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Delineating immune variation 
between adult and children 
COVID‑19 cases and associations 
with disease severity
Alper Cevirgel 1, Martijn Vos 1, Anne Floor Holtrop 1, Lisa Beckers 1, Daphne F. M. Reukers 1, 
Adam Meijer 1, Nynke Rots 1, Josine van Beek 1, Debbie van Baarle 1,2,3 & Jelle de Wit 1,3*

The SARS‑CoV‑2 pandemic has emphasized the need to explore how variations in the immune system 
relate to the severity of the disease. This study aimed to explore inter‑individual variation in response 
to SARS‑CoV‑2 infection by comparing T cell, B cell, and innate cell immune subsets among primary 
infected children and adults (i.e., those who had never experienced SARS‑CoV‑2 infection nor received 
vaccination previously), with varying disease severity after infection. We also examined immune 
subset kinetics in convalescent individuals compared to those with persistent infection to identify 
possible markers of immune dysfunction. Distinct immune subset differences were observed between 
infected adults and children, as well as among adult cases with mild, moderate, and severe disease. 
IgM memory B cells were absent in moderate and severe cases whereas frequencies of B cells with a 
lack of surface immunoglobulin expression were significantly higher in severe cases. Interestingly, 
these immune subsets remained stable during recovery implying that these subsets could be 
associated with underlying baseline immune variation. Our results offer insights into the potential 
immune markers associated with severe COVID‑19 and provide a foundation for future research in this 
area.

The recent SARS-CoV-2 pandemic has posed unprecedented challenges to global public health. Immunose-
nescence, a decline in immune function with increasing age, is a key factor contributing to severe infections, 
making older individuals particularly susceptible to COVID-19-related  mortality1–4. Moreover, differences in 
immune responses to SARS-CoV-2 among individuals suggest that age-related changes and underlying immune 
variation may contribute to the heterogeneous outcomes observed in COVID-19  patients5. A comprehensive 
understanding of immune responses to SARS-CoV-2 and baseline immune cell subset differences in individu-
als at increased risk for COVID-19 could facilitate their early identification and better long-term strategies to 
protect these risk groups from severe disease.

Extensive research has been conducted to understand immune responses to SARS-CoV-2, focusing primarily 
on hospitalized patients and severe  cases6,7. These studies have reported reduced frequencies of dendritic cell 
(DC) and natural killer (NK) subsets, as well as hyperactivation of CD4+ and CD8+ T cell compartments in severe 
 cases5–7. However, the underlying inter-individual variation between mild and moderate cases, which represent 
the majority of cases is largely  unknown8. In contrast, children cases often remained asymptomatic and rarely 
developed severe COVID-19 at the beginning of the pandemic, therefore they hold substantial significance in 
understanding immune responses against SARS-CoV-29–11. Recent studies suggested that rapid interferon (IFN) 
production and lack of cytokine storm may underlie the milder disease course observed in children  cases12,13.

In this study, we investigated the inter-individual immune variation in response to SARS-CoV-2 infection 
by conducting a comprehensive comparison of T cell, B cell, and innate cell subsets among infected children 
and adults experiencing varying disease severities (from mild to moderate, and severe). Moreover, we examined 
immune subset kinetics in recovering individuals to identify potential indicators of impaired immune function. 
These individuals had not been previously exposed to the SARS-CoV-2 virus or received vaccinations as they 
were included during the first wave of SARS-CoV-2 infections (March–April 2020). Our findings enhance the 
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understanding of immune variation in the context of SARS-CoV-2 infection and highlight immune subsets 
potentially associated with severe disease.

Results
Characteristics of the study population
We analyzed peripheral blood mononuclear cells (PBMCs) from children and adults with PCR-confirmed SARS-
CoV-2 infection (Table 1). We aimed to investigate immune subset differences: (1) between 24 children and 41 
adults, (2) among 57 adult samples with varying disease severity—mild, moderate, and severe, as previously 
described (Materials and Methods)11 and (3) 18 recovering adult cases who turned PCR− after T1 (Table 1). The 
median time point for the first sample (T1) was 11 days [interquartile range (IQR) 11 days] for children and 
12 days [IQR 6 days] for adults after the onset of symptoms (Fig. 1a).

Addressing technical variation and batch normalization
We implemented comprehensive flow cytometry analyses on frozen peripheral blood mononuclear cells (PBMCs) 
derived from COVID-19 patients to assess their immune subset composition. In these analyses, we focused on 
CD4+ and CD8+ T cell, B cell and innate myeloid and lymphoid subsets (Supplementary Fig. S1a–c). While 
technical variation in flow cytometry data is commonly managed through cytometer setup and tracking, mean 
fluorescence intensity (MFI)-based analysis remains susceptible to variability between batches and the quality 
of  samples14. Notably, our study detected a discrepancy in laser performance across different batches (Supple-
mentary Fig. S2a). To rectify this issue, we devised an accessible analysis pipeline named R-based Analytical 
tool for DIfferential ANalysis of cyTometry data (RADIANT) (Fig. 1b). This pipeline enabled us to normalize 
the batch effect (Supplementary Fig. S2b) and employ flowSOM, an unsupervised analysis method, to identify 
immune cell subset populations in our dataset, thereby ensuring accurate immune subset identification. Clusters 
representing immune subsets numbered for each lineage subset, CD4+ T cells (CD4), CD8+ cells (CD8), B cells 
(B), innate myeloid (M) and innate lymphocytes (IL) (Supplementary Fig. S3a–e).

Infected adult and children cases show distinct immune profiles
To elucidate overall differences in immune subsets between infected adults and children, we analyzed immune 
subset of individuals from the time point when they were first tested SARS-CoV-2 positive by PCR test. For 
both adult and children cases, the majority of samples were from T1 time point (n = 23, adults 88%, n = 20, 
children 91%) (Table 1). Three adults and two children samples were PCR− at T1 and seroconverted PCR+ 
at T2.Out of 24 children cases children, 3 cases were 5 years old or younger, and 19 cases were 10 years old or 
older. First, we conducted a principal component (PC) analysis using immune cell subset data acquired from 

Table 1.  Demographic and clinical features of adults and children with PCR-confirmed SARS-CoV-2 
infection. IQR inter quartile range.

Mild Moderate Severe Total

PCR+ adults and children

Adults

n (%) 26 (63%) 9 (22%) 6 (15%) 41

Median age (IQR) 43 (36, 48) 40 (32, 45) 50 (47, 52)

Sex—female (%) 13 (50%) 6 (67%) 2 (33%)

Timepoint T1 (%) 23 (88%) 9 (100%) 6 (100%)

Timepoint T2 (%) 3 (12%) 0 (0%) 0 (0%)

Children

n (%) 22 (92%) 2 (8%) 0 24

Median age (IQR) 12.0 (10.2, 14.0) 15.5 (15.2, 15.8) NA

Sex—female (%) 12 (55%) 1 (50%) NA

Timepoint T1 (%) 20 (91%) 2 (100%) NA

Timepoint T2 (%) 2 (9.1%) 0 (0%) NA

PCR+ adults disease severity

n (%) 38 (67%) 13 (23%) 6 (10%) 57

Median age (IQR) 44 (38, 48) 45 (34, 49) 50 (47, 52)

Sex—female (%) 20 (53%) 7 (54%) 2 (33%)

Timepoint T1 (%) 22 (58%) 9 (69%) 6 (100%)

Timepoint T2 (%) 16 (42%) 4 (31%) 0 (0%)

Recovering adults

n (%) 10 (56%) 6 (33%) 2 (11%) 18

Median age (IQR) 43 (36, 47) 37 (22, 42) 43 (42, 44)

Sex—female (%) 3 (30%) 6 (100%) 1 (50%)

Timepoint T1 (%) 10 (100%) 6 (100%) 2 (100%)
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unsupervised clustering (Supplementary Fig. S3a–e). A distinct segregation between infected adults and chil-
dren emerged on PC1 (Fig. 2a), driven by age-related changes in the immune system, specifically CD4+ naïve T 
(CD45RO−CCR7+CD27+CD28+) (CD4#1) and CD8+ naïve T (CD8#1) cells (Fig. 2b, Supplementary Table S2). 
The observed variance between the children and adult samples could be explained by the presence of acti-
vated (CD38+CXCR3+)/exhausted (TIGIT+PD−1+) CCR4+ CD4+ T central memory (cm) cells (CD4#11) and 
exhausted (NKG2A+) CD56dim Natural Killer (NK) cells (IL#17), which were among the most important vari-
ables contributing the variance explained on PC1-2 (Fig. 2a,b).

We then investigated the immune subsets that exhibited statistically significant differences between infected 
adult and children (Supplementary Table S2). Although activated/exhausted CCR4+ CD4+ Tcm cells (CD4#11) 
were one of the most important variables contributing to the variation on PC1-2, this subset was not statistically 
significant between children and adults (Fig. 2c). On the other hand, exhausted CD56dim NK cells (IL#17), 
another important variable associated with the variation on PC1-2 was significantly higher in adults compared 
to children cases (Fig. 2d). The most pronounced difference between adults and children was in the percentage 
of CCR4+ CD8+ Tcm cells (CD8#5) (p.adj = 1.1 ×  10−8) (Fig. 2e), which was higher in adults and indicates lung 
 homing15. Percentages of CCR5+ exhausted CD56dim NK cells (IL#19), switched memory IgA+/− B cells (B#7), 
and Th1/17 (CXCR3+CCR6+CCR4-) PD1dim CD4+ T cells (CD4#2) were also significantly higher in adults 
compared to children (Fig. 2f–h). In contrast, children displayed a markedly higher percentage of translational 
CD5+ B cells (B#3) and exhausted CD56bright NK cells (IL#21) relative to adults (Fig. 2i,j). Percentage of naïve 
CD4+ (CD4#1) and naïve CD8+ (CD8#1) T cells, which show age-related decline, were also significantly higher 
in  children16 (Supplementary Table S2).

To further explain our findings, we examined the correlations within the immune network for all identified 
immune subsets, for both adult and children cases. We used strength, betweenness and closeness centrality 
measures of these immune subsets in the immune network, which allowed us to gain a more comprehen-
sive understanding of the interrelationships between diverse immune subsets and their collective responses 

Figure 1.  Study population and analysis pipeline. (a) SARS-CoV-2 infection cohort study design. (b) Step-by-
step RADIANT pipeline description which includes data acquisition, pre-processing steps and unsupervised 
analysis.
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to SARS-CoV-2 infection. Strength measures the total weight of a node’s connections, betweenness centrality 
quantifies how often a node acts as a bridge along the shortest path between two other nodes, and closeness 
centrality measures how close a node is to all other nodes in the  network17. In the adult immune network, we 
identified activated (CD38+CXCR3+)/exhausted (TIGIT+PD−1+) CCR4+ CD4+ T central memory (cm) cells 
(CD4#11) showing the highest strength and closeness (Supplementary Fig. S4a). This cell subset was not only 
one of the top ten most important variables that explained variance between children and adults on PCA but 
was also highly significantly different between these two groups. We also identified exhausted CD56dim NK cells 
(IL#17), which ranked within the top five for betweenness, strength, and closeness centrality measures (Fig. 2k, 
Supplementary Fig. S4a). These findings suggest that these immune subsets play critical roles in the immune 
network, potentially serving as key mediators within the network.

Figure 2.  Age and SARS-CoV-2 infection-related immune subsets explain the highest variation in PCR+ adults 
and children. (a) Projection of unsupervised immune subset clusters onto the principal components (PC). 
(b) Contribution of top 10 immune subsets explaining the variance on PC1-2. (c–j) Plots depicting selected 
immune subsets that explain the variance om PC1-2 or are significantly different between children and adults. 
(k) Immune network correlations of adult and (l) children showing correlations stronger than the absolute value 
of 0.4 and p < 0.05 were shown. The numbers in nodes represent the immune subset IDs for a given cell subset 
type.
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In children cases, CD14-CD16dim HLA-DR+ CD86+ myeloid cells (M#6), which was statistically lower in 
children cases (p.adj = 5.7 ×  10−3), and CD11cdimCD27+ CD24-CD38hi B cells (B#18) both ranked within the 
top two scores for betweenness and closeness centrality measures, indicating their importance in the immune 
network of children (Fig. 2l, Supplementary Fig. S4b). Taken together, the key insights from these analyses 
between adults and children underscore the absence of severe infection in children cases, as evidenced by the lack 
of CCR4+ CD8+ T cells, in conjunction with variations in CD56 expression in the exhausted NK cell phenotype.

Immune subset differences in disease severity groups
Next, we further investigated the association of immune subsets with COVID-19 disease severity. We analyzed 
57 PCR+ adult samples from T1 and T2 time points with varying severity (Table 1). Among these, 16 adults had 
samples both from T1 and T2 time points. Between T1 and T2, three adults changed from severe severity to 
moderate, and two adults changed from moderate to mild severity. The rest of the cases remained in the same 
category levels (mild = 10, moderate = 1). Then, we performed a PC analysis to compare immune subset variables 
among adults with disease severity varying from mild to moderate and severe. Although the variance in PC1-2 
did not lead to a distinct separation between disease severity groups, we observed a greater dispersion in PC1-
2, with increased disease severity, (Fig. 3a). This indicates that higher disease severity is associated with higher 
immune variation. Immune subsets that contributed to the variance the most were not statistically significant 
between disease severity groups, which could be due to very limited variation captured by PCA (Fig. 3b).

Next, we zoomed in on the immune subsets that were statistically significant between disease severity groups 
(Table 2). In mild cases, we observed a significantly higher percentage of atypical (CD11c+) circulating B2 
(IgD+CD27+) B cells (B#8) compared to severe cases (Fig. 3c). CD11c expression is a canonical marker of 
Atypical B Cells (ABC)18 whereas previously IgD+ CD27+ cells were reported as high-affinity IgM-produc-
ing  subset19. Additionally, percentages of CCR6dimPD-1dim CD4+ T effector memory (em) cells (CD4#3), 
CD11c+ CCR5+ HLA-DR+ myeloid cells (M#4), and IgM memory B cells (IgM+IgD+CD27+) (B#1) were sig-
nificantly higher in mild cases than in severe cases but not moderate cases (Fig. 3d–f). Among these subsets, 
IgM+ memory B cells are reported as a heterogeneous subset that showed an age-related decline and T cell 
independent function  potential20,21.

Switched memory IgG+ B cells (B#9) showed a significantly lower percentage in severe cases compared to 
moderate cases (Fig. 3g). In contrast, severe cases demonstrated a significant elevation in percentage of unusual B 
cells characterized by a lack of surface immunoglobulins (IgD−IgM−IgG−IgA−) (Igs−) CD38+CXCR5− expres-
sion profile (B#19), CD56dim CX3CR1+ NK cells (IL#10), and CCR6hiCD28hi CD4+ Tcm cells (CD4#17) com-
pared to both mild and moderate cases (Fig. 3h–j). CX3CR1 expression marks potent cytotoxicity in NK cells 
and was reported to be higher in severe COVID-19  cases5,22.

We constructed immune network correlations for adults with varying disease severity to elucidate differ-
ences in immune network organization and to identify key immune subsets associated with each severity level 
(Fig. 3k–m). However, the immune subsets that scored highest for betweenness, strength, and closeness centrality 
measures were not included among the subsets showing significant differences across severity levels, nor were 
they among the top 10 immune subsets explaining the variance in PCA (Supplementary Fig. S5a–c). Interestingly, 
as disease severity increased, we observed a higher density of nodes with stronger correlations, reflected by an 
increase in both strength and closeness centrality measures. Such a network may represent a concerted effort by 
the immune system to counteract the infection, thus leading to a heightened intensity of immune interaction 
in more severe cases.

Immune subset kinetics in recovering individuals
To determine whether immune subsets with significant differences between disease severity groups were associ-
ated with infection or were a result of underlying baseline immune signatures, we tested the kinetics of these 
immune subsets (Table 2) in 18 recovering adult cases (defined as PCR+ at T1 and PCR- for T2 and T3, Table 1). 
Immune subsets that were stable during the recovery phase (repeated measures ANOVA, p > 0.05), were per-
centage of atypical circulating B2 cells (B#8) and switched memory IgG+ B cells (B#9) (Fig. 4a,b). Although the 
percentage of translational CD5+ B cells (B#3), CD11c+CCR5+HLA-DR+myeloid cells (M#4), Igs- B cells (B#19), 
IgM memory B cells (B#1), and CCR6dimPD-1di CD4+ Tem cells (CD4#3) increased, and CD14-CD16dim 
HLA-DR+CD86+ myeloid cells (M#6) decreased in their median during recovery, these differences remained 
statistically stable (p > 0.05) (Fig. 4c–h). This indicates that these subsets could be attributed to an underlying 
baseline signature rather than infection-related perturbation.

CCR6hiCD28hi CD4+ Tcm cells (CD4#17) were only abundant in severe cases and for those individuals the 
subset kinetics during recovery was not consistent (Fig. 4i). However, the decline in the median during recovery 
for CD11cdimCD27+CD24−CD38hi B cells (B#18) (p = 7.1 ×  10−3) and CD56dim CX3CR1+ NK cells (IL#10) 
(p = 3.0 ×  10−3) and were statistically significant (Fig. 4j,k), implying that these subsets are infection-related.

Discussion
In this study, we provided a comprehensive analysis of immune cell subset variation and key immune subset net-
work variables between adult and children SARS-CoV-2 cases, as well as adults exhibiting varying degrees of dis-
ease severity. Additionally, we examined the immune subset kinetics of individuals recovering from COVID-19 
to investigate potential indicators of immune dysfunction. Our findings improve our understanding of immune 
variation in SARS-CoV-2 infected cases and highlight immune subsets playing a key role in disease severity.

While age-related immune cell subset differences between adult and children cases were the most prominent, 
our findings also shed light on distinct immune responses to SARS-CoV-2 infection severity within the adult 
group. In adult cases, an increased percentage of lung-homing CCR4+CD8+ T cells and exhausted cytotoxic 
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CD56dim NK cells may indicate a more potent cytotoxic response to  infection23. However, the exhaustion of 
cytotoxic NK cells could also signify a reduced ability to effectively control viral  replication23–25. Conversely, chil-
dren cases exhibited a significantly lower proportion of lung-homing CD8+ T cells, suggesting weaker adaptive 
immune  responses13. Intriguingly, children’s exhausted NK cell profile primarily consisted of the CD56bright 
subset, which is capable of producing high levels of interferon (IFN) and tumor necrosis  factor26. Given that IFN 
has been demonstrated to inhibit neutrophil infiltration into the lungs and prevent neutrophil-induced disease 
pathology, exhausted CD56bright NK cells may suggest robust IFN production early during  infection12,25. We 
also observed an increased percentage of CD5+ translational B cells in children cases compared to adult cases. 
The role of CD5 expression on B cells remains unclear. However, in mice and ferrets, CD5+ B−1 cells have been 

Figure 3.  Increased immune variation in higher disease severity driven by exhausted immune subset 
phenotypes. (a) Projection of unsupervised immune subset clusters onto the principal components (PC). 
(b) Contribution of top 10 immune subsets explaining the variance on PC1-2. (c–j) Plots depicting selected 
immune subsets that are significantly different between severity groups. Benjamini–Hochberg corrected p 
values are reported. (k) Immune network correlations of mild, (l) moderate and (m) severe adult cases depicting 
correlations stronger than absolute value of 0.4 and p < 0.05 were shown. The numbers in nodes represent the 
immune subset IDs for given cell subset type.
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shown to respond to influenza infection in an innate-like manner, suggesting that these cells could potentially 
play a role in SARS-CoV-2 infection as  well27. Immune network correlation analysis further emphasized the 
importance of immune subsets based on their centrality scores. In adults, exhausted CD4+ and CD56dim NK 
cells exhibited the highest centrality scores, which were absent in children cases. This means that these cells are 
central and crucial components of the immune response in adults, whereas these cells were not prominently 
central in children cases.

Although COVID-19 severity has been extensively studied in severely hospitalized patients, the majority 
of patients exhibit mild to moderate  symptoms8. In accordance with recent literature, we observed the most 
significant differences in severe cases to be increased frequencies of immune subsets with lung-homing mark-
ers, such as CX3CR1 in NK cells, CCR4 in T cells, but also exhausted CD8+ T  cells5,28. Intriguingly, we detected 
a small population of B cells exhibiting atypical B cell phenotype exclusively in mild cases, with no presence 
in moderate or severe cases. CD11c+ B cells, primarily described as a memory B cell population, were initially 
reported in autoimmune  diseases29. It is improbable that these cells are memory B cells against SARS-CoV-2, 
as the patients in our study had not previously been exposed to SARS-CoV-2. Nonetheless, other researchers 
have reported the existence of pre-existing cross-reactive B cells in some  individuals30. Given that we observed 
these cells solely in mild cases, which may have inhibited progression to moderate or severe disease due to a 
robust memory B cell response, we propose that atypical circulating B2 cells could represent such pre-existing 
cross-reactive B cell subsets.

Increasing evidence highlights that immune function arises from complex interactions within the immune 
network, and the baseline state of this network is associated with its functional  potential31,32. Consequently, 
individuals at risk of developing severe disease could be identified by examining variations in their baseline 
immune  network16,33. One limitation of our study is the lack of pre-infection baseline samples, which would have 
allowed us to investigate baseline immune variation in our cohort. However, it has been demonstrated that the 
human immune system rapidly reverts to its baseline state after infection or vaccination, and the post-baseline 
composition is similar to that of the initial  baseline34. For SARS-CoV-2 infection, other researchers have dem-
onstrated that immune perturbations especially in severe cases, may persist for up to 60 days following symptom 
 onset35. Although some studies have reported even more long-term immune perturbations in patients following 
COVID-19 recovery, these alterations are generally infection-related signatures, such as CD38+HLA-DR+ T cells 
and CXCR3  expression35,36. While we cannot rule out the presence of such persistent perturbations in our study, 
the risk is likely low since our cohort does not include any individuals with highly severe disease that require 
intensive care unit admissions or ventilation machines.

Therefore, in our study to investigate immune subsets that may potentially be linked to underlying baseline 
immune variation and disease severity, we focused on immune subsets that were significantly associated with 
disease severity but remained stable during the recovery period of approximately 2 months and did not have 
clear viral infection-related phenotypes. Intriguingly IgM memory B cells, also previously reported as a contro-
versial B cell population were suggested to exhibit age-related decline and play an important role in protection 
against T cell independent antigens such as pneumococcal  antigens20,21. Furthermore, others showed that pneu-
mococcal abundance was associated with an increased risk of SARS-CoV-2 infection and delayed clearance of 
the  virus37. We observed that IgM memory cells were significantly lower in severe cases and their kinetics were 
stable during recovery. Therefore, a lack of IgM memory cells could be a baseline signature associated with an 

Table 2.  Significantly different immune subsets between disease severity groups. *p.adj ≤ 0.05, **p.adj < 0.01.

Immune subset Variable Group1 Group2 p.adj p.adj.signif

IgM-IgD-IgA-IgG- B cell B#19 Mild Severe 0.001 **

IgM memory B cell B#1 Mild Severe 0.004 **

CD11cdimCD27+ CD24-CD38hi B cell B#18 Mild Severe 0.005 **

IgM-IgD-IgA-IgG- B cell B#19 Moderate Severe 0.009 **

CCR6hiCD28hi CD4+ Tcm CD4#17 Mild Severe 0.012 *

CCR6hiCD28hi CD4+ Tcm CD4#17 Moderate Severe 0.012 *

Atypical circulating B2 B cell B#8 Mild Moderate 0.012 *

CD11c+CCR5+HLA-DR+ myeloid cell M#4 Mild Severe 0.013 *

CD11cdimCD27+CD24−CD38hi B cell B#18 Moderate Severe 0.013 *

atypical circulating B2 B cell B#8 Mild Severe 0.014 *

CD56dim CX3CR1+ NK cell IL#10 Mild Severe 0.025 *

CD14-CD16dim HLA-DR+CD86+ myeloid M#6 Mild Severe 0.026 *

CD56dim CX3CR1+ NK cell IL#10 Moderate Severe 0.03 *

CCR6dimPD-1dim CD4+ Tem CD4#3 Mild Severe 0.03 *

Not assigned CD4#12 Mild Moderate 0.044 *

Not assigned IL#20 Moderate Severe 0.046 *

Switched memory IgG+ B cell B#9 Mild Severe 0.047 *

Switched memory IgG+ B cell B#9 Moderate Severe 0.047 *

Translational CD5+ B cell B#3 Moderate Severe 0.047 *
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increased risk of severe disease. On the other hand, percentage of exhausted (PD−1+TIGIT+) CD8+ Tem cells 
was significantly higher in severe compared to moderate cases and remained stable during recovery. These cells 
were previously reported as immune checkpoint blockade targets with promising results in cancer  patients38,39. 
TIGIT expression alone is also reported as a sign of immunosenescence in CD8+ T cell compartment and shown 
to increase with chronological age  previously40. Therefore, PD-1 and TIGIT co-expression could be associated 
with CD8+ T cell dysfunction and a potential risk factor for severe disease. Another subset that showed stable 
kinetics, and was significantly higher in severe cases was Igs- B cells. Lack of surface immunoglobulins on B 
cells was previously reported in B cell malignancies, however, to our knowledge participants of this study did 
not have such  conditions41.

Our research also faces several additional limitations that must be acknowledged. Primarily, the limited sam-
ple size, particularly in the context of severe cases among adults, constrains the generalizability of our results. This 
caveat is crucial as the findings might not fully represent the broader population. Additionally, the timing of the 
study, conducted during the initial phase of the pandemic, is a significant factor. The samples from individuals 
in our cohort were collected roughly one week following the onset of symptoms. This timing is likely a key factor 
in our observation of a more prominent presence of adaptive immune cell subset signatures in our analysis, as 
opposed to innate immune responses. It’s plausible that the innate immune signatures may diminish or become 

Figure 4.  Immune subsets linked to disease severity exhibit consistent kinetics during recovery, potentially 
reflecting underlying immune variation. (a–k) Immune subsets correlated with disease severity are depicted 
across three timepoints. T1 (grey) represents PCR+ samples, while T2–T3 display (blue) PCR- recovering 
samples for each individual. Red circle represents severe adult cases at T1.
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less discernible in some individuals during the later stages of the infection. Therefore, while our study offers 
valuable insights, these constraints should be carefully considered when interpreting the findings.

In summary, we identified key differences in immune subsets between adult and children SARS-CoV-2 
infected cases, and between mild, moderate and severe adult cases offering insights into the underlying immune 
variation potentially associated with disease severity. While the individual subsets reported in this study cannot 
fully explain the complexity of the immune network, immune function, and disease severity, they do serve as 
intriguing signatures that may contribute to future research and improved identification of individuals at risk 
for severe disease and immune dysfunction.

Materials and methods
Cohort description
This study was adapted from World Health Organization First Few Hundred protocol to study SARS-CoV-2 
outbreak in the Netherlands as described  previously10,11. In short, individuals who tested PCR positive for SARS-
CoV-2 between March 2020–April 2020 and their household members with at least one child that goes to primary 
school were recruited to the study. Nasopharyngeal/oropharyngeal swabs for PCR analysis and blood samples 
for immune subset analysis were collected longitudinally. None of the participants were admitted to the intensive 
care unit, nor previously vaccinated against SARS-CoV-2. Peripheral blood mononuclear cells (PBMCs) were 
isolated from heparinized blood via density gradient centrifugation over Ficoll-Hypaque (Pharmacia Biotech) 
and cryopreserved at − 135 Celcius. A classification of COVID-19 as mild, moderate, or severe was established 
based on either self-reported symptoms or the necessity of hospital admission as reported elsewhere in  detail11.

COVID‑19 disease severity
Participants were classified as symptomatic if they experienced any of the following at any time point: respiratory 
issues (such as sore throat, cough, difficulty breathing, or runny nose), fever, chills, headache, loss of smell or 
taste, muscle or joint pain, diarrhea, nausea, vomiting, appetite loss, or fatigue. The study categorized COVID-
19 into mild, moderate, and severe categories based on the participant’s self-reported symptoms or if they were 
hospitalized. Mild cases of COVID-19 were defined as those with confirmed laboratory results and any clinical 
symptoms. Moderate cases displayed clinical signs of pneumonia, including shortness of breath. Severe cases 
involved shortness of breath and either consulting a healthcare professional, such as visiting an emergency room, 
or being hospitalized due to COVID-19. Out of 6 severe cases, 3 were admitted to hospital but did not require 
intensive care units.

Immune cell subset phenotyping
Cryopreserved PBMCs were used for in-depth immune subset profiling stained using the following anti-human 
fluorochrome-conjugated antibodies: CCR2, CCR4, CCR5, CCR6, CCR7, CD11b, CD11c, CD14, CD19, CD24, 
CD27, CD28, CD3, CD38, CD4, CD45RB, CD45RO, CD5, CD56, CD57, CD8, CD80, CD86, CD95, CX3CR1, 
CXCR3, CXCR5, HLA-DR, IgA, IgD, IgG, IgM, NKG2A, NKG2C, PD-1, TIGIT, Viability (Supplementary 
Table S1). Samples were acquired on a 5-laser FACSymphony™ A3 Cell Analyzer (BD Biosciences).

Flow cytometry data analysis
Singlets and live cells were gated using FlowJo (V10.7.1 Tree Star). CD4+ T cell, CD8+ T cell, B cell, Innate 
lymphocyte, and Myeloid cell populations were exported. For each batch, technical controls from the same 
donor were acquired to be used for batch normalization. Downstream analyses were performed in R studio 
using R-based Analytical tool for DIfferential ANalysis of cyTometry data (RADIANT) pipeline, a user-friendly 
publicly available analysis pipeline developed in-house. For data transformation flowWorkspace package, for 
data cleaning and quality control PeacoQC, for batch normalization cytonorm and for unsupervised analysis 
flowSOM libraries were used. Metacluster sizes were determined by investigating cluster separation in UMAPs 
and marker expression profiles of metaclusters in heatmaps. Abundances of flowSOM metaclusters for each cell 
population were exported for the downstream analysis.

Statistical analysis
All analyses were performed using R (version 4.2.2) and RStudio (version 2022.12.0.353). The packages Fac-
toMineR (version 2.7) was utilized for principal component analysis, rstatix (version 0.7.2) for other statistical 
tests, and qgraph (version 1.9.4) for network analysis. Four adults who had missing flow cytometry data were 
therefore excluded from principal component analyses. Differences between infected adult and children sam-
ples were assessed using the Mann–Whitney U test, while distinctions among disease severity groups in adults 
were evaluated with the Kruskal–Wallis test, followed by Dunn’s post hoc test. The Benjamini–Hochberg (BH) 
procedure was applied to correct for multiple testing, and the adjusted p values are denoted as “p.adj” in the 
reported results. Repeated measures ANOVA was used to evaluate differences in immune subset kinetics during 
recovery. Boxplots display the median and interquartile range (IQR) (25–75%), with whiskers representing the 
upper- and lower-quartile ±1.5 × IQR. Statistical significance levels in figures are designated as follows: ns > 0.05 
*p.adj ≤ 0.05, **p.adj < 0.01, ***p.adj < 0.001, ****p.adj < 0.0001.

Ethics approval and consent to participate
The University Medical Center Utrecht Medical-Ethical Review Committee approved the generic and adapted 
study protocols (NL13529.041.06). All procedures were performed in compliance with Good Clinical Practice 
and in accordance with the principles of the Declaration of Helsinki. All participants aged > 12 years provided 
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written informed consent prior to study onset; parents or guardians of participating children aged < 16 years gave 
written informed consent for participation; for children aged 12–16 years both parents and children gave consent.

Data availability
Datasets are available from Dr. Jelle de Wit (corresponding author) upon request with consideration of the 
participants’ privacy rights.

Code availability
All the custom codes used for the analysis reported are available on GitHub: https:// github. com/ alper cevir gel/ 
FFX- SARS- CoV-2. Flow cytometry data analysis pipeline RADIANT is available on https:// github. com/ alper 
cevir gel/ RADIA NT.
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