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Construction of knowledge 
constraints: a case study of 3D 
structural modeling
Cai Lu 1, Xinran Xu 2* & Bingbin Zhang 1

The uncertainty of structural interpretation complicates the practical production and application 
of data-driven complex geological structure modeling technology. Intelligent structural modeling 
excavates and extracts structural knowledge from structural interpretation through human–machine 
collaboration and combines structural interpretation to form a new model of complex structural 
modeling guided by knowledge. Specifically, we focus on utilizing knowledge rule reasoning 
technology to extract topological semantic knowledge from interpretive data and employ knowledge 
inference to derive structural constraint information from complex geological structure models, thus 
effectively constraining the 3D geological structure modeling process. To achieve this, we develop 
a rule-based knowledge inference system that derives theoretical models consistent with expert 
cognition from interpretive data and prior knowledge. Additionally, we represent the extracted 
knowledge as a topological semantic knowledge graph, which facilitates computer recognition and 
allows estimation of intersection lines during 3D geological modeling, resulting in the creation of 
accurate models. The applicability of our proposed method to various complex geological structures 
is validated through application tests using real-world data. Furthermore, our method effectively 
supports the realization of intelligent structure modeling in real working area.
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Structural modeling is usually not the ultimate goal but supports the numerical and physical simulation of 
complex phenomena (such as seismic propagation and fluid migration), depth domain imaging, lithology inter-
pretation, and reservoir modeling. The three-dimensional model of the underground structure visually shows 
the geometric shape and spatial relationship between underground geological interfaces and geological bodies, 
such as strata and  faults1–3, Based on structural modeling, sequence and attribute modeling can be performed 
to directly support reserve calculations, well location deployment, and oil and gas development plan formula-
tion. This is one of the most important tasks in underground resource exploration and  development4,5. In these 
areas, the quality of seismic data is often poor, and the relationship between key stratum reflection and stratum 
contact in the seismic profiles is  unclear6. The transformation of the multistage tectonic movement led to strong 
deformation of the rock mass, forming a very complex underground structure. Such cases often complicate the 
acquisition of high-quality structural interpretations, causing considerable uncertainty in the traditional data-
driven structural modeling  methods7–9. The presence of uncertainties can make it challenging to establish a direct 
link between the geometry of a 3D structural model and the corresponding geological  interface10,11. Because of 
the high cost of obtaining interpretation data in actual structural modeling, only limited data can be obtained 
in a certain research area, which requires more expert experience and interpretation to construct a relatively 
accurate stratigraphic  model1,12,13.

Based on the above questions, Zhan et al. constructed the geometric constraints of a structural model through 
a knowledge graph, which they used to characterize the constraint relationship among knowledge. When the 
experts failed to comprehend the structural model, a quality assessment was conducted by modifying the knowl-
edge graph to avoid repeated modeling  operations14. From the graph perspective, knowledge graph is conceptual 
network and symbolic expression of the physical world. Its nodes represent entities in the real world, and the 
edges connected by entities represent the semantic links between  entities15,16. Knowledge reasoning often involves 
overcoming two challenges: the difficulty of obtaining data, which results in sparse and uneven distribution 
of data samples, and the complexity of spatial relationships between structural  elements17. These challenges 
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complicate the accurate expression of geological structures using only text data, and the problem of missing 
structures is sometimes encountered. To address the above issues, this study proposes a process of constructing 
constraint information of complex geological structure modeling based on knowledge reasoning. The study 
aims to establish a large-scale structural modeling knowledge base, which is used to fuse the topological posi-
tion relationship of geological surface space elements and provide technical support for 3D geological structure 
modeling technology, as shown in Fig. 1. The construction of a knowledge graph is divided into three stages: (1) 
conversion of geological data into constraints of a topology knowledge graph, (2) mining of entity and relation-
ship information in geological data through knowledge reasoning, and (3) expert determination of the reliability 
of the knowledge graph using the wire-frame model.

This study makes the following contributions:

(1) We propose a framework and process to obtain modeling constraint information by knowledge inference of 
complex geological structure models (Fig. 1), transform the knowledge of geological experts into knowledge 
graph data structures that can be recognized by computers, and represent them into wire frame models 
that can be recognized by experts.

(2) We construct a common knowledge reasoning rule base in the field of structural modeling and introduce 
the semantic information of the geological structure into the topological network of the structural model.

(3) We have demonstrated that our approach can effectively deal with real world work and avoid modifying the 
original data, but change the knowledge in the knowledge base, and improve the accuracy and robustness 
of the modeling by introducing expert knowledge.

The remainder of this article follows the following organizational structure. “Materials and methods” section 
briefly describes the relevant research methods of this study. In “Complex geological structure knowledge reason-
ing” section, the research methods and processes of constructing constraint knowledge of topological geological 
modeling through knowledge inference are introduced in detail. “Result” section shows the application of the 
proposed framework to a field case. “Discussion” section discusses the feasibility of the proposed framework in 
comparison with existing approaches. The last section will summarize the work of this study.

Figure 1.  Knowledge constraint construction process.
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Materials and methods
As far as we know, only Zhan et al.14 have introduced knowledge into the study of structural modeling at present, 
and there is no relevant study on the constraint information of knowledge inference to construct modeling. In 
this section we will discuss the following two types of research work that are relevant to this paper: knowledge 
reasoning and explicit  modeling18.

Explicit structural modeling
Explicit interactive modeling is a classical 3D modeling method to reconstruct 3D geological structures using 
sparse data. When modeling complex regions containing various types of geological structures, the limitations of 
using a single method show up. In display modeling, people introduce the workflow of building closed geological 
models by introducing multi-source data information to constrain 3D geological models. First, all geological 
surfaces are reconstructed, and then the intersections between them are found by cutting each other under 
constraints. Most of the subsequent explicit modeling approaches use this workflow. Display modeling allows a 
large number of interactive modifications, adding appropriate underground control constraints according to the 
experience of the modeler, but the amount of interaction is very large and prone to topological  contradictions19. 
The square deterministic modeling of structural modeling mainly includes the following methods, namely res-
ervoir seismology  methods20, reservoir sedimentological  methods21 and kriging interpolation  methods22. It 
includes some discrete techniques commonly used in  software23–26. Yan et al. shown that spatial explicit models 
produce better results than non-spatial models, thus showing that space is indeed special in terms of  summary27. 
In order to build a more reasonable 3D geological structure model, but now lack of understanding of the specific 
structure. In display modeling, where it is difficult to choose a way to integrate all types of information, geologi-
cal histories are used to combine multiple scalar fields, merely showing the geological interfaces cutting each 
other. We focus on introducing knowledge reasoning into structural modeling to construct structural models, 
and introducing earth scientists’ cognition into display modeling to provide more comprehensive and intuitive 
structural models. We provide a workflow to construct modeling constraints by knowledge reasoning, and 
improve the stability and efficiency of display modeling by introducing knowledge reasoning. Figure 2 provides 
constraint information for the pattern layer.

Knowledge reasoning of model constraints
The model constraint can be represented by knowledge graph in data form the construction of the knowledge 
constraints of the structural model starts from the application field and determines the scope of knowledge 
 constraints28. The key to constructing the data layer of the knowledge graph is knowledge  reasoning29. New 
insight is obtained through knowledge reasoning, and the given knowledge graph is inferred based on expert 
knowledge to determine whether it conforms to cognition for updating the rule base of the pattern layer of the 
knowledge graph.

The target world can be described based on the relationships between entities. Based on this information, the 
data are not sufficiently meaningful. Relevant data were combined to form the information. Semantics comprise 
two components: data and relevance. When describing a structural model, the semantic description encom-
passes both low-level features, such as geometric properties, and high-level features, such as logical relationships 
between structural elements. By utilizing basic semantic entities, the structural geological model is divided into 
geometric units, and their spatial topological relationships are described through the relationships between 
geometric elements. The semantic reasoning between spatial topological geometries yields the construction 
process of a knowledge  graph30.

The semantic entities in the modeling knowledge graph refer to geometric objects. Their basic semantic 
entities can be divided into four types: point (0-cell), line (1-cell), surface (2-cell), and body (3-cell). Relation 
refers to the topological geometric, positional, and compositional relationships between two entities (including 
the relationships between target entities). An attribute refers to the position and closure of geometric objects in 
structural  modeling14.

Definition 1 (Topological semantic knowledge graph) The creation and update of topological semantic knowledge 
graphs can be recorded using meta-knowledge, thereby enabling evolution analysis and traceability of complex 
geological structural knowledge.

where E,V  represent the basic elements of the topological semantic knowledge graph. Usually, they are expressed 
in the form of “head entity, relationship between entities, tail entity”.GeoMetaK represents the meta-knowledge 
of the topological semantic knowledge graph., It is usually used to indicate the updating of knowledge, PT and 
PL are used to represent the temporal and spatial relationships of topological semantic knowledge graphs, such 
as the deposition time order of the interpretation data and the topological spatial location association.

Introducing a knowledge-reasoning algorithm into a knowledge graph to constrain its construction and 
obtain accurate data samples is necessary. In constructing a topological structure knowledge graph, it is very 
important to determine the relationship between structural elements. Burns et al. introduced a technique for 
representing the geological topological relations using a network diagram, in which node entities denote spatial 
elements and edges indicate the topological connections between  them31. Based on the above ideas, we used 
the hierarchical network to obtain the computer representation of the topological structure knowledge graph. 

(1)GeohfKG =< E,V , {[PT ,Ti]|TiO , [PL, L]|LO}|RTi,L >↔ GeoMetaK ,
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The topological structure information fully represented the geometric and structural features of the structural 
geological model.

Complex geological structure knowledge reasoning
Knowledge reasoning rule base construction
The pattern layer of a knowledge graph consists of defining entities, relationships, and attributes, as well as 
building the knowledge graph’s rule base. Structural geology has a long history. Numerous rules and a lot of 
information regarding the genesis and regularity of movement of geological entities have been formed. Some of 
these rules can be summarized to form knowledge.

Therefore, according to the definition of a knowledge graph in the construction of a complex-structure knowl-
edge graph, and the schema layer and rule base summary of knowledge constraints are shown in Figs. 3 and 4.

The basic form of the production rule base in this article is

Among them, R it represents the number of rules, k is the k rule, which represents the obtained rule con-
clusion, and the extraction of the knowledge graph data layer is realized through logical rules. Where E and C 
represent the conditions and conclusions of rule reasoning. The pattern layer of a knowledge graph consists of 
defining entities, relationships, and attributes, as well as building the knowledge graph’s rule base. Structural geol-
ogy has a long history. Numerous rules and a lot of information regarding the genesis and regularity of movement 
of geological entities have been formed. Some of these rules can be summarized to form knowledge. Therefore, 
according to the definition of a knowledge graph in the construction of a complex-structure knowledge graph, 
the rule base of knowledge reasoning is summarized as shown in Fig. 4.

In the initial rule base, we first added nine separate geological structure rule patterns as the initial state and 
then used the geological constraint rule base (prior knowledge) to match the common structural patterns. For 

(2)Rk :=
n
OR
j=1

(

m
AND
j=1

Eijk

)

→ Ck m ≥ 1, n ≥ 1.

Figure 2.  Knowledge constraint construction process.
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Figure 3.  Structural geology knowledge ontology graph.

Figure 4.  Topological rule base of knowledge reasoning, initial predefined geological structure rule base 
(geological structure diagram), including six common reasoning modes and subgraph reasoning query diagram; 
the geometric topology rule base (geometric structure diagram) contains common geometric reasoning 
patterns.
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parts that match, we inferred the interpretation of the corresponding geological structure to be geologically 
reasonable. In the construction of model knowledge reasoning, the focus was on geometric topology knowl-
edge graphs from the perspective of computer geometry and knowledge graph reasoning. In the new reasoning 
process, we focused on two possibilities: (1) different structural superposition and superposition methods since 
exhausting all geological structure rules is difficult, and (2) predefined rule errors (prior knowledge errors), as 
shown in Fig. 4. Experts must determine whether new rules need to be added or whether existing rules are suit-
able. In the process, the inference rule base is gradually improved and optimized.

The topological structure knowledge graph can be used to represent and describe various geological structural 
models, including fractures, intrusions, and unconformities. By representing these construction patterns as nodes 
and using edges to describe the relationships between them, a topology knowledge graph can be constructed. 
In the knowledge graph, the relationship between different nodes can be expressed as a topological relationship, 
which can more accurately represent the topological relationship in the geological structure and automatically 
perform topological inspection and constraints during the modeling process to ensure the correctness of the 
model.

The geological processes and structural types covered in the rule base are extensive, covering common types 
of geological structures such as faults, folds, and intrusions and geological structures of different scales, such 
as large-scale topography and small-scale rock structures. We described the universality of the rule base from 
three perspectives. (1) The first perspective involves the types of covering tectonic patterns; we listed the types of 
tectonic patterns contained in the rule base, such as faults, intrusions, and unconformity structures, as shown in 
Fig. 5. This rule base can cover the most common construction patterns in graphs. (2) The second perspective is 
the spatial distribution of cover tectonic models. In addition to the types of cover tectonic models, we considered 
the distribution of these tectonic models in geological space, which can describe various tectonic models in dif-
ferent geological periods and regions. (3) The third perspective includes the complexity of the cover structure 
model; the complexities of the geological structure models differ. Certain simple models may be relatively easy 
to describe and identify, whereas others may require more rules to describe. In the subsequent simulation, the 
given rules were used to achieve a more complex model (Fig. 5). Therefore, our rule base can cover and handle 
construction patterns with different complexities.

Knowledge reasoning for constraints of geological structure modeling
Knowledge reasoning, which can accurately connect to structural modeling, is the main technology used to 
build a knowledge graph in the field of structural modeling. The aim of constructing a knowledge graph is 
to obtain expert knowledge from seismic interpretation data and structured and semi-structured data from 
seismic interpretation data, such as coordinate data of the horizon and fault plane, intersection information of 
the horizon and fault plane, and the extraction of geological entities, spatial relations, semantic relations, and 
sedimentary relations. Furthermore, we determine whether the number of rules is finite or countable. Finally, a 
complete knowledge graph of the structural model was obtained by combining the knowledge reasoning of the 
spatial relations. In structural modeling, knowledge reasoning can combine spatial relations to achieve a more 

Figure 5.  Lists common geological structure models, such as faults, intrusions, and unconformity structures. 
Most of the common geological structures exist in fault structures and unconformity structures. In the proposed 
rules, the above models can be expressed in the form of a knowledge graph.
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accurate reasoning process. For example, the relationship between geological entities can be inferred based on 
their relative positions and intersections in space.

Reasoning constraints in the knowledge graph are realized through the rules of knowledge reasoning. The 
process of knowledge reasoning is as follows. The specific reasoning process is shown in Fig. 6. The aim of 
knowledge reasoning is to make human knowledge comprehensible to computers, construct a geometric topol-
ogy knowledge graph, and guide 3D geological structure modeling. In our input, the effective horizon data is 
Hi = {hi1 , him , ...., hia} , where him represents the horizon interpretation data at the m point of the i section, M ≤ a , 
a is the number of horizon. And the effective fault data is Fj = {fj1 , fjn , ..., fjb } where the fjn represents the fault 
interpretation data at the nth point of the j section, 1 ≤ n ≤ b , b is the number of fault. the quantity of a and b 
is determined according to the specific work area.

To facilitate processing, we modeled the input prior knowledge as an adjacency matrix. According to the prior 
knowledge of geological structure (the intersection information of plane and fault plane) obtained from the per-
spective of geological experts, the prior information is represented by G1 = (E,V) , where E = {GeoMetaK ,Ee_g },

where eij = 1 indicates that the i-th face and the jth face have an intersection relationship, GeoMetaK = {EF ,EH ,V}

EF and EH represent the fault plane and horizon plane entity respectively.
And (m+ n)(m+ n) represents the number of intersection relations between horizon planes and fault planes 

calculated by the bounding box method as our meta-knowledge. eij = 0 indicates that there is no intersection 
relationship. And the Ee_g represents the point, line, surface, block semantic entity that interprets the data gen-
erated, and its specific form is Ee_g = {ep1 , ep2 , ..., epn_p , el1 , el2 , ..., eln_l , ef1 , ef2 , ..., efn_f , el1 , eb2 , ..., ebn_b } where n_p , 
n_l , n_f  and n_b represent the number of the topological semantic entities of the generated point, line, surface 
and block entities respectively. What’s more V = {Vmeet ,Voverlap,Vinside ,Vdisjoin,Vcover ,Vcompose ,Vequal ,Vlim ot} . 
The following tables of the above edges represent the topological position relationships between entities respec-
tively, represents the intersection information of prior knowledge (1 represents intersection, and 0 represents 
non-intersection) to construct the adjacency matrix of prior knowledge. Through the inference of rule base, the 
transformation of geological structure information to the topological relationship is realized, and the language 
(i.e., the form of adjacency matrix) that can be read by a computer is c-ombined to create conditions for the 
subsequent sub-graph inference. The pseudo-code of knowledge reasoning related to algorithm 1 based on the 
rule base is as Table 1.

In the first stage of reasoning, prior human knowledge is combined with data that the computer can recognize, 
and computer cognition is realized by matching the corresponding rule base.

(3)GeoMetaK =











e11 e12 · · · e1(m+n)

e21 e22 · · · e2(m+n)

...
...

. . .
...

e(m+n)1 e(m+n)2 · · · e(m+n)(m+n)











,

Figure 6.  Complete process of knowledge reasoning can be divided into three parts: transforming geological 
data into geological constraints that can be read by computer; based on the constructed knowledge base, the 
knowledge graph is constructed via the knowledge reasoning algorithm. The knowledge graph is represented as 
a wireframe model to allow expert knowledge to participate in the knowledge graph update.
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After obtaining the basic topological entities and relationship information of the knowledge graph, pattern 
matching in the knowledge base is carried out through sub-graph matching research. The planar entities and 

Table 1.  The algorithm of rule matching.

Table 2.  The algorithm of mining algorithm.
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block entities existing in the knowledge graph are mined by graph isomorphism matching, and the entities and 
relationship information conforming to the geological structure are obtained by approximate subgraph match-
ing. We studied the problem of sub-graph matching for knowledge graph. Specifically, given a query graph 
Gq = {Equery ,Vquery} and data graph  Gd = {Edata,Vdata}  the sub-graph matching problem refers to obtaining 
all the data sub-graphs in G2 that is isomorphic to G3 to determine the new entity information in the knowledge 
graph. Through the study of each algorithm, we selected the VF2 algorithm with block efficiency and speed. The 
corresponding pseudo-code is as Table 2.

Generally, mapping M is expressed as the mapping of the node pair (equery , edata) ( equery ∈ Gq and 
edata ∈ Gd ) each of which represents the mapping of node equery of Gq and edata of Gd , M ∈ Gd × Gq the function 
F(s, equery , edata) is a feasibility function that simultaneously increases the comparison of node and edge labels.

The return value is a Boolean value used to prune the search tree. At the same time, it can elimiate the situation 
where the two graphs can be isomorphic but the final matching result cannot be obtained, which is used to reduce 
the number of state spaces. P (s) represents the set of all pairs of nodes to be matched. The VF2 algorithm is used 
to match the isomorphism graph, and a knowledge graph (face and block entities) that matches the given rule 
pattern is obtained. The VF2 algorithm cannot directly query the number of isomorphic sub-graphs; however, this 
function can be realized by modifying the VF2 algorithm. Specifically, based on the VF2 algorithm, each matched 
node pair can be marked, and unmatched node pairs can then be searched. Each time a new match is found, 
the marked node pairs are removed from the current search to query the number of isomorphic sub-graphs.

The specific process uses Algorithm 1 to realize rule matching and converts prior human knowledge into 
structured data on the computer with the help of prior rules to guide subsequent subgraph isomorphism match-
ing. Through the modified sub-graph matching model, all sub-graphs that are isomorphic to the graph are tra-
versed through sub-graph isomorphism to infer all surface entities and block entity knowledge and construct a 
complete knowledge graph. The quality of a knowledge graph obtained through knowledge reasoning is typically 
not guaranteed; therefore, it is added to the knowledge base. Before the process of quality evaluation is required, 
the wire-frame model is used in construction modeling to evaluate the quality of the knowledge graph. As shown 
in Fig. 7, when the constructed knowledge graph does not conform to expert cognition, the error information in 
the knowledge graph is modified and queried using subgraph matching to identify incorrect subgraph informa-
tion in the knowledge graph. Quality assessment is the process of measuring and evaluating the credibility of 
new knowledge before it is added to a knowledge base to eliminate errors or conflicts.

Result
Figure 7 shows the workflow of knowledge reasoning construction modeling constraints participating in con-
struction modeling. Firstly, the knowledge graph is represented as a wire-frame model to determine whether 
there are errors in the knowledge graph and realize the editing of the knowledge graph data. Secondly, the 
knowledge graph obtained by knowledge reasoning is a data format that can be recognized by the computer 
to constrain the boundary conditions of the construction model. Finally, the wire-frame model and the final 
construction model are consistent with expert knowledge.

In the construction process of knowledge reasoning in the knowledge graph, the entities and relationships 
in Fig. 8b,c are obtained through the first stage of knowledge reasoning using prior knowledge (Fig. 8a) (where 
prior knowledge is used to judge the intersection relationship between the horizon surface and fault surface by 

Figure 7.  The whole knowledge reasoning ultimately participates in the workflow of the construction 
modeling.
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interpreting the data). Here, entities refer to the intersection line and intersection point entities obtained from 
prior knowledge, as well as the topological semantic relationships between entities. Rule matching in the library 
was used to realize the reasoning of geological knowledge data to topological structure data, and a preliminary 
knowledge graph was constructed. In the second stage of knowledge reasoning, the hidden entity and relation-
ship information in the knowledge graph are continuously enriched, and all sub-graphs that are isomorphic to 
the query sub-graph are obtained through the sub-graph isomorphism query. As shown in Fig. 9, the hidden 
surface entity and geological block entity knowledge (third and fourth layers) were obtained by reasoning. The 
knowledge graph obtained in this study does not contain prior knowledge of the initial definition. It is a purely 
topological semantic knowledge graph. The intersection point, intersection line, closed surface composed of an 
intersection line, and closed block entity composed of a surface were mined from prior interpretation data. The 
knowledge graph obtained by knowledge inference is used as the modeling constraint to estimate the boundary 
conditions of the constructed model[5]and get the final structural modeling,as show in Fig. 10.

Figure 8.  The process of point entity and line entity in the topological geometric knowledge graph obtained 
by rule base matching in the first stage of knowledge reasoning, which is divided into two steps. (a) Is prior 
knowledge, and geological experts input the intersection relationship between horizon surface and fault surface; 
(b) the topological position relationship between the line entity and the entity is obtained by matching the 
prior knowledge through the rule base; and (c) is the point entity obtained by the rule base matching for the 
intersection of line entities, and the entities with the same attributes are merged through knowledge fusion to 
complete the first stage of knowledge reasoning task.

Figure 9.  Second stage of knowledge reasoning, and the face entity and block entity obtained in the previous 
stage are used to obtain the subgraph isomorphic to the given graph model by subgraph isomorphism matching, 
and the matching entity and topological position relationship are recorded, to obtain the updated pure 
topological space knowledge graph.
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Discussion
Practical application of knowledge reasoning
The constructed geometric constraint knowledge graph can be used to constrain 3D geological structure 
 modeling5. The specific construction process is shown in Fig. 11. Knowledge graph technology is used to con-
struct knowledge graphs in the field of geology so that geologists can query and analyze geological data and 
identify geological laws and evolution trends. According to the geological knowledge in the knowledge graph, 
the model was constrained and optimized. The constraint relationship in the knowledge graph is used to specify 

Figure 10.  Closed geological body in the actual work area of three-dimensional geological structure under the 
constraint of knowledge graph.

Figure 11.  Complete process of knowledge reasoning constrained 3D construction modeling. It can be divided 
into two parts: knowledge reasoning participates in intersection estimation and three-dimensional geological 
body surface interpolation reconstruction closed three-dimensional geological body.



12

Vol:.(1234567890)

Scientific Reports |         (2024) 14:4704  | https://doi.org/10.1038/s41598-024-55115-4

www.nature.com/scientificreports/

the topological relationship and geometric properties of the intersection line to improve the accuracy and con-
trollability of the intersection line, provide the geometric constraints required for surface reconstruction, and 
ensure that the surface is as smooth as possible, while satisfying the geological structural characteristics. The 
optimized geological model was more consistent with the actual geological conditions.

In the subsequent modeling process, the topological structure knowledge graph is integrated into the bound-
ary feature extraction, and then the boundary features are used as surface topology semantic constraints, and the 
morphological features are used as surface geometry semantic constraints, combined with multi-source informa-
tion abstraction such as stratigraphic interpretation point clouds and well layered data. It is a multi-constraint 
surface regression model. By building a rectangular grid, based on the spatial autoregressive neural network, 
the fitting error and smoothing error are used as loss functions to solve the model, and then construct a model 
with high fitting degree, good smoothness and accurate morphological characteristics.
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Figure 12.  Comparison of boundary feature extraction methods. (a) Boundary characteristics guided by 
knowledge graph; (b) boundary characteristics of extrapolation interpolation.

Figure 13.  Three-dimensional geological structure (error).
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where (xhsTLi , yi , z
hsTL
i ) and (xhsBLi , yi , z

hsBL
i ) represents the coordinate set of the end points of the middle level line 

of the i level plane in the upper and lower wall of the fault respectively. And (xfsTLi , yi , z
fsTL
i ) represents the set of 

coordinates corresponding to (xhsTLi , yi , z
hsTL
i ) in the fault line of the fault plane. In the same way, the (xfsBLi , yi , z

fsBL
i ) 

represents the set of coordinates corresponding to (xhsBLi , yi , z
hsBL
i ) in the fault line of the fault plane. µhsTL

i  and 
σ
hsTL
i  represent the mean and standard deviation of the dip angle near the end point (xhsTLi , yi , z

hsTL
i ) of the hang-

ing wall horizon line. µhsBL
i  and σ hsBL

i  represent the mean and standard deviation of the dip angle near the end 
point (xhsBLi , yi , z

hsBL
i ) of the hanging wall horizon line, µfsTL

i  , σ fsTL
i  and µfsBL

i  , σ fsBL
i  represent the mean and standard 

deviation of the reciprocal fault dip angle near fault points (xfsTLi , yi , z
fsTL
i ) and (xfsTLi , yi , z

fsTL
i ).

By comparison in Fig. 12, it is found that in the traditional extrapolation interpolation method, the inter-
section lines of the second horizon and the first and third horizons are staggered. At the same time, consider-
ing that the fault is a reverse fault, the hanging-footwall intersection line is required to be located above the 
hanging-footwall intersection line. In the traditional extrapolation interpolation method, the intersecting lines 
of the upper and lower disks of the first horizon also appear interleaved. Under the guidance of the principle of 
knowledge graph, the method in this paper can expertly extract reliable boundary feature lines that are consist-
ent with geological laws and expert cognition. Ensure that the intersection line of the deposited lower horizon 
always remains below the intersection line of the deposited upper horizon. Moreover, the hanging-wall (thrust 
fault) or hanging-wall (normal fault) intersection line always remains above the hanging-wall (thrust fault) or 
hanging-wall (normal fault) intersection line. This method effectively prevents the occurrence of intersecting lines 
of adjacent layers or intersecting lines of upper and lower layers, and eliminates any unreasonable phenomenon.

To test the effectiveness of the complex geological knowledge graph based on knowledge reasoning, we 
constructed a three-dimensional geological model of the study area in Sichuan. When the traditional structural 
modeling method (Fig. 13) encounters an unreasonable fault or horizon, it obtains an accurate geological struc-
tural model by modifying the original data (Fig. 14). This method requires modification of a large amount of 
raw data, which is obviously not suitable for more complex work areas. But the method based on the knowledge 
reasoning (Fig. 10) can accurately constrain the three-dimensional geological modeling and reduce the uncer-
tainty of structural modeling, what’s more, this method modifies the knowledge to model the constraints and 
avoids the uncertainty caused by modifying the original data.

Other knowledge reasoning approaches
In addition, certain neural network-based methods, such as the graph neural network (GNN)32,33, can be used for 
subgraph isomorphism reasoning. These methods use the learning ability of neural networks to query whether a 
corresponding subgraph exists by learning the feature vectors of nodes and edges and describing the reasoning 
problem of the graph in detail.

Owing to the high requirements of domain knowledge graphs, ensuring the accuracy of results using a deep 
learning method is difficult if applied to practical engineering. The existing method constructs a model rule 
base by human definition to realize the construction of a knowledge graph; however, following the develop-
ment of deep learning, the rules existing in the construction of knowledge graphs can be automatically learned, 
efficient knowledge reasoning can be realized, and the rule base can be avoided. For example, the hidden subface 
and closed block entities in a knowledge graph can be obtained by reasoning based on a random walk, and a 
topological semantic knowledge graph can be obtained. The AMIE algorithm proposed by Galárraga et al. is an 
association rule mining algorithm based on an incomplete knowledge  base34. Each rule is predicted by learn-
ing: for each relationship, starting from the rule whose body is empty, the body part of the rule is expanded by 
three operations, and the candidate rules whose knowledge degree exceeds the threshold are retained to realize 
association rule mining research of knowledge graphs.

Figure 14.  Three-dimensional geological structure.
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Limitations
The method in this article aims to mine the topological structure of existing models from interpretation data. 
There is no better method for constructing topological semantic knowledge graphs for other data (such as seismic 
data); the limitation of this method is that it relies on Expert experience realizes the improvement of the knowl-
edge reasoning rule base. For the limited work area data, our geological rule base can only build a knowledge 
graph and constrain the three-dimensional structural modeling for the existing work area. For other work areas, 
our method is theoretically applicable. However, for areas that are not accurate enough, we need to continuously 
add rules for reasoning to further improve our rule base. Based on a large number of experiments, our method is 
theoretically effective. Scalable. The disadvantage is that it relies on the participation of a large number of expert 
experience in the early stage, but in the actual work area, the accuracy of this method is relatively high and can 
meet the needs of actual production.

Conclusions
This study introduces a technique for knowledge reasoning in the field of structural modeling, which can be 
applied to create modeling constraints for 3D geological structure modeling in the context of oil exploration. 
The knowledge graph we constructed enables experts and users to access the semantic information contained 
in the model at any time and maintain expert knowledge throughout the modeling process. Geological experts 
can visualize the knowledge graph more easily and find connections between knowledge items. The knowledge 
graph is used to constrain the boundary information of complex structural models, improving the efficiency of 
intelligent structural modeling.

Data availability
The datasets generated and/or analysed during the current study are not publicly available due [REASON WHY 
DATA ARE NOT PUBLIC] but are available from the corresponding author on reasonable request.
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