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Deep learning segmentation 
of fibrous cap in intravascular 
optical coherence tomography 
images
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Thin-cap fibroatheroma (TCFA) is a prominent risk factor for plaque rupture. Intravascular optical 
coherence tomography (IVOCT) enables identification of fibrous cap (FC), measurement of FC 
thicknesses, and assessment of plaque vulnerability. We developed a fully-automated deep learning 
method for FC segmentation. This study included 32,531 images across 227 pullbacks from two 
registries (TRANSFORM-OCT and UHCMC). Images were semi-automatically labeled using our 
OCTOPUS with expert editing using established guidelines. We employed preprocessing including 
guidewire shadow detection, lumen segmentation, pixel-shifting, and Gaussian filtering on raw 
IVOCT (r,θ) images. Data were augmented in a natural way by changing θ in spiral acquisitions and 
by changing intensity and noise values. We used a modified SegResNet and comparison networks 
to segment FCs. We employed transfer learning from our existing much larger, fully-labeled 
calcification IVOCT dataset to reduce deep-learning training. Postprocessing with a morphological 
operation enhanced segmentation performance. Overall, our method consistently delivered better 
FC segmentation results (Dice: 0.837 ± 0.012) than other deep-learning methods. Transfer learning 
reduced training time by 84% and reduced the need for more training samples. Our method showed a 
high level of generalizability, evidenced by highly-consistent segmentations across five-fold cross-
validation (sensitivity: 85.0 ± 0.3%, Dice: 0.846 ± 0.011) and the held-out test (sensitivity: 84.9%, 
Dice: 0.816) sets. In addition, we found excellent agreement of FC thickness with ground truth 
(2.95 ± 20.73 µm), giving clinically insignificant bias. There was excellent reproducibility in pre- and 
post-stenting pullbacks (average FC angle: 200.9 ± 128.0°/202.0 ± 121.1°). Our fully automated, 
deep-learning FC segmentation method demonstrated excellent performance, generalizability, 
and reproducibility on multi-center datasets. It will be useful for multiple research purposes and 
potentially for planning stent deployments that avoid placing a stent edge over an FC.

Keywords Intravascular optical coherence tomography, Fibrous cap, Thin-cap fibroatheroma, Deep learning, 
Segmentation, Fibrous cap thickness

Thin-cap fibroatheroma (TCFA) is widely recognized as a prominent risk factor for plaque rupture, a major 
contributor to acute coronary syndromes (ACS)1,2. TCFA is typically characterized by the presence of a large lipid 
pool covered by a thin fibrous cap (FC) (< 65 µm) and increased macrophage  activity1,3. However, Kume et al. 
reported thicker cap measurements using intravascular optical coherence tomography (IVOCT), possibly due 
to tissue shrinkage during  histology4. The consensus standard also recommends adjusting this threshold when 
applied to IVOCT images to account for potential tissue shrinkage (10–20%) during histopathologic  processing5. 
Intravascular imaging techniques such as intravascular ultrasound (IVUS) and IVOCT enables the assessment 
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of FC thickness. Nevertheless, caution should be exercised when interpreting IVUS findings due to insufficient 
resolution (150–200 µm) for reliable thickness measurement. In contrast, IVOCT offers superior axial resolu-
tion (12–18 µm)6, facilitating precise measurement of FC thickness, identification of TCFA, and determination 
of plaque  vulnerability5.

Despite its advantages in assessing thin FC tissues, IVOCT presents significant limitations for real-time 
treatment planning and research in large data sets. First, an IVOCT pullback typically consists of more than 300 
image frames, resulting in a data overload. The comprehensive manual analysis of coronary plaques necessitates 
meticulous consideration of image characteristics, leading to a time-consuming and labor-intensive process. 
Second, manual analysis of IVOCT images can be prone to high levels of inter- and intra-observer  variability5. 
For instance, our research group reported intra- and inter-observer variabilities of ≤ 5% and 6%, respectively, 
among experienced cardiologists in detecting stent struts in IVOCT  images7. Since coronary plaques exhibit 
less distinct features compared to stent struts, the variability in plaque analysis among clinicians is expected to 
be even higher. An automated method will be more reproducible which will be especially important if one is 
looking for changes between cohorts or within a cohort as with a drug trial. Third, manual point measurements 
of fibrous cap thickness do not fully capture tendency to rupture. Automated assessment of the surface area of a 
lesion is surely needed to assess vulnerability. These observations underscore the imperative for an accurate and 
fully-automated method for fibrous cap analysis.

There have been only a few studies addressing these limitations. Our group initially developed a semi-auto-
mated method for volumetric quantification of  FC8. Briefly, we segmented the luminal and abluminal boundaries 
in the polar coordinates of IVOCT images using dynamic programming. Then, we quantified the thickness at each 
point of the FC luminal boundary. Although the method was validated in various ways, the manual identification 
of the circumferential distribution of the lipid was required. Zahnd et al.9 proposed a semi-automatic segmenta-
tion method utilizing dynamic programming to quantify coronary FC thickness in IVOCT images. The method 
was evaluated through multiple approaches, and the results were promising. However, its major limitation was 
the requirement of manual initialization of lipidic plaque for fibrous cap segmentation. Additionally, the method 
was validated on a small subset of pullbacks (179 images from 21 patients), which reduces its reproducibility. 
Min et al.10 developed a deep learning model using a DenseNet architecture for classifying IVOCT frames as 
either TCFA or non-TCFA. They reported a promising classification performance with an overall accuracy of 
91.6 ± 1.7%, sensitivity of 88.7 ± 3.4%, and specificity of 91.8 ± 2.0%. However, this method did not offer quan-
titative measurements of FC. In our previous  study11, we developed an automated method capable of detecting 
lipidic plaque and segmenting the FC in IVOCT images. The method consisted of two phases: lipidic plaque 
detection using deep learning and FC segmentation using dynamic programming. Evaluation was performed on 
over 4,000 image frames from 41 patients, demonstrating excellent discriminability of lipidic plaque and good 
reproducibility in FC thickness measurement. However, our previous method occasionally exhibited inaccurate 
lipid arc detections, affecting the accuracy of FC thickness measurement. An accurate and fully automated end-
to-end training method could offer faster and improved assessment of FC.

In this report, we expand upon our previous  study11 and develop a fully-automated deep learning method 
for FC segmentation in IVOCT images. To achieve this, we employ specialized image preprocessing, transfer 
learning, a large carefully labeled dataset, physics- and system-plausible augmentation, and advanced deep 
learning networks. Robustness, accuracy, and reproducibility of results are carefully evaluated. Because we are 
automatically analyzing volumes of data, we create visual heatmaps of fibrous cap thickness, giving a compelling 
visualization of vulnerability.

Image analysis methods
Preprocessing
We employed a preprocessing method previously proposed by our  group12,13 to identify the appropriate tissue 
regions of interest for FC segmentation. Preprocessing of raw IVOCT (r,θ) image data involved several steps: (1) 
Detection and removal of the guidewire and corresponding shadow regions using dynamic  programming14, as 
they do not contain tissue information. (2) Segmentation of the lumen boundary using a deep learning-based 
semantic segmentation method developed by our  group15. (3) Pixel-shifting each A-line to the left, ensuring that 
all A-lines have the same starting point along the radial direction. This step was crucial as it not only created a 
smaller region of interest for deep learning, simplifying the processing, but also aligned the tissues, making dif-
ferent lesions appear more similar to the  network11. (4) Limiting the r direction to the first 200 pixels (~ 1 mm) 
due to the limited penetration depth of the IVOCT signal. (5) Applying a Gaussian filter with a kernel size of 
(7,7) and a standard deviation of 1-pixel to reduce noise. After preprocessing, the size of the IVOCT data was 
reduced from (968 × 448 pixels) to (200 × 448) without any loss of meaningful data. The preprocessed images 
were then used for further processing. The overall workflow of the proposed method is illustrated in Fig. 1. Please 
note that all images in the manuscript are presented following a log transformation for improved visualization.

Data augmentation for deep learning
Our previous study found that data augmentation significantly improved deep learning segmentation perfor-
mance in IVOCT  images15,16. The IVOCT data were augmented for deep learning training to increase the number 
of examples with varying FC locations and intensities, thereby enhancing the spatial invariance of the methods. 
We applied two data augmentation approaches, one for the raw polar IVOCT before preprocessing and another 
for the preprocessed IVOCT images. First, for the raw polar IVOCT pullback, we concatenated all of the raw 
polar (r,θ) images to form one large 2D array, where r represents tissue depth and the θ is catheter rotation, which 
rotates from 0 to N × 360°, where N is the number of unput images. Then, we changed the offset angle to extract 
new polar image frames with no data loss or distortion. In practice, we shifted the starting A-line six times by 80 
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A-line increments. Further details are provided  elsewhere15,16. Second, the data augmentation for preprocessed 
IVOCT data involved several steps as follows: (1) We normalized the intensity of all input images to the range (0, 
1). (2) We flipped input images along the vertical axis with a 10% probability. (3) We randomly scaled the pixel 
intensity of the input image by a factor of 0.1 with a 20% probability. (4) We randomly shifted the pixel intensity 
of the input image by a factor of 0.1 with a 20% probability.

FC segmentation
To segment FC regions in IVOCT images, we utilized a modified version of  SegResNet17, which follows an 
encoder-decoder-based convolutional neural network (CNN) architecture with an asymmetrically large encoder 
backbone and a smaller decoder (Fig. 2). In our study, the variational auto-encoder branch was excluded since 
we had a sufficient number of IVOCT image instances (> 32,000) for FC segmentation.

The encoder component primarily consisted of  ResNet18 blocks, where each block comprised two convolu-
tions with normalization and rectified linear unit activation, followed by an additive identity skip connection. 
For normalization, we employed Group  Normalization19, which demonstrates improved performance compared 
to Batch Normalization when the batch size is small. We adopted a conventional CNN approach to progressively 
downsize the image dimensions by a factor of 2 while simultaneously increasing the feature size by 2. Strided 
convolutions were employed for downsizing, and all convolutions were 3 × 3 with an initial number of filters set 
to 16. Additionally, a dropout layer with a probability of 0.2 was incorporated into each block.

The decoder component resembled the encoder part but contained only a single block for each spatial level. 
Each decoder level commenced with upsizing, which reduced the number of features by a factor of 2 using 1 × 1 
convolutions and doubled the spatial dimension via bilinear upsampling. Subsequently, the encoder output 
from the corresponding spatial level was added. The output of the decoder retained the same size as the original 
image, and the number of features matched the initial input feature size. Finally, a 1 × 1 convolution layer and a 
sigmoid function were applied.

Figure 1.  Workflow of FC segmentation in IVOCT images. The key steps include preprocessing, data 
augmentation, FC segmentation, transfer learning, and postprocessing. Preprocessing involves guidewire 
shadow detection, lumen segmentation, pixel-shifting, and noise filtering on raw IVOCT data (r,θ), followed 
by data augmentation on the preprocessed images. The output serves as input to the FC segmentation network. 
Postprocessing techniques, such as filling and morphological operations, are utilized to reduce small false 
positive errors. For transfer learning (top, blue dotted box), the network is trained using IVOCT calcification 
images with the same preprocessing and network architecture.
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Transfer learning for deep learning
To optimize the deep learning training for FC segmentation, we implemented domain adaptation transfer 
learning using our existing calcification IVOCT dataset. The rationale behind employing transfer learning is 
to decrease training time and alleviate the requirement for a large number of training samples by leveraging 
a model previously trained on a different yet related task—specifically, calcification segmentation in IVOCT 
images. Domain adaptation serves to prevent or minimize negative migration during training by capitalizing 
on knowledge acquired from a source domain (calcification segmentation) to enhance performance on a target 
domain (FC segmentation). For instance, the lower-level features learned during the initial training (calcification) 
prove valuable for the target domain (FC). By reusing these features, the model can concentrate on learning task-
specific details pertinent to FC segmentation without discarding valuable knowledge. Additionally, rather than 
training the entire model from scratch, which may lead to negative transfer, only specific layers or parameters 
of the pre-trained model are adjusted during adaptation to the target task. This approach enables the model to 
retain knowledge from the source domain while adapting to the specifics of the new task. For this study, we 
constructed a pretrained network with the same architecture as the FC segmentation model using the IVOCT 
data from our previous studies on calcification segmentation (comprising over 24,000 images)13,15,20,21. Rather 
than initializing the weights of the second network (FC segmentation) randomly, we utilized the pretrained 
model to initialize these weights. Through transfer learning, the model can rapidly reach the convergence point 
during training, potentially leading to enhanced performance.

Postprocessing
To clean results and enhance segmentation performance, we implemented a morphological operation after the 
FC segmentation. Given the presence of inherent speckle noises in IVOCT images, the network occasionally 
exhibits spotty segmentation errors throughout the pullbacks. We employed an opening operation on the output 
labels with a disk-shaped structuring element with a radius of 3. Subsequently, we filled in the holes within the 
segmented labels. The pixel connectivity rule was set to 4.

Experimental methods
Data acquisition
The images utilized in this study were obtained from two sources: the TRiple Assessment of Neointima Stent 
FOrmation to Reabsorbable polyMer with Optical Coherence Tomography (TRANSFORM-OCT)  trial22 and the 
University Hospitals Cleveland Medical Center (UHCMC) Registry. The TRANSFORM-OCT dataset comprised 
24,209 images (15,239 calcification and 8,970 FC images) derived from 153 pullbacks involving 77 patients. On 
the other hand, the UHCMC dataset consisted of 8,322 images (6,960 calcification and 1,362 FC images) acquired 
from 74 pullbacks involving 74 patients. The raw IVOCT data size was 968 × 448 in the (r,θ) domain. Calcifica-
tion images were employed to establish the pretrained network for transfer learning, whereas FC images were 
employed for training the network specifically for FC segmentation (Fig. 1). The IVOCT images were acquired 
using a frequency-domain ILUMIEN OCT system (Abbott Vascular, Santa Clara, CA, USA), which utilized a 

Figure 2.  SegResNet Architecture for FC Segmentation. The preprocessed IVOCT image serves as the input, 
starting with an initial 3 × 3 convolution and dropout layers. Each green block represents a ResNet-like block 
with group normalization. The decoder outputs a predicted label, followed by a sigmoid activation function to 
generate a pixel-wise classification map. Both the input and output images have the same size (200 × 448 pixels in 
(r,θ)). In the input image, the black strip indicates the removed guidewire shadow.
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tunable light source sweeping from 1,250 to 1,360 nm. The imaging pullback was conducted at a frame rate of 
180 fps, pullback speed of 36 mm/s, and an axial resolution of approximately 20 µm.

The inclusion criteria encompassed patients with stable angina and documented ischemia or acute coronary 
syndrome who had undergone IVOCT examination. Major exclusion criteria included the presence of unpro-
tected left main disease, chronic total occlusion, baseline serum creatinine > 2.0 mg/dL, life expectancy < 18 
months, and unsuitability for OCT imaging at the clinician’s discretion. Additionally, IVOCT image frames with 
poor quality due to luminal blood, unclear lumen, artifact, and reverberation were excluded. IVOCT pullbacks 
with excessive side branches and previous stent implantation were also excluded. Some pullbacks had the pres-
ence of thrombus (40% for TRANSFORM and 24% for UHCMC), but the actual number of image frames was 
negligible, as only the frames with FC were selected. This study adhered to the principles outlined in the Decla-
ration of Helsinki and received approval from the Institutional Review Board of University Hospitals Cleveland 
Medical Center, Cleveland, OH, USA. The requirement for individual informed consent was waived as all data 
were fully anonymized, with no identifiable personal health data.

Ground truth labeling
The FC regions were segmented using Optical Coherence TOmography PlaqUe and Stent (OCTOPUS) software, 
previously developed by our  group23, and manually edited by two experts (5 + years of experience) from the 
Cardiovascular Imaging Core Laboratory at University Hospitals Cleveland Medical Center, a leading IVOCT 
analysis laboratory with over 3,000 clinical trial cases analyzed. For manual editing of FC, we followed the 
“consensus document” for IVOCT image  analysis5. Specifically, the FC was defined as a distinct tissue layer of 
connective tissue, which is often signal-rich, overlying a signal-poor region, and TCFA was defined as a necrotic 
core with an overlying fibrous cap where the minimum thickness of the fibrous cap was less than a predetermined 
threshold (< 65 µm). The labels provided by the more experienced expert were used as the ground truth. In case 
of disagreement between the two readers, they revaluated the frames and reached a consensus decision. Any 
region other than FC was given a label of “background”, which allowed us to set up a binary segmentation task.

Network training
We utilized the AdamW optimizer, an adaptive moment estimation optimizer with decoupled weight  decay24, 
for training both the transfer learning and FC segmentation networks. This optimizer employs stochastic gradi-
ent descent and adaptively estimates first-order and second-order moments while incorporating a weight decay 
 method24. The AdamW optimizer is computationally efficient, robust to diagonal rescaling of gradients, and 
well-suited for handling large-scale data problems.

The initial learning rate, epsilon, and weight decay were empirically set to 1 ×  10–5, 1 ×  10–9, and 1 ×  10–6, 
respectively. To train the networks, we employed a maximum of 600 epochs and a batch size of 64. L2 norm 
regularization with a weight of 1 ×  10–6 was applied to the convolutional kernel parameters, and spatial dropout 
with a rate of 0.2 was implemented after the initial encoder convolution, following the original  implementation17.

For the FC segmentation model, the learning parameters of each encoder layer were initialized by transferring 
weights from the transfer learning network, which was pretrained on IVOCT calcification data. The network 
weights were then fine-tuned in a layer-by-layer manner using backpropagation. The learning rates of subsequent 
layers were adjusted sequentially until the performance on the validation set ceased to improve.

The loss functions for both networks were computed using the Dice loss function over the softmax outputs. 
To prevent overfitting during training, we employed a stopping criterion that halted training when the valida-
tion loss failed to improve for 10 consecutive epochs or when the maximum number of epochs was reached. In 
practice, the former rule was executed. We used the following frameworks using Python (ver. 3.9.13, Python 
Software Foundation, USA): Pytorch (ver. 1.13.1) and Monai (ver. 1.1.0).

Performance evaluation
For transfer learning training, we partitioned a total of 227 pullbacks into training and validation sets. Following 
a 7:3 split, the training set consisted of 15,239 calcification images from 153 pullbacks (TRANSFORM-OCT), 
while the validation set contained 6,960 calcification images from 74 pullbacks (UHCMC). There was no held-
out test set for pretraining as the network was solely employed for transfer learning purposes.

Regarding FC segmentation, we performed a five-fold cross-validation on the TRANSFORM-OCT dataset, 
which encompassed 8,970 FC images from 153 pullbacks. In each fold, there were sub-groups for training (60%), 
validation (20%), and testing (20%). Folds and sub-groups were based on pullbacks rather than images. This 
approach ensured that each sub-group was assigned to the test set precisely once, thereby avoiding evaluation 
variance. Additionally, the UHCMC dataset, comprising 1,362 FC images from 74 pullbacks, served as the held-
out test set for further evaluations.

The segmentation performance was quantitatively assessed using conventional metrics, including pixel-wise 
positive predictive value (PPV), negative predictive value (NPV), sensitivity, specificity, and Dice coefficient as 
below:

(1)PPV = TP / (TP + FP)

(2)NPV = TN / (TN + FN)

(3)Sensitivity = TP / (TP + FN)
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Here, TP represents the number of true positive pixels, TN denotes the number of true negatives, FP signi-
fies the number of false positives, and FN represents the number of false negatives. We reported the mean and 
standard deviation of these metrics across the five folds. Furthermore, to investigate performance variance, we 
compared the segmentation results against three other networks (U-Net25, Attention U-Net26, and nnU-Net27). 
Training details for all deep learning networks are provided in Supplementary Table S1. We also examined the 
impact of transfer learning on the results by comparing performance with and without transfer learning. To 
conduct this analysis, we created pretrained networks for all four networks, utilizing the exact same calcification-
analysis training and validation datasets. Additionally, we assessed the reproducibility of the proposed method 
by evaluating pre- and post-stenting IVOCT pullbacks acquired from the same lesion.

In addition to conventional metrics, we also assessed a clinically meaningful metric, specifically FC thickness, 
which has been utilized in several prior clinical research  studies28,29. This metric was evaluated on the held-out 
test set. FC thickness is defined as the distance between the luminal and the abluminal boundaries. Measurements 
were taken along the abluminal boundary from the luminal boundary at each A-line in polar (r,θ) images. Sub-
sequently, the mean FC thickness for each FC plaque region was determined by averaging these measurements.

Results
For FC segmentation, SegResNet consistently delivered the most reliable segmentation results as compared 
to other deep learning networks (Fig. 3 and Table 1). SegResNet segmentations are nearly visually identical 
to manual labels (Fig. 3). Attention U-Net exhibited the lowest Dice coefficient (0.806 ± 0.022) and sensitiv-
ity (80.1% ± 4.9%) among all the networks (Table 1). The nnU-Net showed a slightly higher (or equivalent) 
sensitivity (91.4% ± 1.5%) and Dice coefficient (0.837 ± 0.008) than the SegResNet. However, its PPV was the 
lowest (77.2% ± 0.3%), indicating a higher rate of false positives. Overall, the SegResNet demonstrated the best 
segmentation performance out of all the networks employed. All networks underwent the same preprocessing, 
data augmentation, transfer learning, and postprocessing. As described previously, networks were pre-trained 
on the task of segmenting calcifications, using our large database of such images. For more information on pre-
training, see Supplementary Fig. S1 and Table S2.

Transfer learning from the calcification segmentation task reduced training time without yielding significant 
improvements in FC segmentation performance. Figure 4 shows mean validation Dice loss curves with and 
without transfer learning from SegResNet. Without transfer learning, convergence (as determined by the stop-
ping rule) required approximately 22–42 epochs, whereas with transfer learning, convergence was achieved in 

(4)Specificity = TN / (TN + FP)

(5)Dice coefficient = 2TP / (2TP + FP + FN)

Figure 3.  FC Segmentation results for different deep learning models with transfer learning. The panels include 
(A) IVOCT image in Cartesian coordinates, (B) ground truth, (C) U-Net, (D) Attention U-Net, (E) nnU-
Net, and (F) SegResNet. Each row represents different instances of IVOCT images with FC present (shown in 
green). Among all the networks, SegResNet exhibited the highest segmentation performance in terms of Dice 
(0.837 ± 0.012) and PPV (82.5% ± 3.7%) across all five-folds of cross-validation. The green color indicates FC 
plaque regions, which are magnified within the red boxes.
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only 3–7 epochs. Transfer learning also reduced the need for a large number of training samples (Fig. 5). With 
transfer learning, Dice values always exceed results without transfer learning. They appear to reach asymptotic 
convergence unlike without transfer learning. With transfer learning, only 60% of samples gives a better result 
than 100% of the samples without transfer learning. Using the full data set and long training times, transfer 
learning resulted in somewhat improved quantitative metrics across the folds for all networks, as shown in Sup-
plementary Table S3. If we reduce the training samples by 40%, then there is a significant difference between 
with and without transfer learning (not shown).

Our method had highly consistent segmentation results between the five-fold cross-validation (TRANS-
FORM-OCT) and the held-out test (UHCMC) sets (Fig. 6 and Table 2). To achieve this, we applied each of the 
five trained models from the cross-validation on the held-out test set, which consisted of 1,362 FC images from 
74 pullbacks at UHCMC. We combined the pixel-wise predictions by selecting the most common output through 
plurality voting. On the held-out set, the proposed method achieved a PPV of 78.5%, sensitivity of 84.9%, and 
Dice coefficient of 0.816. These metrics indicate a high level of generalizability for our method.

We found very good agreement of mean FC thickness measurements between our automated method and 
manual ground truth assessments (Fig. 7). The linear regression analysis showed an R2 of 0.909, indicating 
significant correlations between the ground truth and the proposed method (Fig. 7A). The mean bias of FC 
thickness measurements was only about 2.95 ± 20.73 µm in a Bland–Altman analysis, and most measurements 
(98%, 1330/1362) were included within the limits of agreement (Fig. 7B). These results support no significant 
bias of the proposed method as compared to the ground truth.

Our method demonstrated excellent reproducibility of automated FC segmentation in scan-rescan IVOCT 
images (Fig. 8). For this analysis, we utilized IVOCT images from paired pre- and post-stenting IVOCT pullbacks 
outside the stented region. We extracted 51 paired IVOCT images containing FCs, which were not included in 
the training or held-out test sets. Lesion attributes between pre- and post-stenting pullbacks were: average FC 
thickness (87.6 ± 38.6 µm/105.8 ± 33.9 µm), average FC arc angle (200.9 ± 128.0°/202.0 ± 121.1°), average FC 
area (1.04 ± 0.62  mm2/1.01 ± 0.56  mm2), and FC surface area (8.6  mm2/7.5  mm2). Additionally, the coefficients 
of variation between pre- and post-stenting pullbacks were very similar (Supplementary Table S4), indicating 
the strong reproducibility of our method.

Figure 9 illustrates 3D visualizations of FC thickness in representative IVOCT pullbacks, featuring both large 
and small lesions (Fig. 9). For both type of lesions, the minimum thickness was below 65 µm, classifying them 
as TCFAs according to the standard definition. However, biomechainical considerations suggest that the larger 

Table 1.  Mean quantitative performance metrics of FC segmentation across five-folds for various deep 
learning networks, including U-Net, Attention U-Net, nnU-Net, and SegResNet. Among all the networks 
employed, SegResNet demonstrated the best segmentation results, achieving a Dice coefficient of 0.846 ± 0.011 
and a PPV of 84.2% ± 1.8%.

PPV (%) NPV (%) Sensitivity (%) Specificity (%) Accuracy (%) Dice

U-Net 84.0 ± 1.8 98.9 ± 0.1 80.2 ± 0.1 99.1 ± 0.1 98.1 ± 0.0 0.820 ± 0.009

Attention U-Net 81.2 ± 0.6 98.9 ± 0.2 80.1 ± 4.9 98.9 ± 0.2 97.9 ± 0.1 0.806 ± 0.022

nnU-Net 77.2 ± 0.3 99.5 ± 0.1 91.4 ± 1.5 98.5 ± 0.1 98.1 ± 0.0 0.837 ± 0.008

SegResNet 84.2 ± 1.8 99.1 ± 0.0 85.0 ± 0.3 99.1 ± 0.1 98.3 ± 0.1 0.846 ± 0.011

Figure 4.  Mean Dice loss curve during validation as computed over a fold. Red and blue curves are results with 
and without transfer learning, as described in the text. With transfer learning, the curve reached an asymptotic 
result with many fewer epochs. In addition, there was an improved Dice value in this run with transfer learning. 
The black dotted lines indicate the points of highest Dice coefficients for each curve.
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lesion is likely to experience significantly greater strains compared to the smaller one, due to the additional sup-
port from surrounding normal tissues in the latter case. Consequently, the larger lesion may be more susceptible 
to rupture. The 3D visualizations were generated using Amira software, version 2023.2 (Thermo Fisher Scientific, 
Inc., Hillsboro, OR, USA).

Discussion
In this study, we built on our previous studies of IVOCT image  analysis8,11–13,15,16,20,21,23,28,30–33 and developed a 
fully-automated method for FC segmentation in IVOCT images using deep learning. The main findings are: (1) 
Transfer learning from a separate calcification segmentation task greatly reduced both the training time and the 
need for a large number of labeled training samples for deep learning. (2) The SegResNet network outperformed 
other deep learning networks, including U-Net, Attention U-Net, and nnU-Net. (3) Our method had a high 
generalizability evidenced by similar segmentation results on training (TRANSFORM-OCT) and held-out test 
(UHCMC) sets. (4).

Our method showed a good reproducibility for FC segmentation in scan-rescan IVOCT pullbacks. (5) The 
proposed method produced excellent results for FC segmentation while taking a reasonable amount of time 
(0.02 s per frame) to compute, implying that it could be a promising solution for both research and clinical 
applications. (6) Using our method, it is possible to create 3D FC thickness heatmaps and histograms of FC 
thickness of FC lesions, creating a broader characterization of lesion vulnerability.

Transfer learning enabled much faster training as compared to the traditional methods without transfer learn-
ing across all the networks used in this study. Transfer learning leverages prior knowledge gained while solving 
one task to solve a related new  task34. In this study, prior knowledge was obtained from previous calcification 
 segmentation13,15,20,21, and it was transferred to a related new task, which was FC segmentation. The whole train-
ing process can be made more efficient and generalizable by reusing elements of an algorithm and transferring 
the knowledge already held by a model. In addition, the sharing of knowledge between two different models 
can result in a more accurate and effective model overall. In our experiments, transfer learning achieved the 
desired performance in ~ 20% of the time. More importantly, with transfer learning, the network only required 
60% of the training samples to reach the desired performance level. In our case, transfer learning was done from 
a similar task (calcification segmentation) to the target task (FC segmentation). We also tried pretraining using 
a conventional less related task (i.e., masked autoencoder). In our hands, using the more similar calcification 
task gave superior results.

Our method enabled excellent reproducibility of FC thickness measurement. From the experiments on the 
paired pre- and post-stenting IVOCT pullbacks, we found a very small bias and high similarity between those 
pullbacks (Fig. 8). IVOCT inevitably exhibits variations in plaque composition due to its reliance on the position-
ing of the catheter and guidewire, even when imaging the same lesion accurately. As a result, there were slight 
differences in the characteristics of FC plaque between the pre- and post-stenting pullbacks. Nonetheless, our 
automated analysis offered high repeatability, surpassing the potential variability introduced by different ana-
lysts, even with minimal user intervention. This suggests that our method is well-suited for large-scale research 

Figure 5.  Effect of pretraining and transfer learning on the number of labeled samples required for training. 
With transfer learning (TL, brown bars), Dice values are always greater than the result without transfer learning. 
In addition, with transfer learning, there is convergence towards an asymptotic Dice value whereas without 
transfer learning, performance is continuing to improve much between 80 and 100% of labeled training samples. 
Note that with transfer learning, only 60% of samples gives a better result than 100% of the samples without 
transfer learning. The task for pretraining was segmentation of calcified plaques in IVOCT images.
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studies. Furthermore, with further improvements, it has the potential to be utilized clinically, assisting physicians 
in determining an appropriate stent landing zone.

We found an excellent generalizability of the proposed method for FC analysis using two large cohort data 
sets (i.e., TRANSFORM-OCT and UHCMC). Clinical research studies have mostly relied on single-center data, 
limiting their generalizability as they focus on local data despite the potential for larger datasets. Therefore, to 
generalize the clinical research methods (particularly deep learning applications), it is essential to use many data 
acquired from multiple sites. In our study, we created deep learning models using the TRANSFORM-OCT trial 
data, that mainly includes Italian patients, and validated its generalizability on the UHCMC data (Cleveland, 
OH, USA).

Automated segmentation of FC, particularly TCFA, in IVOCT holds the promise of advancing personal-
ized medical treatments. The evolution of preventive and cardioprotective therapeutics over the past decade, 

Figure 6.  FC segmentation results on the held-out test set. The panels include (A) Cartesian IVOCT image, (B) 
ground truth, and (C) automated prediction. Each row represents different instances of IVOCT images. In panel 
(B) (top), the ground truth FC label appears disconnected at 8 o’clock (indicated by the white arrow); however, 
our proposed method accurately predicts FC regions, demonstrating its high generalizability. Moreover, our 
method delivered reliable results even in the presence of image reconstruction errors, as depicted in panel (C) 
(at 3 o’clock, highlighted by the yellow arrow). The green color indicates FC plaque regions.

Table 2.  Quantitative performance metrics of FC segmentation on the held-out test set, including PPV, NPV, 
sensitivity, specificity, accuracy, and Dice coefficient. Our method demonstrates highly consistent segmentation 
results between the cross-validation and held-out test sets, highlighting the remarkable generalizability of the 
proposed approach.

PPV (%) NPV (%) Sensitivity (%) Specificity (%) Accuracy (%) Dice

Our method 78.5 99.4 84.9 99.0 98.5 0.816
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Figure 7.  Comparison of mean FC thickness measurements between the ground truth and the proposed 
method, calculated on the held-out test set. The held-out test set comprised 1,362 FC images from 74 IVOCT 
pullbacks (UHCMC). In panel (A), the linear regression analysis demonstrates a remarkably high similarity (R2: 
0.909) between the proposed method and the ground truth. Additionally, in the Bland–Altman analysis (panel 
B), the mean bias of FC thickness measurements was 2.95 ± 20.73 µm, with only a small number of cases (32 out 
of 1,362) exceeding the limits of agreement (indicated by black dotted lines). These findings indicate the absence 
of significant bias in the proposed method compared to the ground truth.

Figure 8.  Reproducibility of FC assessment in scan-rescan IVOCT images as obtained from an untreated 
lesion in paired pre- and post-stenting IVOCT pullbacks. The panels include (A) Cartesian IVOCT image 
and (B) automated prediction. The top and bottom rows correspond to the first (pre-stenting) and second 
(post-stenting) scans, respectively. In this case, FC measurements between scans were as follows: FC thickness 
(114 µm/130 µm), FC arc angle (314°/321°), and FC area (1.76  mm2/1.49  mm2), indicating its excellent 
reproducibility. The color green represents FC plaque regions.
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such as P2Y12 antagonists, direct oral anticoagulants, proprotein convertase subtilisin kexin 9 (PCSK9) inhibi-
tors, icosapent ethyl, and glucagon-like peptide 1 (GLP-1) agonists, underscores the necessity for personalized 
medicine approaches. These approaches aim to ensure that the most suitable treatment is administered to each 
patient in a cost-effective manner. The automated identification of FC tissue presents an opportunity to guide 
intensive therapies in clinical practice and enhance patient cohorts for evaluating the effectiveness of emerging 
novel therapeutics. Moreover, accurately determining TCFA could influence potential revascularization strate-
gies. For instance, an additional stent might be considered to secure a high-risk lesion, and a more aggressive 
statin treatment could also be prescribed alongside stenosis. Assessing plaque changes between baseline and 
follow-up pullbacks has the potential to facilitate mechanistic studies in drug development. Furthermore, iden-
tifying high-risk IVOCT characteristics, including TCFA, has the potential to contribute valuable insights to 
other imaging modalities.

This study has identified some limitations. First, our method occasionally generated inaccurate results, par-
ticularly in the presence of side branches or mixed plaque (refer to Supplementary Fig. S2). However, it is impor-
tant to note that such instances were infrequent and easily correctable. Second, despite utilizing a large dataset 
for this study, there is room for further improvement in future investigations by employing even larger datasets. 
Some scenarios, such as cases involving significant side branches and thrombus, were not fully represented in the 
training data. The implementation of active learning or human-in-the-loop learning, where cases are segmented, 
corrected, and reintegrated into the training dataset, holds the potential to enhance performance. Third, the 
observed performance differences among networks suggest that more advanced deep learning approaches could 
lead to further improvements. Fourth, the proposed method has not been validated using an external validation 
dataset. As a result, there may be discrepancies in performance when applied to other datasets. In subsequent 
studies, we intend to enhance segmentation performance by incorporating larger datasets and validate the 
robustness and reproducibility across multiple institutions worldwide.

In conclusion, we developed a fully automated, deep learning FC segmentation and measurement methods 
for IVOCT images. Using multi-center datasets, we performed rigorous evaluations and demonstrated excel-
lent performance, generalizability, and reproducibility. We believe that this method will prove useful for various 
research applications and may even play a role in future treatment planning, especially when one wants to avoid 
placing a stent edge over a lipidic lesions with a vulnerable FC.

Data availability
The datasets generated and/or analyzed during the current study are available from the corresponding author 
upon reasonable request.

Figure 9.  3D visualizations of FC thickness from representative IVOCT pullbacks with (A) large and (B) small 
lesions. Both lesions are by definition TCFAs because they have at least a point where the FC is under 65 µm. In 
the case of the large lesion, the FC had length = 28.2 mm, maximum angle = 271°, and surface area = 66.0  mm2. 
These values suggest vulnerability as compared to the small lesion with attributes of an FC length of 4.9 mm, a 
maximum angle of 109°, and a surface area of 4.2  mm2. For high-risk cases, clinicians may consider additional 
revascularization strategies such as a more aggressive statin treatment (see “Discussion”).
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