent data features in which a single or a group of data is compared to a class label. To be more 
specific, the filter-based feature selection states that if a feature is valid, it can be independent of respective input 
data but not of class labels. Hence if a feature does not affect the class labels, then that class labels are said to be 
eliminated from further processing. In this work, variance analysis and point biserial correlation selection was 
suitable to select the highly correlated features with low drug delivery time. Figure 2 shows the variance analysis 
and point biserial correlation-based feature selection model structure.

As illustrated in the above figure, the variance analysis filters out the identical features in the preprocessed 
samples by measuring the variances between and within class labels. This variance analysis algorithm discards 
the irrelevant and redundant variables with high variance. The point biserial correlation follows the variance 
analysis algorithm; a statistical technique employed in identifying the absolute value or higher correlated features 
that had a paramount influence in selecting the feature. The ratio in variance analysis indicates how strongly the 

(3)PS = min
{(fk ,αk)}

{

∑

k

(

∂t

[

βk(t)+
j

π t

])

}
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‘ PS ’ feature is associated with the class labels or the overall samples ‘ N ’. The mathematical formulate given below 
is utilized to measure the variance ratio ‘ VA ’ of preprocessed samples ‘ PS’.

From Eq. (4), the variance analysis ‘ VA ’ result for the corresponding preprocessed sample is obtained by 
means or ratio of the variance between ‘ RoVB ’ preprocessed samples, respectively.

From Eq. (5), the ratio of variance between processed samples ‘ RoVB(PS) ’ is obtained based on the number 
of independent features or betweenness degree of freedom ‘ BDofFree ’, respectively for the corresponding input 
vector matrices ‘ IVij ’ of the preprocessed samples ‘ PS ’. In a similar manner, the ratio of variance within ‘ RoVW ’ 
preprocessed samples are mathematically given by

From Eq. (6), the number of withinness degree of freedom ‘ WDofFree ’. Next, highly correlated combination 
of descriptor subsets are measured with the obtained resultant values using point biserial correlation.

From that, results of point biserial correlation expressed as,

To measure ‘ RPB ’, the dichotomous molecular descriptor ‘ TS ’ (i.e., targeting strategy) has considered two 
values ‘ 1 ’ (i.e., active) and ‘ 0 ’ (i.e., passive) with which we split the training dataset into two groups, group 1 that 
received the value ‘ 1 ’ on ‘ TS ’ and group 2 that received the value ‘ 0 ’ on ‘ TS ’, then the point biserial correlation 
is mathematically stated as:

From Eqs. (8) and (9), ‘ MV1 ’, ‘ MV2 ’ represent the mean value on ‘ Resi ’ for all the molecular descriptors ‘ TS ’ 
(i.e., targeting strategy with active state) in group 1, and the mean value on ‘ Resi ’ for all the molecular descriptors 

(4)VA(PS) =
RoVB(PS)

RoVW(PS)

(5)RoVB(PS) =

u
∑

l=1

Nl

((

∑Nl
j=1 IVij(PS)/Nl

)

−

(

∑u
l=1

∑Nl
j=1 IVij(PS)/

∑u
l=1 Nl

))2

BDofFree

(6)RoVW(PS) =

u
∑

l=1

Nl
∑

j=1

(

IVij(PS)−
(

∑u
l=1

∑Nl
j=1 IVij(PS)/

∑u
l=1 Nl

))2

WDofFree

(7)Res = RoVB(PS).RoVW(PS)

(8)RPB =

{

1 → targeting strategy with active state
0 → targeting strategy with passive state

(9)FS = RPB =
MV1 −MV2

SDm

√

S1S2

m2

(10)SDm =

√

√

√

√

1

m

n
∑

i=1

(Resi − Resi′)
2

Nano-Tumor dataset

and Nano-Drugs for 

glioblastomo dataset

Preprocessed samples

Variance Analysis Point Biserial Correlation

Identical features Highly correlated 

Select robust features

Obtain resultant values

Figure 2.  Structure of variance analysis and point biserial correlation-based feature selection.
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‘ TS ’ (i.e., targeting strategy with passive state) in group 2, respectively. In a similar manner ‘ S1 ’, ‘ S2 ’, and ‘ m ’ denote 
the number of instances in group 1, group 2, and the overall instance size, respectively. Highly correlated features 
are obtained with this mechanism as given in Table 1.

In our work, the important highly correlated features are selected by using variance analysis and point bise-
rial correlation from the chemical structure of the molecule based on the type, core materials, targeting strategy, 
cancer type, tumor model and zeta potential. These molecular descriptors as a measure of drug delivery are used 
for tumor detection based on nano structure. The pseudo-code representation of variance analysis and point 
biserial correlation-based feature selection is given in Algorithm 2.

Input: Dataset ‘ ’, Features ‘ = { 1, 2, … , }’, Samples ‘ = { 1, 2, … , }’

Output: Highly correlated features selected ‘ ’

1: Initialize preprocessed samples ‘ ’, ‘ ’, ‘ ’

2: Begin

3: For each Dataset ‘ ’ with Features ‘ ’ and preprocessed samples ‘ ’

//Filter out identical features 

4: Measure the variance ratio ‘ ’ of preprocessed samples ‘ ’ using (4)

5: Obtain ratio of variance between processed samples ‘ ( )’ using (5)

6: Obtain ratio of variance within preprocessed samples ‘ ’ using (6)

5: Evaluate the resultant descriptions using (7)

6: Obtain highly correlated features via Point Biserial function using (9) and (10)

7: Return features selected ‘ ’

8: End for
9: End 

Algorithm 2.  Variance analysis and point biserial correlation-based feature selection.

As shown in Algorithm 2, highly correlated molecular descriptors must be identified to offer several advan-
tages in treating tumor by target-oriented drug delivery of precise medicines. With this, the convergence speed 
increases, reducing the drug delivery time also. Based on this objective, first, identical features are filtered out 
using the ratio of variances, following which highly correlated molecular descriptions possessing significant 
importance in drug delivery are measured via point biserial correlation, therefore corroborating the objective 
in terms of both time accuracy.

Symbiotic organism search nanoengineering‑based drug delivery model
In a nano-based drug delivery system, numerous properties (i.e., features selected like TS, CT, and TM etc.) 
must be optimized owing to the biological hurdles they encounter when applied in tumor diagnosis. Also, these 
necessitate additional prominence on surging the duration of action of a drug (i.e., drug efficiency in terms of 
different numbers of hours) to enhance therapeutic results.

A novel nano-based drug delivery should possess the advantage of delivering pharmaceutical compounds in 
the body as required to safely achieve its desired pharmacological effect with maximum drug delivery detection 
and error detection rates. Nanotechnology can enhance the treatment and diagnosis of tumor detection and ease 
effective drug delivery. In this work, symbiotic organism search nanoengineering-based drug delivery model is 
suitable for performing targeting specific cells and drugs delivery. Figure 3 shows the structure of the symbiotic 
organism search nanoengineering-based drug delivery model.

As illustrated in Fig. 3, the symbiotic organism search-based nanoengineering mimics the symbiotic relation-
ship between organisms or nanoparticles. Here, the set of initialized population is referred to as the ecosystem 

Table 1.  Highly correlated features selected.

Features Description

ID Identifier

Type Type of nanoparticles

MAT Core materials of nanoparticles

TS Targeting strategy

CT Cancer type

TM Tumor model

ZP Zeta potential
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and each individual solution is called an organism or nanoparticle. The symbiotic organism search-based Nano-
engineering model comprises of three steps, mutualism, commensalism, and parasitism. The ecosystem is for-
mulated as given below.

With the above formulated ecosystem ‘ P ’ using ‘ m ’ preprocessed samples ‘ PS ’, and ‘ n ’ features selected ‘ FS ’, 
three distinct functions are employed to ensure precise nano-based drug delivery to the corresponding target-
ing specific cells for tumor diagnosis. Firstly, mutualism is performed that represents the relationship between 
two nanoparticles with distinct identifiers. One example is the relationship between drug delivery efficiency and 
targeting strategy. The benefit is mathematically stated as

In Eqs. (12), (13), and (14) ‘ Pi ’ represents the nanoparticle of the current iteration, whereas ‘ Pj ’ represents the 
nanoparticle selected arbitrarily from the total population or ecosystem, respectively. On the other hand, ‘ BP1 ’ 
and ‘ BP2 ’ denote the benefit points that assign a value of 0 or 1, which represents how much the nanoparticle is 
benefited. In addition, ‘ MV  ’ represents the mutual vector that denotes the relationship between drug delivery 
efficiency and targeting strategy, with ‘ Pbest ’ denoting the fittest nanoparticle in the ecosystem for delivery. 
Finally, the drug delivery is updated only if the objective function of the new nanoparticle is better than that 
for the current nanoparticle. Second, commensalism, a relationship between two nanoparticles in which only 
one is benefited while the other nanoparticle is not affected, is performed. An example of commensalism is the 
relationship between cancer type and type of nanoparticles. It is mathematically formulated as

From Eq. (15) ‘ Pi ’ and ‘ Pj ’ represent the cancer type and type of nanoparticles with the drug delivery being 
updated only when new nanoparticle is better than the old nanoparticle. Finally, parasitism represents the 
relationship between two nanoparticles in which one nanoparticle is benefited from while the other is affected 
in a negative way. An example of parasitism is the relationship between drug delivery efficiency and the type of 
nanoparticles. The mathematical equation of parasite vector is given by:

(11)P =







PS1FS1 PS1FS2 . . . PS1FSn
PS2FS1 PS2FS2 . . . PS2FSn
. . . . . . . . . . . .

PSmFS1 PSmFS2 ... PSmFSn







(12)Pnewi = Pi + Round(0, 1) ∗ (Pbest −MV ∗ BP1)

(13)Pnewj = Pj + Round(0, 1) ∗ (Pbest −MV ∗ BP2)

(14)MV =
(

Pi + Pj
)

/2

(15)Pnewi = Pi + rand(−1,+1) ∗
(

Pbest − Pj
)

(16)Ppar = rand(0, 1) ∗ (HL− LL)+ LL

Nano-Tumor dataset
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Figure 3.  Structure of symbiotic organism search nanoengineering-based drug delivery.
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From Eq. (16), ‘ Ppar ’ represent the randomly selected nanoparticles for drug delivery only if the parasite vector 
is better. From the above three formulations, dynamic tumor-nanoparticle associations are learned in an optimal 
manner and utilized in making predictions on the significance of dosing. The pseudo-code representation of the 
symbiotic organism search nanoengineering-based drug delivery is given in Algorithm 3.

Input: Dataset ‘ ’, Features ‘ = { 1, 2, … , }’, Samples ‘ = { 1, 2, … , }’

Output: Optimized Nanonengineering-based drug delivery 

1: Initialize preprocessed samples ‘ ’, ‘ ’, ‘ ’, features selected ‘ ’

2: Begin

3: Foreach Dataset ‘ ’ with Features ‘ ’, preprocessed samples ‘ ’ and features selected ‘ ’

4: Formulate the ecosystem as given in (11)

//Mutualism
5: Formulate mutualism to model the relationship between drug delivery efficiency and targeting 

strategy as given in (12), (13) and (14)

//Commensalism
6: Formulate commensalism to model the relationship between cancer type and type of 

nanoparticles as given in (15)

//Parasitism
7: Formulate parasitism to model the relationship between drug delivery efficiency and type of 

nanoparticles as given in (16)

8: Return nanoengineered results 

9: End for
10: End 

Algorithm 3.  Symbiotic organism search nanoengineering-based drug delivery.

As shown in Algorithm 3, a symbiotic interaction between different nanoparticles for predicting drug-tumor 
model with minimal human intervention is designed for ensuring optimized drug delivery. Three functions are 
separately performed. Firstly, mutualism is established to model the benefits of the two nanoparticles involved 
in simulation. Secondly, commensalism is established to model the benefit on one nanoparticle without affecting 
the other. Finally, parasitism is established to model the benefit of one nanoparticle while affecting the other. In 
this way, optimal nanoengineering-based drug delivery is designed with good drug delivery detection rate and 
drug delivery error detection rate.

Experimental setup
The experimental evaluation of the proposed PBC-SOSN method and existing Compartmental model for IoBNT 
[1] and ant-behaviour-inspired nanonetwork [2] are implemented in Python. Nano-tumor dataset and Nano-
Drugs for glioblastomo dataset are utilized in this work. Nano-tumor dataset is taken from https:// github. com/ 
UFPBPK/ Nano- ML- AI. The nano-tumor dataset includes 14 distinct features of nanoparticles. Nano-tumor 
dataset comprises 376 datasets via PBPK model. The dataset covering a broad range of cancer nanomedicines 
was published from 2005 to 2018. Multiple features are included such as physicochemical properties of NPs 
[e.g., log-transformed hydrodynamic diameter (size), original value of Zeta potential (ZP), shape, core material 
(MAT), type of NPs (type)], tumor therapy strategies such as the targeting strategies (TS), cancer types (CT) 
and tumor model (TM), etc.

Nano-Drugs for glioblastomo dataset are taken from https:// github. com/ munti sa/ nano- drugs- for- gliob lasto 
ma/ tree/ master/ datas ets. The dataset is obtained by running the correspondent scripts over 800 MB. The dataset is 
accessed on 21 October 2021. First, the nanoparticle details are gathered from the dataset. Then the nanoparticle 
features are preprocessed using nano variational model decomposition-based preprocessing algorithm. Then 
the feature selection process is performed using variance analysis and point biserial correlation-based feature 
selection algorithm. Finally, symbiotic organism search nanoengineering is used for drug delivery. Table 2 lists 
the features and its description in the nano-tumor dataset.

The efficiency of drug delivery is validated by employing the PBC-SOSN method with the aid of the above 
features in the nano-tumor dataset. Also, the performance of the proposed PBC-SOSN method and existing 
methods, such as compartmental model for IoBNT [1] and ant-behaviour-inspired nanonetwork [2], are com-
pared by measuring the performance metrics such as computational complexity, communication complexity, 
drug delivery detection rate and drug delivery error detection rate for different samples.

https://github.com/UFPBPK/Nano-ML-AI
https://github.com/UFPBPK/Nano-ML-AI
https://github.com/muntisa/nano-drugs-for-glioblastoma/tree/master/datasets
https://github.com/muntisa/nano-drugs-for-glioblastoma/tree/master/datasets
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Performance analysis of computational complexity
Computational complexity refers to the resources required to run a nano-based data delivery method. Specific 
concentration is given to computation or execution time and memory storage or storage overhead requirements. 
The computational complexity or the nano-based drug delivery computation time is measured by:

Table 2.  List of features in nano-tumor dataset.

Features Description

ID Identifier

Type Type of nanoparticles

MAT Core materials of nanoparticles

TS Targeting strategy

CT Cancer type

TM Tumor model

Shape Shape

ZP Zeta potential

DE_Tmax Maximum drug delivery efficiency at last sampling

DE_Tmax_PK Maximum drug delivery efficiency of overall pharmaco kinetic

DE_24 Drug delivery efficiency at 24 h

DE_168 Drug delivery efficiency at 168 h

DE_Max Maximum drug delivery efficiency

Table 3.  Nano-tumor dataset tabulation for computation complexity.

Samples

Computation complexity (ms)

PBC-SOSN Compartmental model for  IoBNT [1] Ant-behavior-inspired nanonetwork [2n

35 12.25 14.7 15.75

70 15.35 18.35 21.55

105 18 25 32.35

140 21.55 31.35 39.15

175 28 35 41

210 31.35 42.25 48.35

245 35 48 55

280 38.45 53.15 60.95

315 42 55 68

350 45 60 72.35

Table 4.  Nano-drugs for glioblastomo dataset tabulation for computation complexity.

Samples

Computation complexity (ms)

PBC-SOSN Compartmental model for  IoBNT [1] Ant-behavior-inspired nanonetwork [2]

500 52.25 54.7 55.95

1000 55.35 58.35 61.75

1500 68 70 72.35

2000 71.57 75.35 79.80

2500 78 80 83

3000 81.35 82.75 88.25

3500 85 88 95

4000 88.45 93.15 96.95

4500 92 95 97

5000 93 97 98.65
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From Eq. (17), the computational complexity or the drug delivery times ‘ DDtime ’ is measured based on the 
samples ‘ Si’taken for the simulation purpose and the actual time involved in drug delivery ‘ Time[DD] ’. It is 
measured in terms of milliseconds (ms). Tables 3 and 4 lists the computation complexity obtained using Eq. (17) 
for three different methods, PBC-SOSN, Compartmental model for IoBNT [1], and ant-behaviour-inspired 
nanonetwork [2] in nano-tumor dataset and nano-drugs for glioblastomo dataset.

Figures 4 and 5 illustrates the graphical representation of computational complexity measured on the y-axis 
with different numbers of samples provided on the x-axis. The above graphical results show an increasing trend 
in computation complexity with the increase in the sample size since an increase in sample size causes an increase 
in the samples to be converted from raw data into a clean data set using all three methods. By using nano-tumor 
dataset, the simulations performed with 35 samples consumed 0.35 ms, 0.42 ms, and 0.45 ms each for drug 
delivery for three methods namely PBC-SOSN, compartmental model for IoBNT [1], and ant-behaviour-inspired 
nanonetwork [2] respectively. In Nano-Drugs for glioblastomo dataset, when considering 500samples as input, 
computation complexity performance attained by proposed PBC-SOSN is 52.25 ms whereas existing IoBNT [1] 
and ant-behaviour-inspired nanonetwork [2] attains 54.7 ms and 55.95 ms correspondingly. This can be attrib-
uted to the Variance Analysis and point biserial correlation-based feature selection algorithm. The variance ratio 
was separately obtained based on the highly correlated molecular descriptors by applying this algorithm. Next, 

(17)DDtime =

m
∑

i=1

Si ∗ Time[DD]
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Figure 4.  Graphical representation of computation complexity using nano-tumor dataset.
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identical features were filtered to remove similar objective features employing a ratio of variances. Next, based 
on the ratio of variances results, highly correlated molecular descriptions with paramount significance were 
obtained. The PBC-SOSN method of computational complexity involved in drug delivery reduced using Nano 
tumor dataset by 24% compared to Compartmental model for IoBNT [1] and 36% compared to ant-behaviour-
inspired nanonetwork [2]. The PBC-SOSN method of computation complexity involved in drug delivery using 
Nano-Drugs for glioblastoma dataset is minimized by 4% compared to Compartmental model for IoBNT [1] 
and 8% compared to ant-behaviour-inspired nanonetwork [2].

Performance analysis of communication complexity
Secondly, the communication complexity involved in nano-based drug delivery is measured and validated. 
Communication complexity refers to the memory consumed in the nano-based drug delivery system. It is 
mathematically given by:

From Eq. (18), the communication complexity involved in drug delivery ‘ DDcomp ’ is measured by taking 
into consideration the samples involved during simulation ‘ Si ’ and the memory consumed in the drug delivery 
process ‘ Mem[DD] ’, respectively. It is measured in kilobytes (KB). Table 5 and 6 provides the communication 
complexity obtained using Eq. (18) for the three different methods, PBC-SOSN, compartmental model for IoBNT 
[1], and ant-behaviour-inspired nanonetwork [2] in two dataset such as nano-tumor dataset and nano-drugs 
for glioblastomo dataset.

Figures 6 and 7 shows the graphical representation of communication complexity using the three methods, 
PBC-SOSN, compartmental model for IoBNT [1] and ant-behaviour-inspired nanonetwork [2] for two datasets. 
An increasing trend is observed using all three methods. Specifically, increasing the sample size causes an increase 
in the time-varying phase and amplitude involved in the drug delivery method, increasing the communication 
complexity using all three methods. In nano-tumor dataset, simulations performed with 0.015 KB, 0.023 KB 
and 0.028 KB using the PBC-SOSN method, compartmental model for IoBNT [1] and ant-behaviour-inspired 

(18)DDcomm =

m
∑

i=1

Si ∗Mem[DD]

Table 5.  Nano-tumor dataset tabulation for communication complexity.

Samples

Communication complexity (KB)

PBC-SOSN Compartmental model for  IoBNT [1] Ant-behavior-inspired nanonetwork [2]

35 0.525 0.805 0.98

70 0.615 0.915 1.125

105 0.685 1.135 1.325

140 0.715 1.185 1.415

175 0.835 1.205 1.535

210 0.915 1.255 1.585

245 1.015 1.285 1.635

280 1.125 1.535 1.695

315 1.255 1.725 1.895

350 1.385 2.015 2.235

Table 6.  Nano-drugs for glioblastomo dataset tabulation for communication complexity.

Samples

Communication complexity (ms)

PBC-SOSN Compartmental model for  IoBNT [1] Ant-behavior-inspired nanonetwork [2]

500 60 62.53 65

1000 63 67 69

1500 69 71.62 73.45

2000 73 74.39 75.43

2500 75 78.12 79

3000 80 81 83

3500 82.46 84.53 88

4000 88.72 91 92

4500 93.5 94.65 95

5000 95.3 96.24 97
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nanonetwork [2]. With this, the overall communication complexity was observed to be 0.525 KB using the PBC-
SOSN method, 0.805 KB  using1, and 0.98 KB  using2, respectively. In Nano-drugs for glioblastomo dataset, when 
considering 1000 samples as input, communication complexity performance attained by proposed PBC-SOSN 
is 63 ms whereas existing IoBNT [1] and ant-behaviour-inspired nanonetwork [2] attains 67 ms and 69 ms cor-
respondingly. From the results, it is inferred that the communication complexity involved in the drug delivery 
between the drug and target cell was found to be comparatively better using the PBC-SOSN method compared 
to compartmental model for IoBNT [1] and ant-behaviour-inspired nanonetwork [2]. The improvement was 
due to the application of the symbiotic organism search nanoengineering-based drug delivery (PBC-SOSN) 
and separates the approach into preprocessing, feature selection, and nanoengineering. At first, both numeri-
cal and categorical variables were subjected to restricted variation separately by using nano variational model 
decomposition-based Preprocessing algorithm. Next, highly correlated molecular descriptions with paramount 
significance were obtained with variance analysis and point biserial correlation-based feature selection algo-
rithm. With selected preprocessed samples and features, symbiotic organism search nanoengineering-based 
drug delivery employed for performing three functions that ensures optimized drug delivery. As a result, the 
communication complexity of PBC-SOSN method reduced using Nano-tumor dataset by 31% compared to 
Compartmental model for IoBNT [1] and 42% compared to behaviour-inspired nanonetwork [2], respectively. 
In nano-drugs for glioblastoma dataset, the communication complexity involved in drug delivery using the 
PBC-SOSN method is minimized by 3% compared to compartmental model for IoBNT [1] and 2% compared 
to behaviour-inspired nanonetwork [2].
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Figure 6.  Graphical representation of communication complexity using nano-tumor dataset.
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Performance analysis of drug delivery detection rate
Thirdly, the actual drug delivery detection rate is measured to analyze the effectiveness of the method in reaching 
the targeting strategy with minimum convergence. The drug delivery detection rate is mathematically expressed 
as:

From Eq. (19), the drug delivery detection rate ‘ DDDR ’ is measured based on the samples involved in the 
simulation process ‘ Si ’ and the samples accurately delivery ‘ SAD ’. It is measured in percentage (%). Tables 7 and 8 
lists the drug delivery detection rate arrived at using Eq. (18) using the three different methods for nano-tumor 
dataset and nano-drugs for glioblastomo dataset.

Figures 8 and 9 shows the drug delivery detection rate using the three methods, PBC-SOSN, compartmental 
model for IoBNT [1] and ant-behaviour-inspired nanonetwork [2] by considering two datasets. From the above 
figure, the x-axis represents the samples in the simulation process, and the y-axis denotes the actual drug delivery 
detection rate using the three methods. It neither is evident from the above figure that increasing the sample size 
neither causes an increase in the detection rate nor decreases the detection rate. This may be attributed to the fact 
that several nanoparticles are involved in the drug delivery process during the drug delivery detection process. 
This, in turn, does not show an increasing or decreasing trend using all three methods. In nano-tumor dataset, 
simulations performed using the three methods were observed to be 32, 31 and 30 samples were accurately 
delivered to the intended target with an overall improvement of 91.42%, 88.57% and 85.71% using PBC-SOSN, 
compartmental model for IoBNT [1] and ant-behaviour-inspired nanonetwork [2] respectively. In nano-drugs 
for glioblastomo dataset, when taking 500 samples as input, drug delivery detection rate performance attained 
by proposed PBC-SOSN is 90% whereas existing IoBNT [1] and ant-behaviour-inspired nanonetwork [2] attains 
86% and 85% correspondingly. With this, the overall drug delivery detection rate was found to be better using 
PBC-SOSN compared to compartmental model for IoBNT [1] and ant-behaviour-inspired nanonetwork [2]. 
The reason was that by subjecting the symbiotic relationship between organisms or nanoparticles, three different 
functions were utilized towards precise nano-based drug delivery to target specific cells for tumor diagnosis. 

(19)DDDR =

m
∑

i=1

SAD

Si
∗ 100

Table 7.  Nano-tumor dataset tabulation for drug delivery detection rate.

Samples

Drug delivery detection rate (%)

PBC-SOSN Compartmental model for  IoBNT [1] Ant-behavior-inspired nanonetwork [2]

35 91.42 88.57 85.71

70 90.35 85.35 84.15

105 88.15 84.15 82

140 88 83 80

175 89.35 84.25 81.35

210 90.15 85 83

245 91.35 86.35 84.25

280 90 85 83

315 88.35 84.15 83.25

350 86 83 81

Table 8.  Nano-drugs for glioblastomo dataset tabulation for drug delivery detection rate.

Samples

Drug delivery detection rate (%)

PBC-SOSN Compartmental model for  IoBNT [1] Ant-behavior-inspired nanonetwork [2]

500 90 86 85

1000 89 85.45 83.45

1500 88 84 81

2000 87.5 83.52 79

2500 88.75 84.26 80.46

3000 91.25 86 82

3500 91.85 87.25 83.75

4000 90 86 82

4500 89 85.36 84.63

5000 87 84 82
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As a result, the PBC-SOSN of drug delivery detection rate was found to be better using nano-tumor dataset by 
5% compared to compartmental model for IoBNT [1] and 8% compared to behaviour-inspired nanonetwork 
[2]. The PBC-SOSN method of drug delivery detection rate involved in drug delivery is improved using nano-
drugs for glioblastoma dataset by 5% compared to compartmental model for IoBNT [1] and 3% compared to 
behaviour-inspired nanonetwork [2].

Performance analysis of drug delivery error detection rate
Finally, in this section, the drug delivery error detection rate is measured to validate the method. The drug 
delivery error detection rate is mathematically given by:

From Eq. (20), the drug delivery error detection rate ‘ DDEDR ’ is measured by taking into consideration the 
actual samples ‘ Si ’ and the samples inaccurately delivered ‘ SIAD ’. It is measured in percentage (%). Tables 9 and 10 
lists the drug delivery detection rate arrived at using Eq. (20) for three different methods in nano-tumor dataset 
and nano-drugs for glioblastomo dataset.

Finally, Figs. 10 and 11 shows the drug delivery error detection rate for three methods using nano-tumor 
dataset and nano-drugs for glioblastomo dataset. An increasing trend is observed using all three methods. In 
nano-tumor dataset, simulations performed for 35 samples showed inaccurate detection of 2, 3 and 4 samples 
using PBC-SOSN, the compartmental model for IoBNT [1] and ant-behaviour-inspired nanonetwork [2]. The 

(20)DDEDR =

m
∑

i=1

SIAD

Si
∗ 100
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Figure 8.  Graphical representation of drug delivery detection rate using nano-tumor dataset.
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overall drug delivery error detection rate was observed to be 5.71%, 8.57% and 11.42%, respectively. In nano-
drugs for glioblastomo dataset, when taking 500 samples as input, drug delivery error detection rate perfor-
mance attained by proposed PBC-SOSN is 10.42% whereas existing IoBNT [1] and ant-behaviour-inspired 
nanonetwork [2] attains 13.55% and 16.61% correspondingly. The reason behind the minimization of drug 
delivery error detection rate using the PBC-SOSN method was due to the application of symbiotic organism 

Table 9.  Nano-tumor dataset tabulation for drug error detection rate.

Samples

Drug delivery error detection rate (%)

PBC-SOSN Compartmental model for  IoBNT [1] Ant-behavior-inspired nanonetwork [2]

35 5.71 8.57 11.42

70 6.25 9 12.15

105 6.85 10.15 12.85

140 7 10.35 13

175 7.35 10.85 13.35

210 7.85 11 13.85

245 8.15 11.35 14

280 8.65 11.55 14.35

315 9 11.85 14.55

350 9.35 12 15

Table 10.  Nano-drugs for glioblastomo dataset tabulation for drug delivery error detection rate.

Samples

Drug delivery error detection rate (%)

PBC-SOSN Compartmental model for  IoBNT [1] Ant-behavior-inspired nanonetwork [2]

500 10.42 13.55 16.61

1000 10.65 14.00 17.43

1500 11.85 15.35 18.85

2000 12.00 15.98 19.54

2500 12.88 16.15 20.82

3000 13.15 16.00 20.85

3500 14.42 17.24 21.00

4000 15.55 17.68 21.21

4500 16.00 18.26 22.64

5000 17.00 19.00 23.00
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Figure 10.  Graphical representation of drug delivery error detection rate using nano-tumor dataset.
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search nanoengineering-based drug delivery algorithm. The relationship between drug delivery efficiency and 
targeting strategy was obtained using mutualism, commensalism, and parasitism by applying this algorithm. 
The drug delivery error detection rate using the PBC-SOSN method was found to be reduced in nano-tumor 
dataset by 29% compared to compartmental model for IoBNT [1] and 44% compared to ant-behaviour-inspired 
nanonetwork [2]. By using nano-drugs for glioblastoma dataset, PBC-SOSN method of drug delivery error 
detection rate is minimized by 18% compared to 1 and 34% compared to 2.

Limitations and challenges
Following are existing limitations and challenges mentioned in this section:

• Drug delivery detection rate: specificity: in the process of using nanoparticles to target tumors, one of the 
challenges is attaining a drug delivery detection rate adequate for tumor cells. Researchers are examining 
novel targeting ligands and techniques to improve the drug delivery detection rate for tumor cells. To handle 
these limitations and challenges, tumor diagnosis and growth in the field of nanoparticles is required by using 
researchers, engineers, healthcare providers.

Conclusion
In this work, contributions of the PBC-SOSN are for early convergence and speed. A nano variational model 
decomposition-based preprocessing model is designed based on restricted variation separately for modelling 
numerical and categorical variables. A variance analysis and point biserial correlation-based feature selection 
algorithm are employed for filtering identical features and choosing highly correlated features. By employing 
symbiotic organism search nanoengineering, efficient nano-based drug delivery is designed. Simulation results 
demonstrate the efficient performance of the proposed PBC-SOSN method. The experimental outcome demon-
strates the key finds of the proposed PBC-SOSN method in terms of computation complexity, communication 
complexity, drug delivery detection rate and drug delivery error detection rate as described as given below.

Summary of key findings
From the experimental results, the following key finds are achieved:

• Proposed PBC-SOSN method achieved higher drug delivery detection rate by 7% when compared to com-
partmental model for IoBNT [1], and ant-behaviour-inspired nanonetwork [2]. The proposed PBC-SOSN 
method also minimizes the computation complexity, communication complexity and drug delivery error 
detection rate by 30%, 37% and 37% when compared to existing methods.

• Proposed PBC-SOSN method increases the drug delivery detection rate by 4% with lesser computation 
complexity, communication complexity, and drug delivery error detection rate by 6%, 17% and 26% when 
compared to compartmental model for IoBNT [1], and ant-behaviour-inspired nanonetwork [2].

Future work

• Proposed PBC-SOSN method is implemented to attain maximum drug delivery detection rate with fewer 
drug delivery error detection rate. The future enhancement is focused on addressing the above-mentioned 
issue of the proposed method by designing optimization techniques for tumor diagnosis. Also, nanoparticles 
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can be engineered to specifically target biomarkers associated with tumor cells for early detection. This could 
enable the diagnosis of cancer at its earliest stage, when treatment is most effective.

Data availability
The datasets used during the current study are available from the corresponding author on reasonable request.
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