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Fully‑automated multi‑organ 
segmentation tool applicable 
to both non‑contrast 
and post‑contrast abdominal CT: 
deep learning algorithm developed 
using dual‑energy CT images
Sun Kyung Jeon 1,2, Ijin Joo 1,2,3*, Junghoan Park 1,2, Jong‑Min Kim 4, Sang Joon Park 4 & 
Soon Ho Yoon 1,2,4

A novel 3D nnU‑Net‑based of algorithm was developed for fully‑automated multi‑organ segmentation 
in abdominal CT, applicable to both non‑contrast and post‑contrast images. The algorithm was trained 
using dual‑energy CT (DECT)‑obtained portal venous phase (PVP) and spatiotemporally‑matched 
virtual non‑contrast images, and tested using a single‑energy (SE) CT dataset comprising PVP and true 
non‑contrast (TNC) images. The algorithm showed robust accuracy in segmenting the liver, spleen, 
right kidney (RK), and left kidney (LK), with mean dice similarity coefficients (DSCs) exceeding 0.94 
for each organ, regardless of contrast enhancement. However, pancreas segmentation demonstrated 
slightly lower performance with mean DSCs of around 0.8. In organ volume estimation, the algorithm 
demonstrated excellent agreement with ground‑truth measurements for the liver, spleen, RK, and 
LK (intraclass correlation coefficients [ICCs] > 0.95); while the pancreas showed good agreements 
(ICC = 0.792 in SE‑PVP, 0.840 in TNC). Accurate volume estimation within a 10% deviation from 
ground‑truth was achieved in over 90% of cases involving the liver, spleen, RK, and LK. These findings 
indicate the efficacy of our 3D nnU‑Net‑based algorithm, developed using DECT images, which 
provides precise segmentation of the liver, spleen, and RK and LK in both non‑contrast and post‑
contrast CT images, enabling reliable organ volumetry, albeit with relatively reduced performance for 
the pancreas.

Organ segmentation from medical images is garnering increasing attention owing to its potential clinical applica-
tions in fields such as computer-aided diagnosis, treatment planning, intraoperative assistance, and treatment 
 delivery1,2. In abdominal CT scans, the volumes of solid abdominal organs acquired through organ segmentation 
are widely recognized for their diagnostic and prognostic significance. For instance, the liver-to-spleen volume 
ratio can be a useful parameter for evaluating portal  hypertension3. Spleen volume predicts hepatocellular carci-
noma occurrence and overall survival in patients with chronic liver  disease4 and pancreatic volume is negatively 
associated with diabetes  risk5. Additionally, total kidney volume influences the prognosis and treatment decisions 
for polycystic kidney  disease6.

Traditionally, segmentation tasks have been performed manually by radiologists or with the assistance of 
semi-automated tools. However, the widespread adoption of manual or semi-automated methods in routine clini-
cal practice is limited by the labor-intensive and time-consuming nature of the  process7. Recent advancements 
in deep learning, specifically convolutional neural networks (CNNs), have addressed these limitations, leading 
to the development of various fully-automated segmentation methods. These methods have demonstrated high 

OPEN

1Department of Radiology, Seoul National University Hospital, Seoul National University College of Medicine, 
101 Daehak-ro, Jongno-gu, Seoul 03080, Korea. 2Department of Radiology, Seoul National University College of 
Medicine, Seoul, Korea. 3Institute of Radiation Medicine, Seoul National University Medical Research Center Seoul 
National University Hospital, Seoul, Korea. 4MEDICALIP. Co. Ltd., Seoul, Korea. *email: hijijin@gmail.com

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-024-55137-y&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |         (2024) 14:4378  | https://doi.org/10.1038/s41598-024-55137-y

www.nature.com/scientificreports/

performance in certain organs, indicating their practical  utility8–10. Most existing studies on deep-learning-based 
multi-organ segmentation from abdominal CT scans have primarily focused on algorithms designed for either 
non-contrast or post-contrast  images8–10. However, given the variability in abdominal CT protocols in terms of 
dynamic phases, it would be beneficial to employ a unified algorithm that performs well across all image phases. 

In the development of deep learning-based segmentation algorithms applicable to non-contrast CT images, 
dual-energy CT (DECT) offers the advantage of providing reliable ground-truths for virtual non-contrast (VNC) 
images generated from post-contrast scans. Given their resemblance, VNC images could potentially be used as 
substitutes for true non-contrast (TNC) images for training purposes. By transferring the ground-truth from the 
corresponding post-contrast images to the VNC images, the algorithm can be trained precisely to ensure accurate 
organ segmentation. Prior studies have successfully employed this approach to develop segmentation algorithms 
for specific anatomic structures, such as pulmonary  vessels11 and the  heart12 in non-contrast images by incor-
porating VNC images into the training process. Expanding on this approach, the utilization of DECT extends 
beyond the development of algorithms for non-contrast images. By utilizing the paired VNC and post-contrast 
images sharing ground-truth information as training data, a unified algorithm that is applicable to both non-
contrast and post-contrast images can be trained, offering a more efficient method for training data acquisition.

Therefore, this study aimed to develop a fully-automated algorithm for multi-organ segmentation of abdomi-
nal CT scans using dual-energy CT images applicable to both non-contrast and post-contrast images and to 
assess its accuracy in estimating organ volume.

Methods
This study was approved by the Institutional Review Board of our institution, and the requirement for informed 
consent was waived because of the retrospective nature of the study.

Data sources
To develop a multi-organ segmentation algorithm for abdominal CT scans, a dataset consisting of 95 DECT 
examinations was used which were randomly assigned into one of the three following sets: (1) training set 
(n = 75); (2) validation set (n = 10); and (3) training test set (n = 10). Furthermore, to evaluate the algorithm 
performance, two independent external datasets consisting of 30 DECT examinations (DECT test set) and 30 
single-energy CT (SECT) examinations (SECT test set) were separately collected. Specific details of the datasets 
used in this study are provided below.

Dual‑energy CT dataset
For the development of algorithm, we collected 95 dynamic contrast-enhanced abdominal CT examinations 
from 95 patients, conducted between April 2020 and September 2020, using two different DECT machines: 
SOMATOM Force, Siemens Healthineers (n = 49), and IQon Spectral CT, Philips Healthcare (n = 46). The inclu-
sion criteria for the DECT dataset were generally healthy asymptomatic adult outpatients without focal lesions, 
with the exception of small cysts in the target organs, including the liver, spleen, right kidney (RK), left kidney 
(LK), and pancreas.

For external testing of algorithm performance, a temporally independent DECT test set consisting of 30 DECT 
examinations taken from January to February 2021 using two different DECT machines (SOMATOM Force, 
Siemens Healthineers [n = 15], and IQon Spectral CT, Philips Healthcare [n = 15]) was collected.

Dual-energy portal venous phase (DE-PVP) images were used as the dataset for post-contrast CT images. 
These DE-PVP images covered the region from the top of the higher hemidiaphragmatic dome to the anterior 
superior iliac spine or the upper thigh level. The CT acquisition and reconstruction parameters used for each 
scanner are presented in Supplementary Table 1. The corresponding VNC images were used as a dataset for 
non-contrast CT images. These VNC images were generated from the DE-PVP raw data using dedicated post-
processing systems, such as Syngo.via for the SOMATOM Force and IntelliSpace Portal for IQon Spectral CT.

Single‑energy CT dataset
For the SECT dataset, 30 dynamic contrast-enhanced abdominal CT examinations of 30 patients were collected 
(SECT test set), which were acquired using three different SECT scanners at our institution between January 
2021 and February 2021: Revolution, GE Healthcare (n = 9), SOMATOM Definition, Siemens Healthineers 
(n = 11), and iCT, Philips Healthcare (n = 10). Each CT examination included TNC images and single-energy 
PVP (SE-PVP) images. The inclusion criteria for the SECT dataset were identical to those used for the DECT 
dataset. The scan range for both the SE-PVP and TNC was from the top of the higher hemidiaphragmatic dome 
down to the anterior superior iliac spine or upper thigh level. The detailed CT parameters for each scanner are 
listed in Supplementary Table 1.

Creating 3D organ labels
3D organ labels for the liver, spleen, RK, LK, and pancreas were generated on both the DECT and SECT datasets. 
To improve the efficiency of the labeling process, a commercially available segmentation software (MEDIP PRO 
v.2.4.0, MEDICALIP Co. Ltd., Seoul, Korea) was initially used for preliminary organ segmentation. Subsequently, 
a board-certified abdominal radiologist (S.K.J., with 9 years of clinical experience in abdominal CT interpreta-
tion) manually performed voxel-wise correction of the preliminary labels, establishing them as ground truth 
annotations. For DECT, 3D organ labels were confirmed on DE-PVP images. These confirmed labels were then 
directly transferred to the corresponding VNC images based on spatiotemporal matching (Supplementary Fig. 1). 
In contrast, for SECT, organ labels were generated separately for the SE-PVP and TNC images. TNC labels were 



3

Vol.:(0123456789)

Scientific Reports |         (2024) 14:4378  | https://doi.org/10.1038/s41598-024-55137-y

www.nature.com/scientificreports/

generated by referencing the PVP images of the same patient to ensure accuracy in the organ segmentation 
process.

3D nnU‑Net algorithm for multi‑organ segmentation
Algorithm development
A multi-organ segmentation algorithm for abdominal CT scans was developed using the 3D nnU-Net archi-
tecture (Fig. 1), which is a highly advanced CNN model known for its remarkable performance and efficacy 
in medical image  segmentation13. To develop the algorithm, a dataset comprising 20,020 slices of PVP images 
and their corresponding VNC images from 85 DECT examinations with ground-truth annotations was used. 
Instead of training the segmentation algorithm end-to-end, the network was designed to take the internal organ 
areas predicted using a body composition segmentation  algorithm14 as the input data, generating five classes 
corresponding to the segmented areas of the liver, spleen, RK, LK, and pancreas (Supplementary Fig. 2). The 
body composition segmentation algorithm we employed to predict internal organ areas operates by automati-
cally providing volumetric segmentation of body components into seven classes: skin, bone, muscle, abdominal 
visceral fat, subcutaneous fat, central nervous system, and internal organs with vessels. Previous research reported 
dice similarity coefficients (DSCs) exceeding 0.94 for this  algorithm14. We adopted this development strategy, 
using internal organ areas as input, to reduce inference time by strategically avoiding non-internal organ areas, 
consequently lowering computational load and reducing the occurrence of false positives.

Preprocessing strategies and network hyperparameters were customized to optimize the performance of 
the nnU-Net. As part of the preprocessing step, the 3D volumes were resized to match the target spacings of 
0.66796875, 0.66796875, and 2. The final patch size configuration was 160 × 160 × 64, and the batch size was 2. 
During training, data augmentation techniques, such as rotation, scaling, gamma correction, and mirroring, 
were applied. Dice loss and cross-entropy loss functions were used to train the algorithm with a stochastic gra-
dient descent (Nesterov momentum = 0.99). The polynomial learning rate scheduler is initialized to 0.01. The 
algorithm was trained for 1000 epochs.

Segmentation performance of the algorithm
First, the segmentation performance of the algorithm was evaluated using training test set, part of the devel-
opment dataset not used for training. In addition, external tests were performed using two separated datasets 
(DECT test set and SECT test set). To evaluate the segmentation performance, both DE-PVP images and their 
corresponding VNC images were used in DECT set and both SE-PVP and TNC images were used for SECT set 
(Supplementary Fig. 3). 

Organ volume estimation using the developed algorithm
The developed algorithm was tested for clinical applicability by evaluating its accuracy in measuring organ vol-
umes in external test sets (DECT set and SECT set). The volume of each target organ (liver, spleen, RK, LK, and 
pancreas) was measured based on the 3D segmentation results obtained from the algorithm.

Figure 1.  Architecture of 3D nnU-Net-based multi-organ segmentation algorithm.



4

Vol:.(1234567890)

Scientific Reports |         (2024) 14:4378  | https://doi.org/10.1038/s41598-024-55137-y

www.nature.com/scientificreports/

Statistical analysis
The accuracy of the developed 3D nnU-net algorithm for organ segmentation was assessed for each organ and 
imaging phase by comparing the algorithm-derived masks with the ground truth masks. The dice similarity coef-
ficient (DSC)15 was used as the evaluation metric. In addition, the DSC values of different imaging phases were 
compared between the DECT and SECT test sets. Specifically, the DSC values between the DE-PVP and VNC 
on DECT and between the SE-PVP and TNC on SECT were calculated using a paired t-test. Additionally, the 
DSC values were compared among difference CT machines using Mann–Whitney U test or Kruskal–Wallis test.

For organ volumetry, the correlation between the estimated volume obtained by the algorithm and the 
ground truth volume of each organ was assessed using Pearson correlation analysis. The agreement between 
the estimated and ground truth volumes was evaluated using the intraclass correlation coefficient (ICC) and 
Bland–Altman analysis. The ICC values were interpreted using the following criteria: ≥ 0.90 indicating excellent 
agreement; ≥ 0.75 to < 0.90, good agreement; ≥ 0.50 to < 0.75, moderate agreement; and < 0.50, poor  agreement16. 
The Bland–Altman 95% limits of agreement (LOAs) were expressed as a percentage of the measured values. The 
percentage error of the algorithm-estimated volume was calculated by comparison with the ground-truth volume 
using the formula [(algorithm-estimated) − (ground truth)]/(ground truth) × 100 (%). Accurate volume estima-
tion was defined as an assessment that deviated by no more than 10% of the ground truth volume. Accordingly, 
overestimation was defined as a deviation of > 10% of the ground truth volume, whereas underestimation was 
defined as a deviation of < − 10% of the ground truth volume.

All statistical analyses were performed using MedCalc version 19.4.0 (MedCalc Software, Ostend, Belgium). 
A P significance was set at < 0.05.

Results
Segmentation performance of the algorithm
Training test set
In test set, the developed algorithm achieved mean DSC values of 0.976, 0.963, 0.954, 0.954, and 0.879 for the 
liver, spleen, RK, LK, and pancreas in the DE-PVP images, and 0.974, 0.959, 0.945, 0.950, and 0.849 in the VNC 
images, respectively (Table 1). 

External test set
In the external DECT test set, the developed algorithm achieved mean DSC values of 0.986, 0.978, 0.976, 0.976, 
and 0.873 for the liver, spleen, RK, LK, and pancreas in the DE-PVP images, and 0.977, 0.966, 0.968, 0.970, and 
0.854 in the VNC images, respectively (Table 1). All target organs showed significantly higher DSC values in the 
DE-PVP images than in the VNC images (all Ps < 0.001). Mean DSC values were not significantly different based 
on CT machines for all target organs (Ps > 0.05, Supplementary Table 2). In the external SECT test set, the mean 
DSC values of the developed algorithm were 0.981, 0.972, 0.971, 0.970, and 0.846 for the liver, spleen, RK, LK, 
and pancreas in the SE-PVP images and 0.965, 0.961, 0.944, 0.954, and 0.810 in the TNC images, respectively 
(Table 1). The DSC values of all target organs were significantly higher in the SE-PVP images than in the TNC 
images (all Ps < 0.001). Mean DSC values were not significantly different based on CT machines for all target 
organs (Ps > 0.05, Supplementary Table 2).

Application for organ volumetry
DECT test set
In the DECT test set, the algorithm-estimated volume and ground-truth volume of all target organs showed 
strong correlations in both DE-PVP and VNC images (Pearson’s r = 0.999, 0.999, 0.994, 0.990, and 0.917 in 
DE-PVP; and 0.999, 0.999, 0.993, 0.987, and 0.946 in VNC, for the liver, spleen, RK, LK, and pancreas, respec-
tively; all Ps < 0.001). The algorithm-estimated volume showed excellent agreement with the ground truth for 
the liver, spleen, RK, and LK (all ICCs > 0.9) in both the DE-PVP and VNC images. However, for the pancreas, 
the agreement was good, with ICC values of 0.889 and 0.890 for DE-PVP and VNC, respectively (Table 2). The 
algorithm-estimated volume of the liver, spleen, RK, LK, and pancreas showed mean biases with 95% LOAs in 
comparison to the ground truth volume as follows: − 0.4% (− 1.9% to 1.1%), 0% (− 4.3% to 4.3%), − 1.6% (− 5.3% 

Table 1.  Dice similarity coefficients of the 3D nnU-Net-based algorithm in abdominal organ segmentation. 
DECT dual-energy CT, SECT single-energy CT, DE‑PVP portal venous phase on dual-energy CT, VNC virtual 
non-contrast, SE‑PVP portal venous phase on single-energy CT, TNC true non-contrast. *P-values were 
calculated using a paired t-test (DE-PVP vs. VNC and SE-PVP vs. TNC).

Dice similarity coefficients (mean ± standard deviation)

Training test set External test set—DECT External test set—SECT

DE-PVP VNC P value* DE-PVP VNC P value* SE-PVP TNC P value*

Liver 0.976 ± 0.004 0.973 ± 0.007 0.206 0.986 ± 0.003 0.977 ± 0.006 < 0.001 0.981 ± 0.005 0.965 ± 0.012 < 0.001

Spleen 0.963 ± 0.012 0.959 ± 0.017 0.280 0.978 ± 0.011 0.966 ± 0.016 < 0.001 0.972 ± 0.015 0.961 ± 0.019 < 0.001

Right kidney 0.954 ± 0.017 0.945 ± 0.018 < 0.001 0.976 ± 0.006 0.968 ± 0.008 < 0.001 0.971 ± 0.007 0.944 ± 0.016 < 0.001

Left kidney 0.955 ± 0.015 0.950 ± 0.018 0.135 0.976 ± 0.007 0.970 ± 0.008 < 0.001 0.970 ± 0.007 0.954 ± 0.011 < 0.001

Pancreas 0.879 ± 0.045 0.849 ± 0.046 0.001 0.873 ± 0.045 0.854 ± 0.046 < 0.001 0.846 ± 0.060 0.810 ± 0.045 < 0.001
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to 2.1%), − 2.0% (− 6.2% to 2.2%), and 6.8% (− 14.7% to 28.4%) in DE-PVP images (Supplementary Fig. 4); and 
0.2% (− 2.2% to 2.6%), − 0.2% (− 5.2% to 4.9%), − 0.6% (− 5.0% to 3.8%), − 1.7% (− 6.7% to 3.3%), and 9.2% 
(− 8.5% to 26.9%) in VNC images, respectively (Supplementary Fig. 5).

The algorithm achieved accurate volume estimation, deviating within 10% from ground-truth, for the liver, 
spleen, RK, and LK volumes in all assessed cases (100%) in both the DE-PVP and VNC images. However, for the 
pancreas, the percentage of accurate volume estimation was lower, with 56.7% (17/30) in the DE-PVP images 
and 60.0% (18/30) in the VNC images (Supplementary Table 3).

SECT test set
In the SECT test set, the algorithm-estimated volume and ground-truth volume of all target organs showed strong 
correlations in both SE-PVP and TNC images (r = 0.998, 0.999, 0.993, 0.992, and 0.883 in SE-PVP; and 0.994, 
0.992, 0.984, 0.990, and 0.877 in TNC for the liver, spleen, RK, LK, and pancreas, respectively; all Ps < 0.001). The 
algorithm-estimated volume showed excellent agreement with the ground truth for the liver, spleen, RK, and LK 
(all ICCs > 0.9) in both the SE-PVP and TNC images. However, the agreement was good for the pancreas, with 
ICC values of 0.792 and 0.840 for SE-PVP and TNC, respectively (Table 2). The algorithm-estimated volume of 
the liver, spleen, RK, LK, and pancreas showed mean biases with 95% LOAs in comparison to the ground-truth 
volume as follows: − 0.4% (− 2.6% to 1.7%), 0.3% (− 3.2% to 3.7%), − 1.6% (− 5.9% to 2.7%), − 2.4% (− 6.6% to 
1.7%), and 11.3% (− 15.2% to 37.8%) in SE-PVP images (Fig. 2); and 3.2% (− 1.5% to 7.8%), 1.3% (− 7.8% to 
10.5%), 3.5% (− 3.6% to 10.7%), 3.5% (− 1.1% to 8.1%), and 4.0% (− 20.3% to 28.4%) in TNC images (Fig. 3).

The algorithm achieved accurate volume estimation deviating within 10% from ground-truth for the liver, 
spleen, RK, and LK volumes in over 90% of the cases in both SE-PVP and TNC images. However, for the pan-
creas, the percentage of accurate volume estimation was lower, with 56.7% (17/30) in the SE-PVP images and 
73.3% (22/30) in the TNC images (Supplementary Table 3 and Supplementary Fig. 6).

Discussion
In this study, we successfully developed a fully-automated algorithm for multi-organ segmentation in abdomi-
nal CT scans that is applicable to both non-contrast and post-contrast imaging. The algorithm was efficiently 
developed by utilizing PVP (post-contrast) images and their spatiotemporally-matched VNC (non-contrast) 
images from DECT scans, thereby enabling the sharing of organ masks from PVP to VNC images during the 
development process. The developed algorithm was validated using both DECT and SECT scans (external tests) 
to assess its general usability. The results of our 3D nnU-Net algorithm showed highly accurate segmentation 
of the liver, spleen, RK, and LK in abdominal CT scans, regardless of contrast enhancement, with mean DSCs 
exceeding 0.96 in the DECT test set and exceeding 0.94 in the SECT test set. The versatility of our algorithm in 
terms of imaging phases may allow data collection with diverse CT protocols, thus enhancing the clinical utility 
of the organ segmentation results. However, for pancreatic segmentation, the algorithm demonstrated a relatively 
reduced performance, with a mean DSC ranging from 0.810 to 0.873 in the external test sets.

Recent studies have reported promising results for the automated segmentation of abdominal organs from 
abdominal CT scans using various deep learning  methods3,10,17–24. These algorithms demonstrate good segmen-
tation performance, particularly in post-contrast CT imaging. The reported mean DSCs ranged from 0.93 to 
0.97 for the  liver10,17–19, from 0.92 to 0.96 for the  spleen22,25–27, and from 0.86 to 0.97 for the  kidney20,21,28. Our 
algorithm achieved excellent results on the external validation set for post-contrast imaging, with DSC values 
of 0.981, 0.972, 0.971, and 0.970 for the liver, spleen, RK, and LK, respectively, which were similar to the best 
results reported in previous studies for each organ. However, there have been limited research on non-contrast 
CT imaging, which is a more challenging task for organ  segmentation29. Previous studies using non-contrast 
CT reported relatively lower segmentation performance compared with post-contrast CT, with the mean DSC 
of 0.86–0.9523,24 for the liver and 0.62 for  spleen22. However, our study achieved reliable results even with non-
contrast CT imaging, as evidenced by the mean DSC values of 0.965, 0.961, 0.944, and 0.954 for the liver, spleen, 
RK, and LK, respectively, in the TNC images of the external validation set. Although these values were lower 

Table 2.  Agreements between algorithm-estimated volume and ground-truth volume of each organ. DECT 
dual-energy CT, SECT single-energy CT, DE‑PVP portal venous phase on dual-energy CT, VNC virtual non-
contrast, SE‑PVP portal venous phase on single-energy CT, TNC true non-contrast.

Intraclass correlation coefficient (95% confidence interval)

Training test set External test set—DECT External test set—SECT

DE-PVP VNC DE-PVP VNC SE-PVP TNC

Liver 0.999 (0.995, 0.999) 0.999 (0.997, 0.999) 0.999 (0.998, 0.999) 0.999 (0.997, 0.999) 0.998 (0.996, 0.999) 0.985 (0.772, 
0.996)

Spleen 0.999 (0.996, 0.999) 0.999 (0.996, 0.999) 0.999 (0.998, 0.999) 0.999 (0.997, 0.999) 0.999 (0.998, 0.999) 0.992 (0.984, 
0.996)

Right kidney 0.925 (0.697, 0.981) 0.916 (0.660, 0.979) 0.991 (0.957, 0.997) 0.992 (0.984, 0.996) 0.989 (0.961, 0.996) 0.971 (0.816, 
0.991)

Left kidney 0.927 (0.704, 0.982) 0.914 (0.653, 0.979) 0.983 (0.884, 0.995) 0.981 (0.935, 0.993) 0.982 (0.839, 0.994) 0.970 (0.454, 
0.993)

Pancreas 0.892 (0.566, 0.973) 0.887 (0.546, 0.972) 0.889 (0.689, 0.954) 0.890 (0.395, 0.965) 0.792 (0.231, 0.926) 0.840 (0.694, 
0.920)
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than the post-contrast performance of our algorithm, they still indicated excellent segmentation accuracy. These 
encouraging results can be attributed to the successful incorporation of VNC images in the development of the 
algorithm, which facilitated precise segmentation mask generation in non-contrast CT images in conjunction 
with the implementation of the advanced 3D nnU-Net methodology. Segmentation performance of pancreas 
has been reported to be lower (mean DSC, 0.63–0.87)24,30 than that of other abdominal solid organs, which is 
in agreement with our study results. The reasons for this can be attributed to the inherent constraints of the 
pancreas, including its lobulated shape and the difficulty in distinguishing it from nearby structures, such as the 
collapsed duodenum or small bowel, and lymph nodes, even for experienced  radiologists31,32.

Figure 2.  Bland–Altman plots illustrating the agreement between algorithm-estimated volumes and ground-
truth volumes of the (a) liver, (b) spleen, (c) right kidney, (d) left kidney, and (e) pancreas in the external single-
energy CT test set’s portal venous phase images.
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Our algorithm can estimate organ volumes based on 3D segmentation results, demonstrating excellent agree-
ment (with ICCs > 0.9) with ground-truth volumes for the liver, spleen, RK, and LK in the external test sets. 
It successfully achieved accurate volume estimation, deviating within 10% of the ground-truth in over 90% 
of the cases for these organs. This can be primarily attributed to the precise segmentation performance of the 
algorithm. Given the significant interest in organ volumetry, our automated algorithm holds excellent value 
for various diagnostic and prognostic applications in both research and clinical practice. Our results for organ 
volumetry are in line with those of previous studies that also reported good performance in the liver, spleen, 
and  kidneys3,33–35. The pancreas, as inferred from its comparatively lower segmentation performance, exhibited a 
slightly lower agreement with the ground-truth, as indicated by ICCs ranging from 0.792 to 0.890. The accurate 

Figure 3.  Bland–Altman plots illustrating the agreement between algorithm-estimated volumes and ground-
truth volumes of the (a) liver, (b) spleen, (c) right kidney, (d) left kidney, and (e) pancreas in the external single-
energy CT test set’s true non-contrast images.
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volume estimation rate of the pancreas ranged from 56.7 to 73.3% in the external test set. In our study, underes-
timation of the pancreatic volume frequently resulted from omitting the terminal portions of the head or tail of 
the pancreas or additional lobulations of pancreatic tissue, whereas overestimation often arose from including 
the iso-attenuating adjacent duodenum or collapsed jejunum. Overcoming these challenges would be crucial 
for improving segmentation performance of the pancreas.

Our study had several limitations. First, because our development and external test sets primarily comprised 
cases with minimal segmentation challenges (specifically, patients without focal lesions, except for small cysts 
in abdominal solid organs), the generalizability of our algorithm needs to be further evaluated for patients with 
diverse diseases. Second, although our external test set encompassed three different single-energy CT scanners 
with non-contrast and post-contrast images, additional validation is required involving various CT scanners, 
protocols, and phases of dynamic imaging. Third, we did not investigate the practical value of our algorithm 
in a clinical setting. Further studies are necessary to evaluate its real-world applicability for specific clinical 
applications.

In conclusion, our 3D nnU-Net-based algorithm, developed using DECT images, accurately segmented 
abdominal solid organs on both non-contrast and post-contrast CT images, enabling reliable organ volumetry 
of the liver, spleen, and right and left kidneys, albeit with relatively lower performance for the pancreas.

Data availability
The data used to support the findings of this study are available from the corresponding author on reasonable 
request.

Code availability
The artificial intelligence algorithm developed from this study is available through the commercial product 
(MEDIP PRO, MEDICALIP Co. Ltd., Seoul, Korea) and the code can be available from the corresponding author 
on reasonable request.
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