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Impacts of optimal control 
strategies on the HBV 
and COVID‑19 co‑epidemic 
spreading dynamics
Shewafera Wondimagegnhu Teklu 

Different cross‑sectional and clinical research studies investigated that chronic HBV infected 
individuals’ co‑epidemic with COVID‑19 infection will have more complicated liver infection than 
HBV infected individuals in the absence of COVID‑19 infection. The main objective of this study is to 
investigate the optimal impacts of four time dependent control strategies on the HBV and COVID‑19 
co‑epidemic transmission using compartmental modeling approach. The qualitative analyses of the 
model investigated the model solutions non‑negativity and boundedness, calculated all the models 
effective reproduction numbers by applying the next generation operator approach, computed all 
the models disease‑free equilibrium point (s) and endemic equilibrium point (s) and proved their local 
stability, shown the phenomenon of backward bifurcation by applying the Center Manifold criteria. By 
applied the Pontryagin’s Maximum principle, the study re‑formulated and analyzed the co‑epidemic 
model optimal control problem by incorporating four time dependent controlling variables. The study 
also carried out numerical simulations to verify the model qualitative results and to investigate the 
optimal impacts of the proposed optimal control strategies. The main finding of the study reveals that 
implementation of protections, COVID‑19 vaccine, and treatment strategies simultaneously is the 
most effective optimal control strategy to tackle the HBV and COVID‑19 co‑epidemic spreading in the 
community.
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Pathogenic microbial agents such as funguses, viruses, bacteria and parasites have been the most causative agents 
of infectious diseases. HBV and COVID-19 co-epidemic is an infectious disease caused by two virus pathogens 
and has been affecting the life of million individuals in various nations throughout the  world1–3.

Different studies reveal that HBV is one of the microbial pathogenic viruses that commonly influencing the 
work of individuals’ liver and has been a cause for death of millions of individuals with its chronic stages liver 
cirrhosis and  cancer3,4. HBV spreads in the population through direct and indirect transmission like with blood 
contact or fluids of infectious people or during child  birth2,5.

The pandemic of COVID-19 in 2020 has yet to be fundamentally contained and it puts a long pause button 
on the lives of people around the  globe6.  The acute respiratory infectious disease COVID-19 was discovered 
in China and has been declared as a world pandemic contagious  disease7–14. Due to its very high spreading 
rate, on March 11, 2020, WHO explained it as a worldwide pandemic infectious  disease10,15,16. Individuals can 
acquire COVID-19 infection directly from other individuals by touching contaminated objects and indirectly 
by air droplets inhalation from other individuals sneezing or/and  coughing17–19. It negatively affects the world 
nations’ health policies, economies and population  densities20,21. The protection and control measures explained 
by WHO are quarantine, applying face masks, hand washing, isolation, vaccination, maintaining social distance 
and treatment  strategies17,21,22.
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Different researchers throughout nations in the world have studied about the co-interaction of COVID-19 
with various infectious diseases like tuberculosis (TB), HIV/AIDS, HBV and  cholera23–28. The studies carried 
out in  references4–23,29–45, formulated and analyzed the spreading dynamics of infectious diseases using com-
partmental integer order modeling approach, studies carried out in  references3,28 formulated and examined 
the spreading dynamics of infectious diseases using stochastic modeling approach, and studies carried out in 
 references24,26,36,46–50 are formulated and analyzed using fractional order modeling approach.

Investigating and predicting the spreading rates of infectious diseases using compartmental modeling 
approaches has fundamental effects to tackle the spreading problem in the  community8. To construct and exam-
ined the HBV and COVID-19 co-epidemic compartmental integer order model we have reviewed the following 
published research literatures by other scholars in different countries throughout the world: Baba et al.42, formu-
lated a novel COVID-19 mathematical model to investigate the imposition of lockdown during its pandemic. 
Their main objective is to study and investigate the imposition of lock-down on the dynamics of COVID-19 
in Nigeria. Ibrahim et al.43 constructed and analyzed a COVID-19 model by applying real data from Thailand. 
From their model analysis results to tackle the problem they suggested that public health policymakers should 
prioritize increasing the intervention strategies such as vaccination coverage, enhancing testing and tracing 
capacities, enforcing social distancing and mask wearing measures, and monitoring the emergence and spread 
of new variants. Li and  Guo6 formulated and examined a mutated COVID-19 (delta strain) mathematical model 
and the corresponding optimal control problem with imperfect vaccination. Their findings suggested that the 
optimal control strategy is to dynamically adjust the three control measures to achieve the lowest number of 
infections at the lowest cost. Guo and  Li14 constructed and analyzed novel coronavirus pneumonia (COVID-19) 
in China. Their analysis result proves that theoretically the Chinese government’s epidemic prevention strategies 
are effective to control the spread of COVID-19 infection. Tchoumi et al.8 examined the optimal control measures 
on the COVID-19 and malaria co-epidemic by constructing its compartmental model. The finding of their study 
shows that the combined implementation of protection strategies is the best control measure to minimize the co-
epidemic in the population. Teklu and  Koya31 developed pneumonia and HIV/AIDS co-infection and examined 
the impacts of treatment and vaccination controlling measures to tackle the spreading problem. Hezam et al.23, 
investigated the impacts of prevention measures on the co-infection of cholera and COVID-19 in Yemen by 
applying compartmental modeling method. Anwar et al.22,  examined the impact of isolation controlling strategy 
for COVID-19 spreading in the population by using qualitative and numerical analysis of their compartmental 
model. Ahmed et al.24 and Ringa et al.11 studied HIV/AIDS and COVID-19 co-infection using fractional order 
and integer order modeling approach respectively. From their findings one can observe that protection strate-
gies are most efficient strategies to tackle the co-infection spreading in the population. Din et al.3 and Omame 
et al.51 constructed a compartmental model on the spreading of HBV and COVID-19 co-epidemic through the 
community using mathematical modeling approach and investigated the ways how to control the spreading of 
the co-infection. Din et al.28 constructed HBV and COVID-19 co-epidemic stochastic model with limitation 
of resources. The study investigates the fluctuation of the stochastic model HBV and COVID-19 co-epidemic 
disease-free equilibrium point using Lyapunov function method and the numerical results justifies the qualita-
tive results.  Teklu2 formulated and examined the HBV and COVID-19 co-infection compartmental model to 
investigate the effects of some prevention and controlling strategies without applying optimal control theory. Li 
et al.52 constructed the generalized COVID-19 deterministic model to investigate the epidemiological character-
istics. Studies carried out in  references2,3,26,28,51 investigated the co-existence spreading of HBV and COVID-19.

According to various mathematical modeling research studies of infectious diseases especially on HBV and 
COVID-19 infection reviewed in our research process, none of them considered to study the impacts of our 
proposed four time dependent control strategies on the HBV and COVID-19 co-epidemic model that incorporate 
acute and chronic HBV infection stages, protection for both infections, and COVID-19 vaccination measures and 
these makes our model novel as compared with previously HBV and COVID-19 co-infection models formulated 
by other scholars. As a result of these scientific gaps the author motivated to achieve the main objective of this 
paper that is to investigate the impact of vaccination, protection and treatment strategies for the prediction and 
tackling of the HBV and COVID-19 co-epidemic spreading in the community by formulating a novel HBV and 
COVID-19 co-epidemic model.

The rest part of this paper is organized in different sections as: section “Descriptions and model construction” 
discussed procedures of the models formulations with its qualitative analyses carried out in section “Qualitative 
analysis of the dynamical system”, the optimal control problem in section “The optimal control problem and its 
qualitative analysis”, the numerical analysis in section “Numerical simulations”, and the conclusion of the whole 
study in section “Conclusion”.

Descriptions and model construction
In this sub-section, we need to formulate the integer order model on HBV and COVID-19 co-epidemic spread-
ing dynamics in the community by partitioning the human host population N(t) into eleven distinct mutually 
exclusive groups as: healthy people who are susceptible to either of COVID-19 or HBV single infection (S(t)) , 
individuals who can be protected against COVID-19 denoted by ( CP(t)) , individuals who take protection against 
HBV denoted by ( HP(t)) , individuals who take vaccine against COVID-19 denoted by ( CV (t)) , individuals who 
are COVID-19 infectious denoted by (CI (t)) , acute HBV infected people ( HA(t)), chronic HBV infected peo-
ple (HC(t)) , people who are co-epidemic by acute HBV and COVID-19 denoted by ( IAC(t)) , individuals who 
are co-epidemic by chronic HBV and COVID-19 denoted by ( ICC(t)) , individuals who are recovered against 
COVID-19 single infection denoted by (CR(t)) , and people who are treated from chronic HBV infection (HT (t)) 
with total population given by
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Because HBV is a chronic communicable infection, healthy individuals can be infected by HBV at the infec-
tion rate illustrated by

where ρ3 ≥ ρ2 ≥ ρ1 ≥ 1 are the proposed model parameters that modifies the infectivity of HBV and the param-
eter β1 is the rate of HBV spreading.

Because COVID-19 is an acutely communicable disease, healthy individuals acquires COVID-19 at infection 
rate illustrated by

whenever ω2 ≥ ω1 ≥ 1 are the proposed model parameters which modifies the infectivity of COVID-19 and the 
model parameter β2 is the rate of COVID-19 spreading.

Other basic assumptions to construct the proposed HBV and COVID-19 co-epidemic compartmental model: 
the total human host population recruitment rate be � = b ∗ N where b be the human birth rate, N be the total 
number of population, the portions k1 , k2,k3, and k4 with total sum 1 of the recruited individuals ( � ) respectively 
are individuals go to the susceptible (healthy) group, the COVID-19 protection group, the HBV protection group 
and the COVID-19 vaccinated group, vaccine against COVID-19 will not be 100% efficient, hence individuals 
vaccine against COVID-19 will have a probability to be infected with infected with COVID-19 at some portion 
given by ε for the serotype that will not be addressed by vaccine whenever 0 ≤ ε < 1 , the number of human host 
population is variable and homogeneously mixing in each group, treated individuals against HBV do not spread 
HBV to others, and there is no dual-infection simultaneous spreading.

Using the assumptions, descriptions in Tables 1 and 2, we construct the HBV and COVID-19 co-epidemic 
individuals’ flow diagram illustrated with Fig. 1 below.

With the basic concepts illustrated by the individuals flow diagram given by Fig. 1 the HBV and COVID-19 
co-epidemic dynamical system (model) is illustrated by

N(t) = S(t)+ CP(t)+HP(t)+ CV (t)+ CI (t)+HA(t)+HC(t)+ IAC(t)+ ICC(t)+ CR(t)+HT (t).

(1)�H (t) =
β1

N
(HA(t)+ ρ1HC(t)+ ρ2IAC(t)+ ρ3ICC(t)),

(2)�C(t) = β2(CI (t)+ ω1IAC(t)+ ω2ICC(t)),

Table 1.  Parameter descriptions

Parameters Descriptions

µ Natural death rate

� Recruited individuals

α1 The rate at which individuals lose COVID-19 protection

α2 The rate at which individuals lose HBV protection

ε Portion of individuals that do not covered by vaccine

θ The rate of progression

φ1 The parameter of modification

φ2 The parameter of modification

d1 COVID-19 disease death rate

d2 Chronic HBV disease death rate

κ COVID-19 recovery rate

γ Treatment rate of acute HBV infection

ρ Waning rate of COVID-19 vaccination

υ The modification parameter

β1 HBV spreading rate

β2 COVID-19 spreading rate

k1 Portion of recruited individuals go to susceptible group

k2 COVID-19 protection rate

k3 HBV protection rate

k4 COVID-19 rate of vaccine

δ The progression rate of the co-epidemic

θ1 COVID-19 treatment rate against acute HBV co-epidemic

θ2 COVID-19 treatment rate against chronic HIV co-epidemic

η Temporary immunity development rate

d3 Death rate for acute HBV and COVID-19 co-epidemic

d4 Death rate for chronic HBV and COVID-19 co-epidemic



4

Vol:.(1234567890)

Scientific Reports |         (2024) 14:5328  | https://doi.org/10.1038/s41598-024-55111-8

www.nature.com/scientificreports/

Table 2.  Descriptions of the state variables

State variable Descriptions

S HBV or COVID-19 susceptible group

CP COVID-19 protected individuals

HP HBV protected individuals

CV COVID-19 vaccine group

CI Individuals who are infected with COVID-19

HA Acute HBV mono-infected individuals

HC Chronic HBV mono-infected individuals

IAC Co-infected with acute HBV infection

ICC Co-infected with chronic HBV infection

CR COVID-19 recovery individuals

HT HBV treatment individuals

+ 4

+ 1

+ 3

+ 2

1
2

ϕ1

ϕ2

θ2

θ1

k2Δ k1Δ k3Δ

k4Δ

Figure 1.  The COVID-19 and HBV co-epidemic individuals flow diagram where the functions λH(t) and λC(t) 
are described in Eqs. (1) and (2) respectively.
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with initial data given by

The derivative for the total population using (3) is computed as

The model solutions non‑negativity and boundedness
The HBV and COVID-19 co-epidemic dynamical system (3) is epidemiologically meaningful whenever each of 
the co-epidemic dynamical system solutions becomes non-negative and also bounded in space region illustrated 
by

Theorem  1 (Non‑negativity): The co-epidemic dynamical system (3) solutions defined by S(t) , CP(t), 
HP(t),CV (t),CI (t),HA(t) , HC(t) , IAC(t) , ICC(t), CR(t), and HT (t)  with the initial conditions described in (4) are 
non-negative for any arbitrary time t > 0.

Proof: Let us consider the initial population as S(0) > 0,CP(0) > 0,HP(0) > 0,CV (0) > 0,CI (0) > 0,HP(0) > 0

,HC(0) > 0,IAC(0) > 0, ICC(0) > 0,CR(0) > 0, and HT (0) > 0 then for all time t > 0, we have to prove that S 
(t) > 0,CP(t) > 0,HP(t) > 0,CV (t) > 0, CI (t) > 0, HA(t) > 0, HC(t) > 0, IAC(t) > 0, ICC(t) > 0, CR(t) > 0, and  
HT (t) > 0.

Define:τ = sup {t > 0 : S(t) > 0,CP(t) > 0,HP(t) > 0,CV (t) > 0,CI (t) > 0,HA(t) > 0,HC(t) > 0, IAC(t) > 0, 
ICC(t) > 0,CR(t) > 0, and HT (t) > 0} . Since all the HBV and COVID-19 co-epidemic state variables S(t),CP(t)
,HP(t),CV (t),CI (t),HA(t), HC(t), IAC(t),ICC(t),CR(t), and HT (t) are continuous we can justify that τ > 0 . If 
τ =  + ∞, then non-negativity holds. But, if 0 < τ <  + ∞ we will have S(τ ) = 0, or CP(τ ) = 0, or HP(τ ) = 0, or 
CP(τ ) = 0, or CV (τ ) = 0, or HA(τ ) = 0, or HC(τ ) = 0, or IAC(τ ) = 0, or ICC(τ ) = 0, or CR(τ ) = 0, or HT (τ ) = 0.

From the first equation of the full model (3) we do have

And integrate both sides using integrating factor we have determined the constant value.
S(τ ) = M1S(0)  +  M1

τ

∫
0

exp∫ (µ+�H (t)+�C(t))dt(k1�+ α1CP + α2HP + ρCV + ηCR)dt > 0  w h e r e 

M1 = exp
−

(

µτ+
τ
∫
0
(�H (w)+�C(w)

)

> 0, S(0) > 0, and from the meaning of τ , the solutions CP(t) > 0, 
HP(t) > 0,CV (t) > 0, CR(t) > 0, also the exponential function always is positive, then the solution S(τ ) > 0 
hence S(τ )  = 0.

Again from the second equation of the full model (3) we do have

And also using t integrating factor after some calculations we obtained that

CP(τ ) = M1CP(0)+M1

τ

∫
0

exp∫ (�H+α1+µ))dtk2�dt > 0 where M1 = exp
−

(

α1τ+µτ+
τ
∫
0
(�H (w)

)

> 0,CP(0) > 0, 
and from the meaning of τ , the solution CP(τ ) > 0 hence CP(τ )  = 0.

(3)

Ṡ = k1�+ α1CP + α2HP + ρCV + ηCR − (�H + �C + µ)S,

ĊP = k2�− (�H + α1 + µ)CP ,

ḢP = k3�− (α2 + µ+ �C)HP ,

ĊV = k4�− (ρ + µ+ �H + ε�C)CV ,

ĊI = �CS + �CHP + ε�CCV − (µ+ d1 + κ + υ�H )CV ,

ḢA = �HS + �HCP + �HCV + θ1IAC − (θ+ µ+ φ1�C)HA,

ḢC = θHA + θ2ICC − (γ + d2 + µ+ φ2�C)HC ,
.

IAC = φ1�CHA + υ�HCI − (µ+ d3 + δ + θ1)IAC ,
.

ICC = δIAC + φ2�CHC − (µ+ d4 + θ2)ICC ,

ĊR = κCI − (µ+ η)CR,

ḢT = γHC − µHT ,

(4)

S(0) > 0, CP(0) ≥ 0,HP(0) ≥ 0,CV (0) ≥ 0, CI (0) ≥ 0,HA(0) ≥ 0, HC(0) ≥ 0, IAC(0) ≥ 0, ICC(0) ≥ 0,

CR > 0, and HT > 0.

(5)Ṅ = �− µN − (d1CI + d2HC + d3IAC + d4ICC)

(6)� =
{

(S,CP ,HP ,CV ,CI ,HA,HC , IAC , ICC ,CR,HT ) ∈ R
11
+ ,N ≤ �

µ

}

.

Ṡ + (�H + �C + µ)S = k1�+ α1CP + α2HP + ρCV + ηCV .

ĊP + (�H + α1 + µ)CP = k2�.
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Similarly, HP(τ ) > 0, hence HP(τ )  = 0 , CV (τ ) > 0, hence CV (τ )  = 0 , CI (τ ) > 0,  hence CI (τ )  = 0 , 
HA(τ ) > 0, hence HA(τ )  = 0 , HC(τ ) > 0 hence HC(τ )  = 0 , IAC(τ ) > 0, hence IAC(τ )  = 0 , ICC(τ ) > 0 , hence 
ICC(τ )  = 0 , CR(τ ) > 0, hence CR(τ )  = 0 , and  HT (τ ) > 0, hence HT (τ )  = 0.

Thus, τ = +∞ , and hence all the solutions of the COVID-19 and HBV co-epidemic model (3) are 
non-negative.

Theorem 2 (Boundedness): The HBV and COVID-19 co-epidemic model solutions are bounded in the region 
described in Eq. (6).

Proof: Let (S,CP ,HP ,CV ,CI ,HA,HC , IAC , ICC ,CR,HT ) ∈ R
11
+ be an arbitrary non-negative solution of the system 

(3) with initial conditions given in Eq. (4).

Now adding all the differential equations given in Eq. (3) we have determined the derivative of the total popu-
lation N which is given in Eq. (5) as Ṅ = �− µN − (d1CI + d2HC + d3IAC + d4ICC). Then by ignoring all the 
infection classes we have determined that Ṅ ≤ �− µN , and using separation of variables whenever t → ∞, we 
have obtained that 0 ≤ N ≤ �

µ
 . Hence, all the positive feasible non-negative solutions of the co-epidemic model 

(3) entering in to the region given in Eq. (6).

Qualitative analysis of the dynamical system
Before investigating the qualitative aspects of the COVID-19 and HBV co-epidemic system (3), it is fundamental 
to collect some basic concepts about single infection sub-models of HBV or COVID-19.

The HBV sub‑model qualitative analysis
In this part by assuming the absence of COVID-19 infection as CP = CV = CI = IAC = ICC = CR = 0  in Eq. (3) 
then the HBV mono-infection system dynamics illustrated by

such that N1(t) = S(t)+HP(t)+HA(t)+HC(t)+HT (t) is the total population, �H =
β1
N1

(HA + ρ1HC) is HBV 
infection rate  at initial population illustrated S(0) > 0,HP(0) ≥ 0,HA(0) ≥ 0,HC(0) ≥ 0 and HT (0) ≥ 0.

Similarly the HBV sub-model (7) is epidemiologically meaningful in the space region illustrated by 
�1 =

{

(S,HP ,HA,HC ,HT ) ∈ R
5
+,N1 ≤

�
µ

}

.

Local stability of HBV disease‑free equilibrium
To compute the HBV sub-model (7) HBV disease-free equilibrium point make its right-hand equation as zero 
and putting HA = HC = HT = 0 we determined the results S0 = k1�(α2+µ)+α2k3�

µ(α2+µ)
 , H0

P = k3�
α2+µ

. Thus, the HBV 
s u b - m o d e l  ( 7 )  H B V  d i s e a s e - f r e e  e q u i l i b r i u m  i s  r e p r e s e n t e d  b y 
E0HM =

(

S0,H0
P , 0, 0, 0

)

=
(

k1�(α2+µ)+α2k3�
µ(α2+µ)

, k3�
α2+µ

, 0, 0, 0

)

.
The HBV equilibrium point E0HM local stability is investigated by analyzing the sub-model reproduction 

number RHM calculated by the approach stated in.32 Using the same approach stated  in32 we derived the HBV 
sub-model reproduction number by the expression given by

Theorem 3 The HBV disease-free equilibrium point of the sub-model (7) is locally asymptotically stable if RHM < 1 , 
otherwise unstable.

Proof To prove the locally asymptotic stability of the HBV disease-free equilibrium point, we can apply the 
criteria derived by Routh-Hurwitz.53

The associated Jacobian matrix of the sub-model (7) at the given equilibrium point E0HM is illustrated by

(7)

Ṡ = k1�+ α2HP − (�H + µ)S,

ḢP = k3�− (α2 + µ)HP ,

ḢA = �HS − (θ+ µ)HA,

ḢC = θHA − (γ + d1 + µ)HC ,

ḢT = γHC − µHT ,

RHM =
β1(1− k3)(α2 + µ)+ β1α2k3

(α2 + µ)(θ + µ+ d2)
+

β1ρ1θ(1− k3)(α2 + µ)+ β1ρ1θα2k3

(θ + µ+ d2)(γ + µ+ d3)
.
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To derive the associated characteristic polynomial, let us compute the equation represented by

Simplifying the last expression we have (−µ− �)(−(α2 + µ)− �)(−µ− �)
(

�
2 + a�+ b

)

= 0 , where

and

The final result gives us �1 = −µ < 0 or  �2 = −(α2 + µ) < 0 or �3 = −µ < 0 or

Using the criteria derived by Routh-Hurwitz53 the quadratic equation given in (8) has two negative eigenvalues 
whenever RHM < 1 , and hence each eigenvalue of the result has negative real part implies that E0HM is locally 
asymptotically stable whenever RHM < 1 . The Theorem 3 proof result indicates that HBV infection spreading 
can be minimized in the community whenever RHM < 1, and whenever the initial data for HBV sub-model (7) 
is near to the equilibrium point E0HM.

HBV infection endemic equilibrium(s)
Let E∗ =

(

S∗,H∗
P ,H

∗
A,H

∗
C ,H

∗
T

)

 be the HBV sub-model endemic equilibrium point. Then we make the equations 
in the right hand side of the dynamical system (7) becomes zero and computed to get the results expressed by

where h1 = (α2 + µ) , h2 = (θ+ µ+ d2) , and h3 = (γ + d3 + µ).
We make substitution of the expressions H∗

A and H∗
C stated in Eq. (9) at the HBV infection rate given by 

�
∗
H =

β1H
∗
A+β1ρ1H

∗
C

S∗+H∗
P+H∗

A+H∗
C+H∗

T
 . The we have computed and simplified it as  �∗H =

h4�
∗
H

h5+h6�
∗
H

 and gives the result

T h e  n on - z e ro  s o lut i ons  of  E q .   ( 1 0 )  i s  �
∗
H = h4−h5

h6
  w h e re  h4 = β1k1�h1h3h3µ  + 

β1α2k3�h3h3µ   +  β1ρ1k1�θh1h3µ+ β1ρ1α2k3�θh3µ ,h5 = k1�h1h2h3µ+ α2k3�h2h3µ+ k3�h2h3µµ  , 
h6 = k3�h2h3µ+k1�h1h3µ+ α2k3�h3µ+ k1�θh1µ+ α2k3�θµ+ k1�θγ h1 + α2k3�θγ.

Therefore, we derived the final result illustrated by

From this last expression, we have �∗H > 0 whenever RHM > 1 and hence the HBV sub-model (7) has a unique 
positive HBV infection endemic equilibrium point whenever RHM > 1.

J
�

E0HM
�

=















−µ α2 −
β1S

0

S0+H0
P

−
β1ρ1S

0

S0+H0
P

0

0 −(α2 + µ) 0 0 0

0 0
β1S

0

S0+H0
P
− (θ+ µ+ d2)

β1ρ1S
0

S0+H0
P

0

0 0 θ −(γ + d3 + µ) 0

0 0 0 γ −µ















,

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

−µ− � α2 −
β1S

0

S0+H0
P

−
β1ρ1S

0

S0+H0
P

0

0 −(α2 + µ)− � 0 0 0

0 0
β1S

0

S0+H0
P
− (θ+ µ+ d2)− �

β1ρ1S
0

S0+H0
P

0

0 0 θ −(γ + d3 + µ)− � 0

0 0 0 γ −µ− �

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0.

⇒ (−µ− �)(−(α2 + µ)− �)(−µ− �)

[(

β1S
0

S0 +H0
P

− (θ + µ+ d22)− �

)

(−(γ + d3 + µ)− �)

β1ρ1S
0

S0 +H0
P

]

= 0.

a = (γ + d3 + µ)+ (θ + µ+ d2)−
β1S

0

S0 +H0
P

,

b = (θ + µ+ d2)(γ + d3 + µ)

(

1−
β1ρ1θ(1− k3)(α2 + µ)+ β1ρ1θα2k3

(θ + µ+ d2)(γ + µ+ d3)

)

= (θ + µ+ d2)(γ + d3 + µ)(1−RHM).

(8)�
2 + a�+ b = 0.

(9)

S∗ =
α2k3�+ k1�h1

h1
(

�
∗
H + µ

) , H∗
P =

k3�

h1
, H∗

A =
α2k3��

∗
H + k1�h1�

∗
H

h1h2
(

�
∗
H + µ

) ,

H∗
C =

α2k3���
∗
H + k1�θh1�

∗
H

h1h2h3
(

�
∗
H + µ

) and H∗
T =

k1�θγ h1�
∗
H + α2k3�θγ �∗H

µh1h2h3
(

�
∗
H + µ

) ,

(10)
(

h5 + h6�
∗
H − h4

)

�
∗
H = 0.

�
∗
H =

[k1�m1m2m3µ+ k3�m2m3µ(α2 + µ)](RHM − 1)

k3�m2m3µ+ k1�m1m3µ+ α2k3�m3µ+ k1�θm1µ+ α2k3�θµ+ k1�θγm1 + α2k3�θγ
.
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Theorem 4: The HBV dynamical system (7) has a unique positive HBV endemic equilibrium point whenever 
RHM > 1.

Qualitative investigation of COVID‑19 system dynamics
The associated COVID-19 sub-dynamical system of the complete co-epidemic model (3) is determined by mak-
ing HP = HA = HC = IAC = ICC=HT = 0 , and it is represented by

At the initial population S(0) > 0 , CP(0) ≥ 0,CV (0) ≥ 0, CI (0) ≥ 0 , CR(0) ≥ 0 , total population represented 
by N2(t) = S(t)+ CP(t)+CV (t)+ CI (t)+ CR(t), and COVID-19 force of infection given by �C = β2CI (t).

Local stability of COVID‑19 disease‑free equilibrium point
By putting CI = CR = 0 for the system dynamics (11) we computed for the COVID-19 disease-free equilibrium 
point and simplifying the result we derived the results given by S0 = k1�(α1+µ)(ρ+µ)+α1k2�(ρ+µ)+k4�ρ(α1+µ)

µ(α1+µ)(ρ+µ)
 , 

C0
P = k2�

α1+µ
 , and C0

V = k4�
ρ+µ

 . Thus, the COVID-19 disease-free equilibrium for the system (11) is represented by.

Using the same approach used by  references6,32 we computed and simplified to obtain the COVID-19 repro-
duction number represented by

Theorem 5: The COVID-19 disease-free equilibrium point E0CM becomes locally asymptotically stable whenever 
RCM < 1 , otherwise it is unstable.

Proof: Let E0CM =
(

k1�(α1+µ)(ρ+µ)+α1k2�(ρ+µ)+k4�ρ(α1+µ)
µ(α1+µ)(ρ+µ)

, k2�
α1+µ

, k4�
ρ+µ

, 0, 0

)

 be the sub-model (11) disease-free 
equilibrium point. To prove its local stability let us apply Routh-Hurwitz stability conditions explained in.6,53 
The Jacobian matrix of the system (11) is derived as:

The equation derived from the matrix  J
(

E0CM
)

 is the characteristics equation of the system (11) written as

where M = β2S
0 + β2εC

0
V − (µ+ d1 + κ), and we calculated the eigenvalues given by �1 = −µ < 0 or 

�2 = −(α1 + µ) < 0  o r  �3 = −(ρ + µ) < 0  o r  �4 = β2S
0 + β2εC

0
V
− (µ+ d1 + κ) = (µ+ d1 + κ)

[

β2S
0+β2εC

0
V

µ+d1+κ
− 1

]

= µ+ d1 + κ)[RCM − 1] < 0 whenever RCM < 1 or �5 = −(µ+ η) < 0.

Thus, each of the system (11) eigenvalue has negative part whenever RCM < 1 and hence the results indicate 
that the COVID-19 disease-free equilibrium point E0CM is locally asymptotically stable whenever RCM < 1.

Endemic equilibrium point(s) of the dynamical system (11)
Let E∗C =

(

S∗,C∗
P ,C

∗
V ,C

∗
I ,C

∗
R

)

 becomes the COVID-19 endemic equilibrium point of the dynamical system (11) 
with the infection rate at the endemic equilibrium point given by �∗C = β2C

∗
I  and putting its right-hand sides 

equal to zero gives the final result given by

(11)

Ṡ = k1�+ α1CP + ρCV + ηCR − (�C + µ)S,

ĊP = k2�− (α1 + µ)CP ,

ĊV = k4�− (ρ + µ+ ε�C)CV ,

ĊI = �CS + ε�CCV − (µ+ d1 + κ)CI ,

ĊR = κCI − (µ+ η)CR ,

E0CM =
(

S0,C0
P ,C

0
V ,C

0
I ,C

0
R

)

=

(

k1�(α1 + µ)(ρ + µ)+ α1k2�(ρ + µ)+ k4�ρ(α1 + µ)

µ(α1 + µ)(ρ + µ)
,

k2�

α1 + µ
,
k4�

ρ + µ
, 0, 0

)

.

RCM =
β2S

0 + εβ2C
0
V

µ+ d1 + κ
=

β2k1�(α1 + µ)(ρ + µ)+ β2α1k2�(ρ + µ)+ β2k4�ρ(α1 + µ)+ β2εk4�µ(α1 + µ)

µ(α1 + µ)(ρ + µ)(µ+ d1 + κ)
.

J
�

E0CM
�

=











−µ α1 ρ
0 −(α1 + µ) 0

0 0 −(ρ + µ)
0 0 0

0 0 0

−β2S
0 η

0 0

−β2εC
0
V 0

β2S
0 + β2εC

0
V − (µ+ d1 + κ) 0

κ −(µ+ η)











.

∣

∣

∣

∣

∣

∣

∣

∣

∣

−µ− � α1 ρ
0 −(α1 + µ)− � 0

0 0 −(ρ + µ)− �

0 0 0

0 0 0

−β2S
0 η

0 0

−β2εC
0
V 0

M − � 0

κ −(µ+ η)− �

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0,
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and

where  b1 = α1 + µ ,  b2 = ρ + µ ,  b3 = µ+ d1 + κ  ,  b4 = µ+ η ,  b5 = k1�b1b3b4 ,b6 = α1k2�b3b4  , 
b7 = ρk4�b1b3b4 , b8 = k4�b1ηκε,b9 = b1b3b4k4�ε , b10 = b2b1ηκk4�ε , b11 = b1k4�εηκε , b12 = b1b3b3b4 , 
b13 = b1b3ηκ.

Then we subst ituted the result  given by C∗
I =

b5(b2+ε�∗C)
2
�
∗
C+b6(b2+ε�∗C)

2
�
∗
C+

(

b2b7�
∗
C+b7ε�

∗2
C

)

b12(b2+ε�∗C)
2
(�∗C+µ)−b13(b2+ε�∗C)

2
�
∗
C

 + 

b8�
∗2
C +(b2b9+b9ε�

∗
C)

(

�
∗2
C +µ�∗C

)

−b10�
∗2
C −b11�

∗3
C

b12(b2+ε�∗C)
2
(�∗C+µ)−b13(b2+ε�∗C)

2
�
∗
C

, into �∗C = β2C
∗
I  , and determined the polynomial

where

f1 = b22b12 + b10 + 2b2b12εµ− b22b13 − 2b2b5ε − 2b2b6ε − b7ε − b8 − b2b9 − b9µε,

f0 = b1b2b3b4[1−RCM ] > 0 Whenever RCM < 1.
From Eq. (13) one can prove that f3 > 0 and f0 > 0 at RCM < 1 and the number of positive real solutions of 

(12) are based on the signs of the coefficients given by f1 , and f2 . Using the Descartes’ criteria one can justify the 
number of positive solutions for the polynomial f

(

y
)

 = f3y3 + f2y
2 + f1y + f0 (at y =  �∗C ). Based on the Descartes’ 

criteria we can state the following theorem.

Theorem 6: The COVID-19 sub-dynamical system illustrated by (11) will have

(a) A unique positive COVID-19 endemic equilibrium point whenever RCM > 1 and either of the following 
conditions satisfies

 (i) f1 > 0 and f2 > 0.
 (ii) f1 < 0 and f2 < 0.

  .

 (b) More than one positive COVID-19 endemic equilibrium point whenever RCM > 1 and either of the fol-
lowing condition satisfies.

(i) f1 > 0 and f2 < 0.

 (ii) f1 < 0 and f2 > 0.

(c) Two positive COVID-19 endemic equilibrium points whenever RCM < 1 , f1 < 0 and f2 < 0.

Using the criteria applied by references,6,12,29,31,41,54 item (c) of Theorem 6 indicates bifurcation of the dynami-
cal system (11) in the backward direction wheneverRCM < 1 . The basic requirement having the sub-model (11) 
effective reproduction number RCM < 1, although is necessary, is not sufficiently enough to the complete control 
of the COVID-19 infection spreading in the community.

Theorem 7: The COVID-19 sub-model (11) reveals that the backward bifurcation at RCM = 1 whenever H2 > H1  

such that H1 = −β2β
∗x01(ρ+µ)(µ+η)−β2β

∗εx03ρ(µ+η)−β2εβ
∗εx03µ(µ+η)

µ(ρ+µ)(µ+η)
 , and H2 =

β2κη(ρ+µ)
µ(ρ+µ)(µ+η)

.

S∗ =
b5
(

b2 + ε�∗C
)2

+ b6
(

b2 + ε�∗C
)2

+ b7
(

b2 + ε�∗C
)

+ b8�
∗
C

b1b3b4
(

b2 + ε�∗C
)2(

�
∗
C + µ

)

− b1ηκ
(

b2 + ε�∗C
)2
�
∗
C

,

C∗
P =

k2�

b1
, C∗

V =
k4�

(

b2 + ε�∗C
) ,

C∗
V =

b5
(

b2 + ε�∗C
)2
�
∗
C + b6

(

b2 + ε�∗C
)2
�
∗
C +

(

b2b7�
∗
C + b7ε�

∗2
C

)

b12
(

b2 + ε�∗C
)2(

�
∗
C + µ

)

− b13
(

b2 + ε�∗C
)2
�
∗
C

+
b8�

∗2
C +

(

b2b9 + b9ε�
∗
C

)(

�
∗2
C + µ�∗C

)

− b10�
∗2
C − b11�

∗3
C

b12
(

b2 + ε�∗C
)2(

�
∗
C + µ

)

− b13
(

b2 + ε�∗C
)2
�
∗
C

,

C∗
R =

κD∗
5

b4
,

(12)f3�
∗3
C + f2�

∗2
C + f1�

∗
C + f0 = 0,

(13)f3 = b12ε
2 − b13ε

2 > 0, f2 = 2b2b12ε + b12µε
2 − 2b2b13ε − b5ε

2 − b6ε
2 − b9ε + b11
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Proof: In this section, we apply the center manifold theory described  in29 to ascertain the local stability of 
the endemic equilibrium due to the convolution of the first approach (eigenvalues of the Jacobian matrix). 
To make use of the center manifold theory, the following change of variables is made by symbolizing S = x1
,CP = x2,CV = x3 , CI = x4 , and CR = x5 such that N2 = x1 + x2 + x3 + x4 + x5 . Furthermore, by using vec-
tor notation X = (x1, x2, x3, x4, x5)

T , the COVID-19 mono-infection model (11) can be written in the form 
dX
dt = F(X) with F =

(

f1, f2, f3, f4, f5
)T , as follows

where �C = β2x5. Then the method entails evaluating the Jacobian matrix of the system (14) at the DFE pointE0CM , 
denoted by J

(

E0CM
)

 and it is computed as

Consider, RCM = 1 and suppose β2 = β∗ is chosen as a bifurcation parameter. From RCM = 1 as 
RCM =

β2x
0
2+εβ2x

0
4

µ+d1+κ
=

β2k1�(α1+µ)(ρ+µ)+β2α1k2�(ρ+µ)+β2k4�(α1+µ)(ρ+µε)
µ(α1+µ)(ρ+µ)(µ+d1+κ)

= 1.
Solving for β2 we have got β2 = β∗ =

µ(α1+µ)(ρ+µ)(µ+d1+κ))
k1�(α1+µ)(ρ+µ)+α1k2�(ρ+µ)+k4�(α1+µ)(ρ+µε)

.

After some steps of the calculation we have computed the eigenvalues of Jβ∗ as �1 = −µ , or �2 = −(α1 + µ), 
or or �3 = −(ρ + µ), or �4 = 0, or �5 = −(µ+ η) . It follows that the Jacobian matrix J

(

E0CM
)

 of Eq. (14) at the 
disease-free equilibrium point with β2 = β∗ , denoted by Jβ∗ , has a single zero eigenvalue with all the remaining 
eigenvalues have negative real part. Hence, Theorem 2 of Castillo-Chavez and  Song29 can be used to analyze the 
dynamics of the model to reveals that the model (11) undergoes backward bifurcation at RCM = 1.

Eigenvectors of Jβ∗ : For the case RCM = 1 , it can be shown that the Jacobian of the system (14) at β2 = β∗ 
(denoted by Jβ∗) has a right eigenvectors associated with the zero eigenvalue given by u = (u1, u2, u3, u4, u5)

T as

Then solving Eq. (15) the right eigenvectors associated with the zero eigenvalue are given by

Similarly, the left eigenvector associated with the zero eigenvalues at β2 = β∗ given by v = (v1, v2, v3, v4, v5)
T 

as

(14)

dx1

dt
= f1 = k1�+ α1x2 + ρx3 + ηx5 − µx1 − �Cx1,

dx2

dt
= f2 = k2�− (α1 + µ)x2,

dx3

dt
= f4 = k4�− (ρ + µ+ ε�C)x3,

dx4

dt
= �Cx1 + ε�Cx3 − (µ+ d1 + κ)x4,

dx5

dt
= κx4 − (µ+ η)x5,

J
�

E0CM
�

=











−µ α2 ρ −β2x
0
1 η

0 − (α1 + µ) 0 0

0 0 −(ρ + µ) −β2εx
0
3 0

0 0 0 β2x
0
1 + β2εx

0
3 − (µ+ d1 + κ) 0

0 0 0 κ −(µ+ η)











.

Jβ∗ =











−µ α2 ρ −β∗x01 η
0 − (α1 + µ) 0 0

0 0 −(ρ + µ) −β∗εx03 0

0 0 0 β∗x01 + β∗εx03 − (µ+ d1 + κ) 0

0 0 0 κ −(µ+ η)











.

(15)











−µ α2 ρ −β∗x01 η
0 − (α1 + µ) 0 0

0 0 −(ρ + µ) −β∗εx03 0

0 0 0 β∗x01 + β∗εx03 − (µ+ d1 + κ) 0

0 0 0 κ −(µ+ η)





















u1
u2
u3
u4
u5











=











0

0

0

0

0











.

u1 =
−β∗x01u4(ρ + µ)(µ+ η)− β∗εx03ρ(µ+ η)u4 + κη(ρ + µ)u4

µ(ρ + µ)(µ+ η)
,

u2 = 0, u3 = −
β∗εx03
(ρ + µ)

u4, u4 = u4 > 0, u5 =
κ

µ+ η
u4.
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where D = β∗x01 + β∗εx03 − (µ+ d1 + κ).
Then solving Eq.  (16) the left eigenvectors associated with the zero eigenvalue are given by 

v1 = v2 = v3 = v4 = 0 and v4 = v4 > 0 . After long steps of calculations the bifurcation coefficients a and b are 
obtained as

where H1 = −β2β
∗x01(ρ+µ)(µ+η)−β2β

∗εx03ρ(µ+η)−β2εβ
∗εx03µ(µ+η)

µ(ρ+µ)(µ+η)
 , and H2 =

β2κη(ρ+µ)
µ(ρ+µ)(µ+η)

.
Thus, the bifurcation coefficient a is positive whenever D2 > D1.
Moreover

Hence, from Castillo-Chavez and  Song29 the COVID-19 mono-infection model (11) exhibits a backward 
bifurcation at RCM = 1 and H2 > H1.

Qualitative investigation of the HBV and COVID‑19 co‑epidemic model
Disease‑free equilibrium of the co‑epidemic system
From the complete co-epidemic system (3) we compute the co-epidemic disease-free equilibrium by assuming 
the conditions CI = CR = HA = HC = HT = IAC = ICC = 0 and after simplification we obtained the final result 
given by E0 =

(

S
0
,C

0
P
,H

0
P
,C

0
V
,C

0
I
,H

0
A
,H

0
C
, I

0
AC

, I
0
CC

,C
0
R
,H

0
T

)

=

(

k1�
µ

+
α1k2�
α1+µ

+
α2k3�
α2+µ

+
ρk4�
ρ+µ

,
k2�
α1+µ

,
k3�
α2+µ

,

k4�
ρ+µ

, 0, 0, 0, 0, 0, 0, 0

)

.

The full co‑epidemic model (3) effective reproduction number
Using a similar approach applied in “Local stability of HBV disease-free equilibrium” and “Local stability of 
COVID-19 disease-free equilibrium point” we computed the complete co-epidemic model (3) reproduction num-
ber illustrated by RHC = max{RCM ,RHM} = max{

β2k1�(α1+µ)(ρ+µ)+β2α1k2�(ρ+µ)+β2k4�ρ(α1+µ)+β2εk4�µ(α1+µ)
µ(α1+µ)(ρ+µ)(µ+d1+κ)

 , 
β1(1−k3)(α2+µ)+β1α2k3

(α2+µ)(θ+µ+d2)
+

β1ρ1θ(1−k3)(α2+µ)+β1ρ1θα2k3
(θ+µ+d2)(γ+µ+d3)

},  w h e r e  RCM =
β2D

0
1
+εβ2D

0
4

µ+d1+κ
=

β2k1�(α1+µ)(ρ+µ)+β2α1k2�(ρ+µ)+β2k4�ρ(α1+µ)+β2εk4�µ(α1+µ)
µ(α1+µ)(ρ+µ)(µ+d1+κ)

 is the COVID-19 infection reproduction number 

and RHM =
β1(1−k3)(α2+µ)+β1α2k3

(α2+µ)(θ+µ+d2)
+

β1ρ1θ(1−k3)(α2+µ)+β1ρ1θα2k3
(θ+µ+d2)(γ+µ+d3)

 is the HBV only infection reproduction number.

Local stability of the full model (3) disease‑free equilibrium
Using similar approach applied in,6 the Jacobian matrix of the complete HVB and COVID-19 co-epidemic is 
computed and written as

(16)











v1
v2
v3
v4
v5











T

∗











−µ α2 ρ −β∗x01 η
0 − (α1 + µ) 0 0

0 0 −(ρ + µ) −β∗εx03 0

0 0 0 D 0

0 0 0 κ −(µ+ η)











=















0

0

0

0

0

0















,

a =

5
∑

i,j,k=1

v4uiuj∂
2f4
/

∂xi∂xj = 2v4u1u4∂
2f4
/

∂x1∂x4 + 2v4u3u4∂
2f4
/

∂x3∂x4

= 2v4u4

[

u1∂
2f4
/

∂x1∂x4 + u3∂
2f4
/

∂x3∂x4

]

,

= 2v4u4[β2u1 + β2εu3]

= 2v4u
2
4

[

−β2β
∗x01(ρ + µ)(µ+ η)− β2β

∗εx03ρ(µ+ η)+ β2κη(ρ + µ)− β2εβ
∗εx03µ(µ+ η)

µ(ρ + µ)(µ+ η)

]

,

= 2v4u4[D2 − D1],

b =

5
∑

i,k=1

vkui∂
2fk
/

∂xi∂β
(

E0CM
)

=

5
∑

i=1

v4ui∂
2f4
/

∂xi∂β = v4u4∂
2f4
/

∂x4∂β = v4u4
[

x01u1 + εx03u3
]

> 0.

J(E0) =



































−µ α1 α2 ρ −β2S
0 −

β1
N S0 −

β1
N S0ρ1 −D4 −D6 η 0

0 −(α1 + µ) 0 0 0 −
β1
N C0

P −
β1
N D0

2ρ1 −
β1
N C0

Pρ2 −
β1
N C0

Pρ3 0 0

0 0 −(α2 + µ) 0 −β2H
0
P 0 0 −β2H

0
Pω1 −β2H

0
Pω2 0 0

0 0 0 −(ρ + µ) −εβ2C
0
V −

β1
N0C

0
V −

β1
N0C

0
Vρ1 −D5 −D7 0 0

0 0 0 0 D3 0 0 ω1D3 ω2D3 0 0

0 0 0 0 0 D8 ρ1D8 ρ2D8 + θ1 ρ3D8 0 0

0 0 0 0 0 � D9 0 θ2 0 0

0 0 0 0 0 0 0 D10 0 0 0

0 0 0 0 0 0 0 δ D11 0 0

0 0 0 0 κ 0 0 0 0 −(µ+ η) 0

0 0 0 0 0 0 γ 0 0 0 −µ



































,
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where D3 = β2
(

S0 +H0
P + εC0

V

)

− (µ+ d1 + κ) ,  D4 =
(

β1
N ρ2 + β2ω1

)

S0 ,  D5 =
(

β1
N0 ρ2 + εβ2ω1

)

C0
V  , 

D6 =
(

β1
N0 ρ3 + β2ω2

)

S0  a n d  D7 =
(

β1
N0 ρ3 + εβ2ω2

)

C0
V , D8 =

β1
N

(

S0 + C0
P + C0

V

)

− (θ+ µ+ d2)  , 
D9 = −(γ + d3 + µ), D10 = −(µ+ d4 + δ + θ1), D11 = −(µ+ d5 + θ2).

The corresponding eigenvalues of the matrix J(E0)  are computed as �1 = −µ < 0, or �2 = −(α1 + µ) < 0, 
o r  �3 = −(α2 + µ) < 0,  o r  �4 = −(ρ + µ) < 0,  o r  �5 = −µ < 0,  o r  �6 = −(µ+ η) < 0,  o r 
�7 =

β2εk4�
(ρ+µ)(µ+d1+κ)

(RCM − 1) < 0 or �8 = −(µ+ d4 + δ + θ1) < 0, or �9 = −(µ+ d5 +�2) < 0, or 
�
2 + [(γ + d3 + µ)+ (θ+ µ+ d2)− D8]�− [(D8 − (θ+ µ+ d2))(γ+ d3 + µ)+ ρ1D8] = 0.

Using the Routh-Hurwitz local stability conditions we can justify each of the given matrix eigenvalue has 
negative real part if RHC = max {RCM ,RHM} < 1 implies the result that co-epidemic disease-free equilibrium 
point has local asymptotic stability whenever RHC = max {RCM ,RHM} < 1.

The optimal control problem and its qualitative analysis
This section aims to investigate the impacts of the time dependent optimal control measures on the HBV and 
COVID-19 co-epidemic spreading by applying Pontryagin’s Maximum Principle applied in references.1,4,33,36 
Incorporating the four time dependent control strategies stated as: 0 ≤ w1(t) ≤ 1 becomes the HBV spreading 
protection measure, 0 ≤ w2(t) ≤ 1 becomes the COVID-19 spreading protection measure,0 ≤ w3(t) ≤ 1 becomes 
the COVID-19 treatment measure, and 0 ≤ w4(t) ≤ 1 becomes the HBV treatment measure we re-formulate 
the full model (3) as

With initial population S(0) > 0,CP(0) ≥ 0, HP(0) ≥ 0, CV(0) ≥ 0,CI(0) ≥ 0,HA(0) ≥ 0,

The main objective of this optimal control problem is to determine the optimal control-
ling strategy w∗ =

(

w∗
1, w

∗
2, w

∗
3, w

∗
4

)

 values for the control variables w = (w1, w2, w3, w4) such that 
(

S∗,C∗
P ,H

∗
P ,C

∗
V ,C

∗
I ,H

∗
A,H

∗
C , I

∗
AC , I

∗
CC ,C

∗
R ,H

∗
T

)

 are solutions of the problem (17) in the time boundary 
[

0,Tf

]

 at 
the initial population stated by (18) and the objective function represented by

 can be minimized with the associated coefficients given by σ1, σ2, σ3, and σ4 and B1

2
, B2

2
, B3

2
, and B4

2
  are relative 

costs measure corresponding to w1,w2,w3 and w4 , in the stated order, and also it balances the given integrand. 
The term σ1CI represents the cost associated with COVID-19 infectious group, the term σ2HC represents the 
cost associated to chronic HBV infectious group, σ3IAC represents the cost corresponding to the acute HBV and 
COVID-19 co-epidemic group and σ4ICC represents the cost corresponding to chronic HBV and COVID-19 
co-epidemic group.

I(S,CP ,HP ,CV ,CI ,HA,HC , IAC , ICC ,CR ,HT , u) = σ1,CI + σ2HC + σ3IAC + σ4ICC +
B1

2
w
2
1
+

B2

2
w
2
2

+
B3

2
w
2
3
+

B4

2
w
2
4
 , investigates the cost at given time t. The collection of admissible Lebesgue measurable con-

trol functional is described as

Specifically, we need an optimal control minimum strategy written as

(17)

Ṡ = k1�+ α1CP + α2HP + ρCV + ηCR − (1− w1)�HS − (1− w2)�CS − µS,

ĊP = k2�− (1− w1)�HCP − (α1 + µ)CP ,

ḢP = k3�− (1− w2)�CHP − (α2 + µ)HP ,

ĊV = k4�− (1− w1)�HCV − (1− w2)ε�CCV − (ρ + µ)CV ,

ĊI = (1− w2)�CS + (1− w2)�CHP + (1− w2)ε�CCV − (1− w1)υ�HCI − (µ+ d1 + u3κ)CI ,

ḢA = (1− w1)�HS + (1− w1)�HCP + (1− w1)�HCV + u3θ1IAC − (1− w2)φ1�CHA − (θ+ µ+ d2)HA,

ḢC = θHA + w3θ2ICC − (1− w2)φ2�CHC − (w4γ + d3 + µ)HC ,
.

IAC = (1− w2)φ1�CHA + (1− w1)υ�HCI − (µ+ d4 + δ + w3θ1)IAC ,
.

ICC = δIAC + (1− w2)φ2�CHC − (µ+ d5 + w3θ2)ICC ,

ĊR = w3κCI − (µ+ η)CR ,

ḢT = w4γHC − µHT ,

(18)HC(0) ≥ 0, IAC(0) ≥ 0, ICC(0) ≥ 0, CR(0) > 0, and HT (0) > 0.

(19)

J(w1, w2, w3, w4) =
Tf

∫
0

(

σ1CI + σ2HC + σ3IAC + σ4ICC +
B1

2
w2
1 +

B2

2
w2
2 +

B3

2
w2
3 +

B4

2
w2
4

)

dt,

(20)�u =
{

(w1(t), w2(t), w3(t), w4(t)) ∈ L4 : 0 ≤ w1(t), w2(t), w3(t), w4(t) ≤ 1, t ∈
[

0,Tf

]}

.

(21)J
(

w*
1, w

*
2, w

*
3, w

*
4

)

= min
�u

J(w1, w2, w3, w4).
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Theorems on the existence and uniqueness for optimal control problem

Theorem 9 (Existence of optimal control functions) For the dynamical system (17) there exists an opti-
mal control function w∗ =

(

w∗
1, w

∗
2, w

∗
3, w

∗
4

)

 in the region �u and the associated solution represented by 
(

S∗,C∗
P ,H

∗
P ,C

∗
V ,C

∗
I ,H

∗
A,H

∗
C , I

∗
AC , I

∗
CC ,C

∗
R ,H

∗
T

)

 to the system dynamics (17) at the initial population stated in (18) 
as J

(

w∗
1, w

∗
2, w

∗
3, w

∗
4

)

= min
�u

J(w1, w2, w3, w4).
Remark: For the qualitative analysis of the dynamical system stated in (17) we applied the Pontryagin’s Maximal 
principle used by scholars of the references.1,4,33,36

The Hamiltonian function for the system dynamics illustrated in (17) and (19) is defined and represented by

 w h e r e  ψi  s t a n d s  E q .   ( 1 9 )  r i g h t  h a n d  s i d e  ith  s t a t e  v a r i a b l e  a n d 
�1(t),�2(t),�3(t),�4(t),�5(t),�6(t),�7(t),�8(t),�9(t),�10(t) and �11(t) are the adjoint state variables. 
Similarly using the same method stated in,1,4,33,36 we obtain the co-state variables with the existence condition 
explained by theorem below:

T h e o r e m   1 0  L e t  w =
(

w∗
1, w

∗
2, w

∗
3, w

∗
4

)

 r e p re s e nt  t h e  o p t i m a l  c o nt ro l  f u n c t i o n  an d 
( S∗,C∗

P ,H
∗
P ,C

∗
V ,C

∗
I ,H

∗
A,H

∗
C , I

∗
AC , I

∗
CC ,C

∗
R ,H

∗
T ) represent the corresponding unique maximal solutions of the 

dynamical system (17) at the initial population illustrated in (18) and the objective function stated in (19) at the 
fixed boundary time Tf  given in (20). Then we need the adjoint functions represented by �∗

i (·), i = 1, ..., 11 that 
corresponds to the equations written by

(22)H = σ1CI + σ2HC + σ3IAC + σ4ICC +
B1

2
w2
1 +

B2

2
w2
2 +

B3

2
w2
3 +

B4

2
w2
4 +

11
∑

i=1

�iψi ,

(23)

d�1

dt
= (1− w1)�

∗
H (�1 −�6)+ (1− w2)�

∗
C(�1 −�5)+ µ�1,

d�2

dt
= (1− w1)�

∗
H (�2 −�6)+ α1(�2 −�1)+ µ�2,

d�3
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= (1− w2)�

∗
C(�3 −�5)+ α2(�3 −�1)+ µ�3,

d�4
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= (1− w1)�

∗
H (�4 −�6)+ (1−�2)ε�

∗
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d�11

dt = µ�11 , at the transiversality criteria illustrated by

Furthermore, the associated optimal functions w∗
1 (t),w

∗
2 (t),w

∗
3 (t), and w∗

4 (t) are illustrated by 

w∗
4(t) = max

{

0,min
{

γH∗
P (�7−�11)

B4
, 1

}}

.

Numerical simulations
In this section, we perform detailed numerical simulations of the model (3) and the control problem (17) to 
better understand the system dynamics and identify the most effective optimal control measures that affect 
the HBV and COVID-19 co-epidemic transmission in the community. Numerical simulations provide visual 
representations, offering an intuitive understanding of how various parameters impact outbreak dynamics and 
serving as practical tools for scenario assessment. The utilization of the ODE45 solver in MATLAB 2023a for 
numerical simulations suggests a robust approach to capturing the dynamics of the infectious disease model. 
ODE45, belonging to the Runge–Kutta family of methods, is recognized for its stability, particularly in handling 
stiff ordinary differential equations (ODEs). In this section of the study, by collecting parameter values from dif-
ferent published sources we present the numerical simulation results using ODE45 MATLAB programming code 
and fourth order Runge–Kutta numerical methods. We applied this method since the results of the Runge–Kutta 
fourth order numerical method give extremely accurate and good outcome. In addition, Runge–Kutta fourth 
order numerical method requires four evaluations per step and its global truncation error is O

(

h4
)

.

Numerical simulation of the co‑epidemic model (3)
In this part, we use ode45 with fourth order Runge–Kutta numerical approach and applying values of the param-
eters illustrated in Table 3 we performed simulations to verify the qualitative results and to investigate the impacts 
of different controlling strategies to tackle the HBV and COVID-19 co-epidemic spreading in the population.

Numerical simulation result illustrated by Fig. 2 investigates the behaviours of the complete co-epidemic 
dynamical system (3) whenever RHC = max{RHM ,RCM} = max {1.24, 2.68} = 3.23 > 1 . The result reveals 
each of the complete co-epidemic model solution is converging to the complete co-epidemic model endemic 
equilibrium point. Epidemiologically, one can conclude that the COVID-19 and HBV co-epidemic outbreaks 
in the population is consistently present but limited to a particular region.

Simulations of the optimal control problem (17)
In this sub-section, we investigate the effect of intervention strategies on the transmission of HBV and COVID-
19 co-epidemic in a population of the study area. The optimal control problem stated in (17)–(21) is solved 
numerically using ODE45 with the forth order forward and backward Range-Kutta scheme. To verify the quali-
tative analysis and to investigate the most effective controlling strategy to minimize the number of HBV and 
COVID-19 co-epidemic people in a population we implemented the numerical simulation of the co-epidemic 
model using some initial population values and parameter values illustrated in Table 3 and the constants values 
of σ1 = σ2 = σ3 = σ4 = 19 . We implement the numerical simulations in the maximum time level to be five 
years by considering the following possible illustrated optimal control strategies:

1. Apply single strategy at a time

(A) Apply HBV protection strategy (w1  = 0),
(B) Apply COVID-19 protection strategy ( w2  = 0),
(C) Apply HBV treatment strategy ( w4  = 0),

d�9

dt
= −σ4 + (1− w1)
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N
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∗
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C
∗
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∗
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∗
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(D) Apply COVID-19 treatment strategy ( w3  = 0).

2. Apply double strategies simultaneously

(E) Apply protection strategies ( w1  = 0 and w2  = 0),
(F) Apply treatment strategies ( w3  = 0, and w4),

Table 3.  Values of parameters used for numerical analysis

Parameter Baseline value of parameter References

� 500 individuals/day 54

µ (1/76.31)/ day 26

α1 0.0015/day Estimated from 55

α2 0.0004/day Estimated from 55

d1 0.0214/day 26

d2 0.02/day 26

θ 0.333/day 26

θ1,θ2 (1/3)/day 26

υ 0.3 dimensionless 26

φ1 1 dimensionless 26

φ2 1 dimensionless 26

γ 0.5/day 26

d2 0.02/day 26

d3 0.0214/day 26

d4 0.05/day 26

η 0.002/day Assumed

δ 0.053/day Assumed

ε 0.002 no unit Estimated from 31

β1 5.0 ×  10−8/day 26

β2 6.29 ×  10−8/day 26

k1 0.40 no unit Assumed

k2 0.20 no unit Assumed

k3 0.20 no unit Assumed

k4 0.20 no unit Assumed

ρ 0.30 no unit Assumed

κ 0.333/day 26
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Figure 2.  Behaviors of the dynamical system (3) solutions at RHC = 2.68 > 1..
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(G) Apply HBV protection and treatment strategies ( w1  = 0, and w4  = 0),
(H) Apply COVID-19 protection and treatment strategies ( w2  = 0 and w3),

(I) Apply HBV protection and COVID-19 treatment strategies ( w1  = 0 and w3),
(J) Apply COVID-19 protection and HBV treatment strategies ( w2  = 0 and w4).

3. Triple strategies simultaneously

(K) Apply HBV and COVID-19 protections and HBV treatment ( w1  = 0,w2  = 0,w4  = 0).
(L) Apply HBV and COVID-19 protections and COVID-19 treatment ( w1  = 0,w2  = 0,w3  = 0).
(M) Apply HBV protection and COVID-19 and HBV treatments ( w1  = 0,w3  = 0,w4  = 0).
(N) Apply COVID-19 protection and COVID-19 and HBV treatments ( w2  = 0,w3  = 0,w4  = 0).

4. All the possible mentioned strategies simultaneously
(O) Apply all the four strategies simultaneously ( w1  = 0,w2  = 0,w3  = 0, and w4  = 0).

Impacts of single strategies on the total co‑epidemic population
In this sub-section simulation is done when there is no control strategy in place and considering the following 
controlling strategies: Strategy A: apply HBV protection, and we present the simulation of optimal control system 
(17) with (w1) as a protection against HIV infection by Fig. 3A. Strategy B: apply COVID-19 protection strategy, 
and we present the simulation of optimal control system (17) with protection mechanism ( w2 ) as a protection 
against COVID-19 infection by Fig. 3B. Strategy C: apply HBV treatment strategy, and we present the simula-
tion of optimal control system (17) with HBV treatment mechanism ( w4 ) as a treatment against HBV infection 
by Fig. 3C. Strategy D: apply COVID-19 treatment strategy, and we present the simulation of optimal control 
system (17) with COVID-19 treatment mechanism ( w3 ) as a treatment against COVID-19 infection by Fig. 3D.

From Fig. 3 given presented above we observe that the protective strategies investigated in Fig. 3A and B are 
more effective strategies as compared to the treatment strategies investigated in Fig. 3C and D. But we recommend 
that strategy B is the most effective strategy to tackle the co-infection problem in the community.
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Figure 3.  Impact single strategies on the total number of HBV and COVID-19 co-epidemic population.
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Impacts of double strategies on the total co‑epidemic population
In this sub-section simulation is done when there is no control strategy in place and considering the follow-
ing controlling strategies: Strategy E: apply HBV and COVID-19 protection strategies simultaneously, and we 
present the simulation of optimal control system (17) with HBV and COVID-19 protection strategies ( w1 and 
w2) simultaneously as a protection against HBV and COVID-19 infections respectively and is illustrated by 
Fig. 4E. Strategy F: apply HIV and COVID-19 treatment strategies simultaneously, and we present the simula-
tion of optimal control system (17) with HBV and COVID-19 treatment strategies ( w3 and w4) simultaneously 
as treatments against COVID-19 and HBV infections respectively and is illustrated by Fig. 4F. Strategy G: apply 
HIV protection and HBV treatment strategies simultaneously, we present the simulation of optimal control 
system (17) with HIV protection and HBV treatment strategies ( w1 and w4) simultaneously as a control strategy 
against HIV and COVID-19 co-infection and is illustrated by Fig. 4G. Strategy H: apply COVID-19 protection 
and COVID-19 treatment strategies simultaneously, and we present the simulation of optimal control system 
(17) with COVID-19 protection and COVID-19 treatment strategies ( w1 and w4) simultaneously as a control 
strategy against HBV and COVID-19 co-infection and is illustrated by Fig. 4H. Strategy I: apply HBV protection 
and COVID-19 treatment strategies simultaneously, and we present the simulation of optimal control system 
(17) with HBV protection and COVID-19 treatment strategies ( w1 and w3) simultaneously as a control strategy 
against HIV and pneumonia co-infection and is illustrated by Fig. 4I. Strategy J: apply COVID-19 protection 
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Figure 4.  Impacts of double strategies on the number of HBV and COVID-19 co-epidemic population.
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and HBV treatment strategies simultaneously, and we present the simulation of optimal control system (17) with 
COVID-19 protection and HBV treatment strategies ( w2 and w4) simultaneously as a control strategy against 
HBV and COVID-19 co-epidemic and is illustrated by Fig. 4J.

From Fig. 4 presented above we observe that the protective and treatment strategies illustrated in Fig. 4G–J 
are more effective strategies as compared to other strategies investigated in Fig. 4E and F. But we recommend 
that strategy J is the most effective strategy to tackle the co-infection problem in the community.

Impacts of triple strategies on the total number of the co‑epidemic
In this sub-section simulation is done when there is no control strategy in place and considering the following 
controlling strategies: Strategy K: apply both HBV and COVID-19 protections and HBV treatment strategies 
simultaneously, and we present the simulation of optimal control system (17) with both HBV and COVID-19 
protections and HBV treatment strategies ( w1,w2 and w4) simultaneously as a control strategy against HBV and 
COVID-19 co-epidemic and is illustrated by Fig. 5K. Strategy L: use both HBV and COVID-19 protections and 
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Figure 5.  Impacts of triple strategies on the number of HBV and COVID-19 co-epidemic population.
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COVID-19 treatment strategies simultaneously, and we present the simulation of optimal control system (17) 
with both HBV and COVID-19 protections and COVID-19 treatment strategies ( w1,w2 and w3) simultaneously as 
a control strategy against HBV and COVID-19 co-epidemic and is illustrated by Fig. 5L. Strategy M: apply both 
HBV and COVID-19 treatments and HBV protection strategies simultaneously, and we present the simulation of 
optimal control system (17) with both HBV and COVID-19 treatments and HBV protection strategies ( w1,w3 and 
w4) simultaneously as a control strategy against HBV and COVID-19 co-epidemic and is investigated in Fig. 5M. 
Strategy N: apply both HBV and COVID-19 treatments and COVID-19 protection strategies simultaneously, 
and we present the simulation of optimal control system (17) with both HBV and COVID-19 treatments and 
COVID-19 protection strategies (w2,w3 and w4) simultaneously as a control strategy against HBV and COVID-19 
co-infection and is investigated in Fig. 5N.

From Fig. 5 illustrated above we observe that the protections and treatment strategies investigated in Fig. 5K 
and L are more effective strategies as compared to the strategies investigated in Fig. 5M and N. But we recom-
mend that the strategy investigated in Fig. 5K is the most effective strategy to tackle the HBV and COVID-19 
co-epidemic problem in the community.

Simulation of the co‑infection with strategy O
In this sub-section numerical simulation is carried out when there is no control strategy in place and when there 
are controls involving protection and treatment strategies for both COVID-19 and HBV single infections. Fig-
ure 6 shows the result that if all the protection and treatment strategies efforts are implemented, the number of 
individuals co-epidemic with HBV and COVID-19 decreases drastically to zero after 3. Using the result given in 
Fig. 5 we also compared strategy O to each of other strategies and found out that the strategy shows a significant 
decline in the number of HBV and COVID-19 co-epidemic individuals and hence strategy O is the most effective 
strategies to tackle the co-epidemic spreading in the community.

Conclusion
In this study, we formulated and analyzed the transmission dynamics of HBV and COVID-19 co-epidemic 
model to achieve our main objective of the study that aims to investigate the impacts of the four time dependent 
proposed optimal control strategies. The study proved the HBV and COVID-19 co-epidemic model solutions 
well posedness, stabilities of the equilibrium points and carried out other qualitative and numerical results that 
contributes to understand the behaviors of real-world disease dynamics, and enhancing the model’s reliability 
and predictive capabilities. Additionally, our qualitative analyses reveal significant insights into the stability of 
the co-epidemic model. Notably, the HBV, COVID-19, and the HBV and COVID-19 co-epidemic disease-free 
equilibrium points is demonstrated to be locally asymptotically stable whenever the associated effective repro-
duction numbers are less than unity, underscoring conditions conducive to disease control. But, the COVID-19 
sub-model and the co-epidemic model disease-free equilibrium points reveal the phenomenon of backward 
bifurcation whenever the corresponding effective reproduction number is less than unity.

The study re-formulated the proposed co-epidemic model optimal control problem by considering four 
time dependent optimal control strategies and to further enrich our understanding, we conducted comprehen-
sive numerical simulations for the HBV and COVID-19 co-epidemic model, presenting graphical illustrations 
accompanied by detailed discussions. Our exploration extends to the nuanced behavior of model solutions, 
emphasizing the impact of optimal control strategies on the HBV and COVID-19 co-epidemic spreading in 
the community. A noteworthy aspect of this study is the incorporation of the acute and chronic HBV infection 
stages, incorporating protection for both infections, and vaccination for COVID-19 infection only and these 
makes our model novel as compared with previously formulated models for HBV and COVID-19 co-infections 
by other scholars. This novel approach brings a fresh perspective to the investigation of HBV and COVID-19 
transmission dynamics in the community. These findings not only contribute to the scientific understanding 
of HBV and COVID-19 co-epidemic transmission dynamics but also hold significance for scholars engaged in 
studying the infection spreading within community. The insights gained from this research lay the groundwork 
for more nuanced and targeted interventions aimed at effectively managing and mitigating HBV and COVID-19 
co-epidemic transmission in diverse populations.

The main finding of this study is implementation of vaccination, protections and treatments control measures 
simultaneously is the best optimal strategy with respect to both the economic and epidemic aspects as compared 
with other optimal control strategies and hence we recommend for the public health stakeholders to give serious 
attention regarding maximizing these combined optimal control measures to minimize the HBV and COVID-19 
co-epidemic spreading in the community.

Limitation and future work of the proposed study: we haven’t fit data due to the absence of suitable data for 
model calibration; the focus of the study is on theoretical developments, methodological advancements and 
exploring the impact of four time dependent optimal control strategies by applying parameter values adopted 
from published sources rather than on direct applicability to real-world data. The complexity of the HBV and 
COVID-19 co-epidemic model has been a challenge to find appropriate datasets that capture all relevant vari-
ables. For future work, since this study is not exhaustive other potential scholars in the area can modify the 
proposed HBV and COVID-19 co-epidemic model by incorporating additional aspects such as the stochastic 
approach, fractional order approach, age structure of individuals, roles of media, roles of the community, HBV 
vaccination, and fitting the model with appropriate real data.

Data availability
Data used to support the findings of this study is incorporated in the article.
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