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Assessment of low‑carbon tourism 
development from multi‑aspect 
analysis: a case study of the Yellow 
River Basin, China
Xiaopeng Si  & Zi Tang *

Climate change has become an unavoidable problem in achieving sustainable development. As one 
of the major industries worldwide, tourism can make a significant contribution to mitigating climate 
change. The main objective of the paper is to assess the development level of low‑carbon tourism from 
multi‑aspect, using the Yellow River Basin as an example. Firstly, this study quantified tourism carbon 
dioxide emissions and tourism economy, and analyzed their evolution characteristics. The interaction 
and coordination degree between tourism carbon dioxide emissions and tourism economy were then 
analyzed using the improved coupling coordination degree model. Finally, this study analyzed the 
change in total factor productivity of low‑carbon tourism by calculating the Malmquist–Luenberger 
productivity index. The results showed that: (1) the tourism industry in the Yellow River Basin has the 
characteristics of the initial environmental Kuznets curve. (2) There was a strong interaction between 
tourism carbon dioxide emissions and tourism economy, which was manifested as mutual promotion. 
(3) The total factor productivity of low‑carbon tourism was increasing. Based on the above results, it 
could be concluded that the development level of low‑carbon tourism in the Yellow River Basin has 
been continuously improved from 2000 to 2019, but it is still in the early development stage with the 
continuous growth of carbon dioxide emissions.

Keywords Low-carbon tourism, Environmental Kuznets Curve, Coupling coordination degree model, 
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Environmental issues represented by climate change have emerged as a global concern. The environmental impact 
of tourism is mainly manifested in the consumption of resources and the greenhouse gas emissions, which are 
a well-known cause of climate  change1,2. However, research on the environmental impacts caused by tourism is 
usually not independent, but connected to the growth of tourism economy (TE). In other words, the ultimate 
goal of considering the environmental impact of tourism is to make it a sustainable industry.

Research on sustainability has expanded to several  frontiers3. Sustainable de-growth is regarded in some 
circles as a better way of achieving personal and social welfare on a worldwide scale, so it is not only necessary 
to reconsider the role of tourism (as an inherently economical industry with considerable resources effects) in 
development in general, but also to seek means to reduce the impact of tourism on the  environment4,5. Climate 
change is one of the issues that sustainable development has to consider. The economic impact of climate change 
is likely to be limited in the twenty-first century and may even be beneficial in the short to medium run, but the 
adverse effects of climate change could exceed the beneficial effects in the long  term6. The increase of the con-
centration of carbon dioxide in the atmosphere is considered to be the main factor of climate change, although 
there is some  controversy7–10. For this reason, some studies on climate change and economic development are 
conducted from the perspective of carbon emissions. Mardani et al.11 reviewed 175 articles on carbon dioxide 
and economic growth from 1995 to 2017 and found that the bidirectional relationship of economy development 
and carbon dioxide emissions does exist.

There have been many studies on the relationship between tourism and climate change. Through a bibliomet-
ric analysis of 1290 articles, Scott and Gössling found that the literature related to climate change has increased 
rapidly and climate change has regional implications for tourism, through varying effects on natural and cultural 
heritage and shifts in patterns of  demand12. Evidence from Pintassilgo et al. shows that climate change is likely 
to cause substantial negative economic impacts in the Portuguese tourism sector, specifically, inbound tourism 
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arrivals will decrease by 2.5–5.2%, which is expected to reduce Portuguese GDP by 0.19–0.40%13. The research 
results of Yañez et al. on Coachella Valley show that with predicted climate change, the season of comfortable 
will inevitably shorten, which may have a significant socio-economic impact on regions with strong winter 
tourism  industries14. Similarly, the issue of carbon emissions from the development of tourism has also drawn 
focus. After 2010, the number of publications published on tourism and carbon emissions increased steadily 
each  year15. Lenzen et al.16 found that due to the fact that tourism is substantially more carbon dense than other 
potential sectors for growth in the economy, pursuing the goal of economic expansion by its swift growth would 
come with a sizable carbon load. Evidence from Dogru et al.17 indicates while both the entire economy and the 
tourism industry are similarly resilient to climate change, the tourism industry is more susceptible to it. After that, 
Dogru et al.18 found that tourism development has significantly different impacts on carbon dioxide emissions in 
different OECD countries. When it is found that tourism is not a low-carbon industry, research on low-carbon 
tourism has gradually received attention.

Low-carbon tourism is an essential tool for sustainable development, particularly in areas with a sizeable 
tourism industry. Although there are many research methods that can be used to study low-carbon tourism, little 
work has so far been undertaken to attempt a combination of methods that might find some more comprehensive 
and credible results. In addition, the existing assessment of low-carbon tourism focuses on the measurement of 
development  level19–21. The method of measuring the development quality of low-carbon tourism by development 
level is intuitive and effective, but it is also incomplete. This study argues that the analysis of other performance 
indicators besides the development level is also of great significance to assess the quality of low-carbon tourism 
development. Tourism carbon dioxide emissions (TCDE) and TE are the main components of low-carbon tour-
ism, and their interaction affects their whole performance. Therefore, it is necessary to analyze the interaction 
and overall performance of these two systems when assessing the low-carbon tourism development. The paper 
aims to achieve this goal through the coupling coordination degree (CCD) model and the Malmquist–Luenberger 
productivity index (MLPI).

Coupling, which originated in physics, is referred to as the interaction between several systems, and the 
coupling degree (CD) and CCD reflects the process of the overall evolution of the  system22. The CCD model 
has been widely used to study the interaction between tourism systems or between tourism and non-tourism 
 systems23,24. The MLPI was proposed on the basis of Malmquist  index25. Compared with the latter, it is con-
structed from a directional distance function and takes into account whether the output is a desired positive 
output or an undesired negative  output26,27. When coupled coordination model and MLPI are used at the same 
time, not only the interaction state of TCDE and TE as two systems, but also their overall performance as a 
system can be studied. However, few studies have linked the two approaches. As the largest developing country, 
China is committed to achieving carbon peaking and carbon neutrality. Considering that tourism is a strategic 
industrial pillar for China’s economy, it is essential to comprehend the connection between the TE and TCDE 
to achieve both China’s carbon peaking and carbon neutrality goals and the sustainable tourism of the World 
Tourism Organization. A number of studies have found evidence that China’s tourism industry is transitioning 
to a low-carbon  industry23,28–30. However, there are 34 provincial administrative regions throughout China, 
and the development of tourism in each region is obviously  different31,32. This paper uses the CCD model and 
MLPI to analyze the development of low-carbon tourism in nine provincial administrative regions within the 
Yellow River Basin (YRB), which may be more representative of developing countries. In addition, the possible 
existence of an Environmental Kuznets Curve (EKC) for tourism industry in YRB is discussed. According to 
the EKC hypothesis, the harm to the environment is increasing while the economic growth rate is rapid dur-
ing the early stages of development. If the economy develops to a higher level with low growth, the damage to 
the environment is  reduced33. China’s economy has maintained rapid growth for many years, and the resulting 
environmental issues have become one of the major challenges troubling the Chinese government. In pursuit of 
sustainable development, China has set the "dual carbon" goal of carbon peaking and carbon neutrality. With 
continued economic growth, if this goal is effectively achieved, a relationship between China’s economy and its 
carbon emissions will emerge as the EKC.

Material and methods
Study area
The Yellow River is the second longest river in China, flowing through nine provincial administrative regions, 
including Qinghai, Sichuan, Gansu, Ningxia, Inner Mongolia, Shanxi, Shaanxi, Henan and Shandong (Fig. 1). 
Geographical characteristics are not the focus of this study, so this paper takes these nine provincial administra-
tive regions with more abundant statistical data rather than cities with more accurate geographic information 
but less statistical data as the study area.

Methodology and procedure
Method for estimating tourism‑related carbon dioxide emissions
The calculation of TCDE in YRB refers to the methods in previous studies, and the specific steps are listed 
 below34.

(1)QT =
n

∑

i=1

αi · Ni · Di · Pci

(2)QH = 365 · Y · R · Pe · Pcv · 10−3 ·
44

12
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where QT is the TCDE from transportation; αi represents the percentage of travelers as passengers in the ith mode 
of transportation. Ni is the ith mode of transportation’s passenger count; Di is the ith mode of transportation’s 
journey distance; Pci is the ith mode of transportation’s carbon dioxide emissions coefficient; n is the total number 
of transportation modes, including plane, car, train and water transportation; QH is the TCDE from accommoda-
tion; Y is the total quantity of beds, which represents the reception capacity of tourism accommodation industry; 
R stands for the annual bed occupancy rate; Pe is the accommodation energy consumption coefficient; Pcv is 
amount of carbon per energy equivalence unit; 44⁄12 is the carbon to carbon dioxide conversion coefficient; QA 
is the TCDE from tourism activities; M represents the amount of tourists; ωj is the percentage of the jth tourism 
activity; Pcj is the jth mode of activity’s carbon dioxide emissions coefficient; m is the total number of tourism 
activity types, including sightseeing, leisure vacation, business trip, visiting relatives and friends, and others; Q 
is the total TCDE. The TCDE index is obtained by using the same method as TE index to deal with TCDE data.

Assessment and quantification of tourism economy
In this study, tourist arrivals, tourism revenues and tourism practitioners, which are highly related to TE, are 
selected as indicators to assess the level of TE in  YRB35–37. Tourist arrivals and tourism revenues are calculated 
using data from both domestic and international sources.

Entropy method is applied for determining the weight of different dimension indicators through information 
entropy, which is suitable for the calculation of TE  indexes38–40. In addition, considering that the differences of 
TE level in different regions is not within the scope of this study, so the use of entropy method to measure the 
various regional TE index is carried out separately. The calculation steps are listed below.

Step 1 The Min–Max Normalization is used to standardize the indicators to eliminate the difficulties caused 
by different orders of magnitude and dimensions. The calculation process is shown in formula (5). If the attribute 
of Xij is positive, then

(3)QA =
m
∑

j=1

M · ωj · Pcj

(4)Q = QT +QH +QA

(5)X
′
ij =

Xij −min
{

Xj

}

max
{

Xj

}

−min
{

Xj

} + α

Figure 1.  Overview of study area. This map was generated by the authors using ArcGIS 10.8 (http:// www. esri. 
com/ softw are/ arcgis) and does not require any license.

http://www.esri.com/software/arcgis
http://www.esri.com/software/arcgis
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where Xij is the j th indicator’s value in i  th year; X ′
ij represents the value of Xij after standardization; α is an 

appropriate positive number that serves to avoid X ′
ij equal to zero that would make subsequent calculations 

impossible ( α = 0.00001 in this study); max
{

Xj

}

and min
{

Xj

}

 represent the maximum and minimum value of 
the j th indicator respectively.

Step 2 Calculate the weights of each indicator.

where Rij is the contribution degree of X ′
ij ; n is the year span; ej represents the entropy of j th indicator; wj rep-

resents the weight of j th indicator; m represents the number of indicators contained in each assessment index.
Step 3 Calculate TE index Ei . The comprehensive assessment index is calculated as shown in Eq. (9). It is 

usually calculated using the linear weighting method.

where Ei is TE index in year i . However, the value range of Ei calculated by Min–Max Normalization and Entropy 
method is [0,1], and the determined extreme value may cause great deviation to the outcomes of the subsequent 
CCD. In addition, a lower-level system should correspond to a lower assessment index, but this assessment index 
should not be 0 unless the system stops operating. The Ei in this study cannot be equal to 0 or 1 because of the 
existence of α , but if all values of Xj in year i′ are maximum or minimum, the comprehensive assessment index 
in year i (Ei′) must be α or 1+ α . In this case, the CCD of the endpoint values may also show a deviation that is 
difficult to ignore. In order to solve this problem, two new variables Xpj and Xqj are introduced into the data in 
this study to improve the measurement of Ei . Let the data matrix with new variables is X 0

ij  . If Xpj is the maxi-
mum and Xqj is the minimum in X 0

ij  , then the range of standardized values corresponding to Xij is (0,1) instead 
of [0,1] after using Min–Max Normalization for X 0

ij  . Considering the purpose of processing, the rationality of 
results and the characteristics of Min–Max Normalization, the value of Xpj should be determined by the original 
dataset Xij . In this paper, let Xpj = max

{

Xj

}

 + min
{

Xj

}

 . As for Xqj , because its standardization value is 0, so make 
it equal to zero is reasonable. Assuming that the normalized result of Xij obtained by standardizing X 0

ij  is X ′′
ij , 

the calculation formula of X ′′
ij is shown in Eq. (10). The improved calculation method of Ei is shown in Eq. (11).

Calculation of coupling coordination degree
CCD model is simple for calculation and the results intuitively understandable, which is why it is extensively 
applied for CCD measurement between  systems23,39,41,42. And with the deepening of related research, the discus-
sion on the improvement of CCD model has been going  on43–46. Referring to the method of Shen et al. and Wang 
et al., the calculation steps are listed  below43,44.

(6)Rij = X
′
ij

/

n
∑

i=1

X
′
ij

(7)ej = −
1

ln n

n
∑

i=1

RijlnRij

(8)wj =
(

1− ej
)

/

m
∑

j=1

(

1− ej
)

(9)Ei =
m
∑

j=1

wjX
′
ij

(10)X
′′
ij =

Xij −min
{

X
0
j

}

max
{

X
0
j

}

−min
{

X
0
j

} =
Xij − Xqj

Xpj − Xqj
=

Xij

max
{

Xj

}

+min
{

Xj

}

(11)Ei =
m
∑

j=1

wjX
′′
ij

(12)
C =

√

[

1−
√

(U1 − U2)
2
]

× U1U2

max(U1,U2)

(13)α =
U2

U1 + U2

(14)β =
U1

U1 + U2
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where C is the CD of TE system and TCDE system; U1 is the TE index; U2 is the TCDE index; T represents the 
two systems’ overall development level; α and β represent the contributions of U1 and U2 to T , respectively; D 
is the CCD of the two systems. In order to find out more detailed information, a more meticulous classification 
criterion as shown in Table 1 is used for the  CCD23,40.

Malmquist–Luenberger productivity index
The existence of non-desired outputs is one of the keys affecting the applicability of efficiency assessment 
 methods47,48. Since MLPI was introduced by Chung et al., it has been widely used to measure total factor pro-
ductivity with undesirable  outputs25,26,48,49. The two components of the MLPI are used to describe changes of 
technical efficiency (MLTE) and technical change improvements (MLTC). The calculation results of MLPI may 
have infeasibility  problem50,51. When there are few feasible solutions that do not affect the overall results, this 
paper uses geometric mean completion. Álvarez et al.52 developed a data envelopment analysis toolbox for 
MATLAB, which contains a package for calculating MLPI. This paper uses this toolbox that has been verified 
by other studies to calculate MLPI, MLTE and  MLTC53,54. The three input indicators are tourism practitioners, 
tourism fixed assets investment and energy consumption of tourism. The two positive output indicators are 
tourist arrivals and tourism revenues, and the undesirable output indicator is TCDE.

Data sources
The data used to calculate TCDE and TE come from China Statistical Yearbook, China Energy Statistical Year-
book, the Yearbook of China Tourism Statistics, China Cultural Heritage and Tourism Statistical Yearbook, and 
statistical yearbooks of provincial administrative regions. Most of the data used to calculate the total factor pro-
ductivity of tourism also come from the above statistics. Tourism practitioners refer to the number of employees 
in travel agencies. The data selected for fixed asset investment in tourism are fixed asset investment in transit, 
wholesale and retail, and lodging and restaurant related to tourism. Relevant data for it come from Statistical 
Yearbook of the Chinese Investment in Fixed Assets. Data for number of domestic tourists in 2020 and 2021 
are sourced from provincial statistical yearbooks and bulletins. And this data in Henan Province is missing and 
replaced by the total number of tourists. The energy consumption data of wholesale and retail trades, hotels 
and catering services are also from China Energy Statistical Yearbook. Some missing data in the yearbook were 
supplemented from the National Economic and Social Development bulletin.

Results
Development characteristics of tourism carbon dioxide emissions and tourism economy
The TCDE level of nine regions in YRB increased from 2000 to 2019, and the trend of change was consistent. 
For example, the trend of TCDE in most regions stopped increasing significantly between 2008 and 2010, but 
increased again in 2011. This may be caused by the effects of the 2008 financial crisis. And in 2019, the TCDE 
level of six regions reached more than 0.8, and the remaining three also reached more than 0.6 (Fig. 2).

The results of the TE index showed that the TE level in all regions of YRB increased steadily from 2000 to 
2019, and reached above 0.8 in 2019. Most of the increasing amount occurred after 2010. In 2010, except for 
Shandong Province, the TE level of the other eight regions in YRB was lower than 0.3. And since 2011, the TE 
increment of the nine regions has increased year by year.

Comparing Figs. 2 and 3, the change process of the performance level of the two subsystems has both simi-
larities and differences. The main similarities were that both TCDE and TE maintained an increasing trend, and 
the nine provinces in YRB showed a strong consistency. The main difference is that the annual increment of 
TCDE is stable, which means that the relationship between time and TCDE is close to direct proportion. The 
annual increment of the TE is increasing, showing a stronger growth trend than TCDE. These can be obtained 
by comparing the trend of Mean in Figs. 2 and 3.

YRB exhibits the characteristics of EKC in its relationship between TCDE and TE (Fig. 4). Until 2019, TCDE 
in YRB are still increasing in a relatively stable annual increment, while the TE is increasing in an increasing 
annual increment. Based on the EKC, it can be hypothesized that tourism carbon emissions would decline 
gradually when the level of the tourism economy is able to reach a certain tipping point. In the context of the 

(15)T = αU1 + βU2

(16)D =
√
C × T

Table 1.  The division standard for coupling coordination degree.

Condition CCD Levels Serial number Condition CCD Levels Serial number

Imbalance

[0, 0.1) Extreme Level 1

Coordination

[0.5, 0.6) Barely Level 6

[0.1, 0.2) Severe Level 2 [0.6, 0.7) Primary Level 7

[0.2, 0.3) Moderate Level 3 [0.7, 0.8) Mediocre Level 8

[0.3, 0.4) Slight Level 4 [0.8, 0.9) Good Level 9

[0.4, 0.5) Imminent Level 5 [0.9, 1.0] Super Level 10
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carbon peaking and carbon neutrality goals, the Chinese government is pursuing high-quality development and 
sustainable development, which contributes to the emergence of the tipping point.

Coupling coordination characteristics of tourism carbon dioxide emissions and tourism 
economy
The CD between TCDE and TE in YRB changed from 0.70 in 2000 to 0.89 in 2019, showing an increasing trend 
(Fig. 5). According to the characteristics of time change, it can be divided into three developments: (1) from 2000 
to 2011, the CD always fluctuated slightly around 0.7. Although there is a significant gap in the CD of different 
provincial administrative regions, the gap is decreasing, and the range of the gap is reduced from 0.37 in 2000 
to 0.15 in 2011. (2) From 2012 to 2016, the CD increased significantly. The CD in 2011 was 0.65, which was the 
minimum value during the study period. And the CD in 2016 was 0.91, only 0.01 smaller than the maximum. 
Therefore, the period from 2012 to 2016 is an important period of increasing interaction between TCDE and 
TE in YRB. (3) From 2017 to 2019, the CD remained relatively stable at around 0.9. After the second stage of 
growth, the TCDE and TE in YRB have maintained a high coupling level.

The CCD of TCDE and TE in YRB is shown in Fig. 6. It is obvious that the CCD of the two subsystems in nine 
regions increased steadily from 2000 to 2019. The direct reason is the TCDE and TE continued to grow during the 
study period. The three regions of Gansu, Inner Mongolia, and Shanxi had the worst coupling coordination status 
overall in 2000, with a severe level of incoordination. Sichuan had the best coupling coordination condition and 

Figure 2.  TCDE level of 9 regions in YRB.

Figure 3.  TE level of 9 regions in YRB.
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was in a slight incoordination level. And other regions were in a moderate incoordination level. In 2019, Henan 
and Shandong had the worst coupling coordination status, with a mediocre coordination level. Shanxi, Shaanxi 
and Ningxia were better and in good coordination level. And other four regions were in a super coordination 
level. Through comparison, it can be found that Inner Mongolia and Gansu changed from the region with the 
worst coupling coordination condition to the region with the best coupling coordination condition. Henan and 
Shandong had relatively good coupling coordination condition in 2000, but these two provinces became the 
regions with the worst coupling coordination condition in 2019.

Total factor productivity development characteristics of low carbon tourism
The MLPI data shown in Table 2 reveal the evolution of total factor productivity of low-carbon tourism in YRB. 
The majority of the years during the study period had MLPI values greater than 1, suggesting the total factor 
productivity of low-carbon tourism in YRB was continuously optimized. The average MLPI is 1.07, which means 
that the total factor productivity of low-carbon tourism in YRB is growing at an average annual rate of 7%. From 
the perspective of spatial characteristics, the value of MLPI in 9 regions is different, but the change trend is simi-
lar. For example, from 2002 to 2003, the MLPIs of nine regions were all less than 1, and most of them were the 
minimum values in the whole study period (Table 2). Of them, the MLPI of Shanxi is 0.85, which is the lowest 
among the nine regions. An interesting phenomenon is that the largest average MLPI also appeared in Shanxi, 
indicating that the total factor productivity of low-carbon tourism in Shanxi increases by 16% per year on aver-
age, which is the fastest among the nine regions in YRB. Qinghai saw the slowest growth in low-carbon tourism 
total factor productivity, with an average annual increase of only 1%, 15% lower than Shanxi.

Figure 4.  The EKC of low-carbon tourism in YRB.

Figure 5.  CD of 9 regions in YRB.
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Figure 6.  CCD of 9 regions in YRB. This map was generated by the authors using ArcGIS 10.8 (http:// www. esri. 
com/ softw are/ arcgis) and does not require any license.

Table 2.  MLPI of low-carbon tourism in YRB. a Indicates that the infeasible value is replaced by the geometric 
mean of the data in other regions in the same year. The values of YRB are expressed as the arithmetic mean of 9 
regions, and the average MLPI of each region is measured by the geometric mean.

Regions 2000–2001 2001–2002 2002–2003 2003–2004 2004–2005 2005–2006 2006–2007 2007–2008 2008–2009 2009–2010

Qinghai 1.031 1.001 0.952 1.034 1.045 1.041 1.014 0.905 1.049 1.003

Sichuan 0.994 1.159 0.934a 1.088a 1.091a 1.059a 1.073a 1.015a 1.081a 1.072a

Gansu 1.014 1.033 0.943 1.011 1.028 1.026 1.085 0.959 1.103 0.993

Ningxia 1.009 1.007 0.972 1.043 1.058 1.039 1.056 0.998 1.012 1.008

Inner Mongolia 1.040 1.061 0.976 1.215 1.142 1.075 1.134 1.152 1.249 1.184

Shanxi 0.959 1.042 0.853 1.169 1.119 1.126 1.104 1.011 0.979 1.133

Shaanxi 1.006 0.990 0.933 1.217 1.133 1.027 1.050 1.021 1.114 1.126

Henan 0.896 0.940 0.934a 1.088a 1.112 1.085 1.073a 1.079 1.081a 1.072a

Shandong 0.992a 1.067 0.918 0.957 1.097 1.054 1.073a 1.015a 1.081a 1.072a

YRB 0.993 1.033 0.935 1.091 1.092 1.059 1.074 1.017 1.083 1.073

Regions 2010–2011 2011–2012 2012–2013 2013–2014 2014–2015 2015–2016 2016–2017 2017–2018 2018–2019 Average

Qinghai 1.041 1.002 1.041 1.010 1.017 1.039 1.008 1.013 1.022 1.013

Sichuan 1.065a 1.092a 1.142a 1.097a 1.042a 1.093a 1.146a 1.047a 1.082a 1.071

Gansu 1.048 1.078 1.083 1.130 0.979 1.056 1.140 0.983 1.225 1.046

Ningxia 1.018 1.013 1.076 0.970 1.002 1.015 1.024 1.075 0.982 1.019

Inner Mongolia 1.075 1.130 1.245 1.188 1.082 1.112 1.115 1.115 0.914 1.113

Shanxi 1.156 1.204 1.242 1.234 1.120 1.182 1.849 1.023 1.517 1.143

Shaanxi 1.060 1.141 1.079 1.054 1.012 1.109 1.066 1.408 0.979 1.076

Henan 1.065a 1.092a 1.142a 1.114 1.075 1.185 1.103 0.814 1.083 1.050

Shandong 1.065a 1.092a 1.248 1.101 1.055 1.056 1.044 1.035 1.042 1.054

YRB 1.066 1.094 1.144 1.100 1.043 1.094 1.166 1.057 1.094 1.013

http://www.esri.com/software/arcgis
http://www.esri.com/software/arcgis
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Figure 7a shows the geometric mean of MLPI, MLTE and MLTC, which reflect the annual changes of total 
factor productivity, technical efficiency and technical progress of low-carbon tourism in nine regions, and Fig. 7b 
shows the time evolution characteristics of MLPI, MLTE and MLTC in YRB. The results of Fig. 7a show that 
while there are significant regional differences in low-carbon tourism technical progress in YRB, there are no 
discernible regional disparities in the technical efficiency. The decrease of MLTC in Fig. 7b from 2002 to 2003 
can explain why MLPI was at a low level in the same period. MLTC is frequently more than 1, demonstrating 
that low-carbon tourism industry of YRB has achieved significant technical advancements. Furthermore, given 
that MLTC is typically higher than MLTE, it may be concluded that technical advancement has a more beneficial 
effect on the growth of total factor productivity than does technical efficiency. The fact that MLTC and MLPI 
have more comparable spatial distribution features lends further weight to this conclusion (Figs. 7a, 8).

The nine provincial administrative regions in YRB were ranked from high to low based on the average values 
of MLPI, MLTC and MLTE, and the findings are displayed in Fig. 8. Geographical variables may have an impact 
on changes in total factor productivity, as evidenced by the fact that the difference in the ranking of locations 
with minor geographic gaps is similarly modest. In addition, it may be seen that there is no evident relation-
ship between technical progress and technical efficiency by contrasting MLTC and MLTE in various places. For 
example, the growth rate of technical efficiency in Gansu is the fastest among the nine regions in YRB, but its 
technological progress rate is only ranked seventh. Although the growth rate of technical efficiency is mediocre, 
Shanxi has the fastest speed of technical progress, which makes its total factor productivity growth rate the fast-
est. Qinghai has the lowest total factor productivity growth performance in YRB because of poor performance 
of its technical efficiency and technical progress.

Figure 7.  Temporal and spatial characteristics of MLPI, MLTE and MLTC.

Figure 8.  Ranking the average values of MLPI, MLTC and MLTE in nine regions. This map was generated by 
the authors using ArcGIS 10.8 (http:// www. esri. com/ softw are/ arcgis) and does not require any license.

http://www.esri.com/software/arcgis


10

Vol:.(1234567890)

Scientific Reports |         (2024) 14:4600  | https://doi.org/10.1038/s41598-024-55112-7

www.nature.com/scientificreports/

Tourism industry during the COVID‑19 pandemic period
COVID-19 has hit the global tourism industry severely, and the negative effects of it on tourism are likely to 
be long-lasting55. Figure 9 presents data on the number of domestic tourists in YRB from 2011 to 2021. Before 
the outbreak of COVID-19, the tourism industry in YRB achieved satisfactory growth. However, affected by 
COVID-19, its market size declined to the level of 4 or 5 years ago in 2020. Despite showing an upturn in 2021, 
it doesn’t come close to making up for the effects of COVID-19. Therefore, COVID-19 has undoubtedly caused 
serious and irreversible damage to the tourism industry in YRB.

Although the development of the tourism economy in YRB has been hampered by COVID-19, the low-
carbon development of tourism may still be progressing. Figure 10 shows the changes in the consumption of 
various types of energy by wholesale and retail trades, hotels and catering services (closely related to the tourism 
industry) in YRB. To achieve its "dual-carbon" goal, China is gradually reducing its reliance on coal consump-
tion in some industries. While coal consumption is still one of the main sources of electricity in China, the 
development of cleaner power generation technologies, such as photovoltaics, will contribute more effectively 
to low-carbon development.

Discussion
The study found that the tourism industry in YRB showed some characteristics of EKC. The results are in line 
with Chan and  Wong56, who observed that although the average person’s carbon dioxide inventory decreases 
due to the growth of tourism, China’s provinces are still all at left of the EKC in 2015. According to the EKC 
hypothesis, with more and more attention paid to environmental protection, TCDE in YRB may stop growing 

Figure 9.  Number of domestic tourists in YRB (billion person-time).

Figure 10.  Energy consumption by wholesale and retail trades, hotels and catering services in YRB.
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or even decrease, and the TE can still achieve a significant increase at a lower growth rate. However, it is obvious 
that the tourism industry in YRB is still at the early stages of development.

The increasing CCD of TCDE and TE also proves the above view. The results of the CCD model show that 
there is a strong interaction between TCDE and TE in YRB, which may mean that the second stage of the EKC 
will not appear in the tourism industry in YRB at present. From 2000 to 2019, the tourism industry in YRB 
developed as rapidly as China’s economy. Under the high coupling level, the CCD of TCDE and TE is steadily 
enhanced. The research on decoupling analysis of TCDE and TE also draws similar conclusions. Xiong et al.57 
discovered that there is a feeble decoupling linkage between the regional TCDE and the economic progress, 
which is primarily driven by tourism in China. As the pursuit of high-quality development of TE continues, the 
growth rate of TE is likely to remain higher than the growth rate of TCDE, leading to an even wider gap in their 
respective growth  rates58. When the second half of the inverted U-shaped relation of EKC appears, the decrease 
of TCDE and CD may lead to the decrease of CCD.

The results also highlighted regional differences within the growth of low-carbon tourism in the YRB. The 
development extent of low-carbon tourism is thought to be directly correlated with regional differences in 
 development21. There are significant differences in regional development among the nine provincial-level admin-
istrative regions in YRB. Taking 2019 as an example, Shandong’s GDP is about 24 times that of Qinghai. It follows 
that there are clear regional variations in the growth of low-carbon tourism in YRB, which is not a finding of great 
importance. A more critical question is how regional development affects low-carbon tourism development. Tong 
et al.59 found that China’s tourism economy has a significant carbon emission reduction effect, and although the 
direct effect of the tourism economy on carbon emission intensity is significantly positive, the indirect effect is 
significantly negative and stronger than the direct effect. The findings of this paper suggest both the coordinated 
development of low-carbon TE and the total factor productivity of low-carbon tourism are related to regional 
differences. In addition, it is certain that regional differences in technical progress of low-carbon tourism lead 
to regional differences in total factor productivity of low-carbon tourism, and further cause regional differences 
in the development level of low-carbon tourism.

The study found that the total factor productivity of low-carbon tourism continued to increase, indicating 
that low-carbon tourism in YRB continued to be in a good development state from 2000 to 2019. The research 
results of Zhao et al. showed that the dependency of economic growth on fundamental energy usage is progres-
sively diminished in  YRB60. This study further proves that this conclusion is still valid in the tourism industry 
of YRB. Long-term carbon emissions are greatly reduced by renewable energy use whereas they increase sub-
stantially by using energy that is not  renewable61. Therefore, reducing the energy consumption intensity of TE 
or increasing the proportion of renewable energy are two effective ways to improve the quality of low-carbon 
tourism development.

COVID-19 has certainly disrupted the tourism industry. It is difficult to effectively measure the carbon 
emissions of the tourism industry after the outbreak of COVID-19 due to the serious lack of data and the failure 
of some measurement coefficients. However, judging from the data on energy consumption in tourism-related 
industries, it is likely that technological advances in low-carbon tourism were not significantly affected by the 
outbreak. A more electricity-dependent tourism industry would produce fewer direct carbon emissions. For 
China, using more clean energy rather than coal to generate electricity is the key to achieving the carbon peak-
ing and carbon neutrality goals.

As a study of low-carbon tourism assessment, this paper has the following novelties. (1) The assessment of 
low-carbon tourism development takes into account both the quantitative relationship between TCDE and TE, 
as well as their total factor productivity, which has been rarely seen in previous studies. (2) An improved CCD 
model is constructed, which can reflect the interaction between TCDE and TE. Previous studies related to low-
carbon tourism tend to focus on decoupling analysis rather than coupling coordination analysis. However, in the 
early stages of development characterized by a rapid increase in carbon dioxide emissions, coupling coordination 
analysis may find more information. (3) The total factor productivity of low-carbon tourism is calculated to 
assess the quality of low-carbon tourism development. Total factor productivity is a mature assessment method 
of industrial development quality, but few studies have applied it to low-carbon tourism assessment. The total 
factor productivity of low-carbon tourism is not only related to TE and TCDE, but also related to the invest-
ment of tourism resources. With more and more attention paid to low-carbon tourism research, total factor 
productivity of low-carbon tourism may become one of the main methods to assess the development quality of 
low-carbon tourism.

Conclusions
Based on EKC, CCD model and MLPI, this study comprehensively assessed the development level of low-carbon 
tourism in YRB. Firstly, the carbon dioxide emissions related to tourism were estimated, and the TCDE index and 
TE index were calculated referring on the TCDE and TE indicators. Based on the results of the above indexes, it 
was judged whether the development process of low-carbon tourism in YRB had experienced EKC. Secondly, the 
coupling and coordination analysis of TCDE and TE was carried out to assess the interaction between the two 
systems. Finally, the total factor productivity of low-carbon tourism was assessed using MLPI, and the decom-
position indices MLTE and MLTC were used to explore the impact of technical efficiency and technical progress.

The main findings and contributions of the paper were as followed: (1) the development of low-carbon tour-
ism in YRB shows the characteristics of the initial EKC. TCDE and TE are growing, but the growth rate of TE is 
greater than the growth rate of TCDE. (2) There are substantial disparities in the CD of various regions in YRB, 
but the overall level is at a high level. The growth of TCDE and TE shows that they promote each other based on 
strong interaction. (3) Total factor productivity of low-carbon tourism has grown at an average yearly rate of 7% 
in YRB, primarily as a result of technical progress. The technical efficiency of all regions in YRB only fluctuates 
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slightly, while technical progress has increased significantly in most regions. In addition, despite the impact of 
COVID-19 on the tourism economy in the Yellow River Basin, the pursuit of low-carbon tourism development 
remains ongoing. Overall, the quality of low-carbon tourism development in the YRB has been continuously 
improved, but to reduce TCDE, a long way still needs to be gone.

Although this study has achieved good results, there are still some limitations that cannot be avoided in 
future more detailed studies. First, due to the limitation of sample size and workload, the discovery of regional 
development differences in low-carbon tourism comes from the observation and summary of the basic charac-
teristics of data results, and does not use more accurate methods such as spatial econometric analysis. Second, it 
is difficult to compare the development level of low-carbon tourism in different years or regions due to the lack 
of a comprehensive indicator. In future research, it is necessary to develop a comprehensive index that combines 
the assessment results of multiple aspects. Finally, this study did not consider the data during the COVID-19 
pandemic. Investigating the impacts of the COVID-19 pandemic on the low-carbon tourism is an unavoidable 
issue for future research.

Data availability
The dataset used in this study is available from the corresponding author upon request.
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