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Optimizing warfarin dosing 
for patients with atrial fibrillation 
using machine learning
Jeremy Petch 1,2,3,4*, Walter Nelson 1,5, Mary Wu 6, Marzyeh Ghassemi 7,8,9, Alexander Benz 2,10, 
Mehdi Fatemi 11, Shuang Di 1,12, Anthony Carnicelli 13,14, Christopher Granger 13,14, 
Robert Giugliano 15, Hwanhee Hong 14,16, Manesh Patel 13, Lars Wallentin 17,18, 
John Eikelboom 2,19 & Stuart J. Connolly 2,3

While novel oral anticoagulants are increasingly used to reduce risk of stroke in patients with 
atrial fibrillation, vitamin K antagonists such as warfarin continue to be used extensively for 
stroke prevention across the world. While effective in reducing the risk of strokes, the complex 
pharmacodynamics of warfarin make it difficult to use clinically, with many patients experiencing 
under- and/or over- anticoagulation. In this study we employed a novel implementation of deep 
reinforcement learning to provide clinical decision support to optimize time in therapeutic 
International Normalized Ratio (INR) range. We used a novel semi-Markov decision process 
formulation of the Batch-Constrained deep Q-learning algorithm to develop a reinforcement learning 
model to dynamically recommend optimal warfarin dosing to achieve INR of 2.0–3.0 for patients 
with atrial fibrillation. The model was developed using data from 22,502 patients in the warfarin 
treated groups of the pivotal randomized clinical trials of edoxaban (ENGAGE AF-TIMI 48), apixaban 
(ARISTOTLE) and rivaroxaban (ROCKET AF). The model was externally validated on data from 5730 
warfarin-treated patients in a fourth trial of dabigatran (RE-LY) using multilevel regression models to 
estimate the relationship between center-level algorithm consistent dosing, time in therapeutic INR 
range (TTR), and a composite clinical outcome of stroke, systemic embolism or major hemorrhage. 
External validation showed a positive association between center-level algorithm-consistent 
dosing and TTR  (R2 = 0.56). Each 10% increase in algorithm-consistent dosing at the center level 
independently predicted a 6.78% improvement in TTR (95% CI 6.29, 7.28; p < 0.001) and a 11% 
decrease in the composite clinical outcome (HR 0.89; 95% CI 0.81, 1.00; p = 0.015). These results 
were comparable to those of a rules-based clinical algorithm used for benchmarking, for which each 
10% increase in algorithm-consistent dosing independently predicted a 6.10% increase in TTR (95% 
CI 5.67, 6.54, p < 0.001) and a 10% decrease in the composite outcome (HR 0.90; 95% CI 0.83, 0.98, 
p = 0.018). Our findings suggest that a deep reinforcement learning algorithm can optimize time in 
therapeutic range for patients taking warfarin. A digital clinical decision support system to promote 
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algorithm-consistent warfarin dosing could optimize time in therapeutic range and improve clinical 
outcomes in atrial fibrillation globally.

Stroke killed an estimated 6,190,000 people in 2019, making it the 2nd leading cause of death  worldwide1. A 
leading cause of stroke is atrial fibrillation, a heart arrythmia that imposes a five-fold increase in the risk of 
ischemic  stroke2. While novel oral anticoagulants are increasingly used to reduce risk of stroke in patients with 
atrial fibrillation, vitamin K antagonists such as warfarin continue to be commonly used for stroke prevention 
across the  world3,4, and remains the only oral option for patients with conditions such as mechanical heart valves.

While effective in reducing the risk of stroke, vitamin K antagonists like warfarin are difficult to use clinically. 
They interact with a range of foods and  drugs5, and thus require ongoing laboratory monitoring and frequent 
dose adjustments to maintain adequate anticoagulation. In clinical practice, this is accomplished by monitoring 
plasma International Normalized Ratio (INR), which evaluates coagulation. The established therapeutic range 
for atrial fibrillation is an INR of 2.0–3.0, and extended time in therapeutic range (TTR) is associated with a 
lower risk of  stroke6. However, given the complex pharmacodynamics of warfarin, achieving a high TTR can be 
difficult and thus many patients on warfarin experience inadequate  anticoagulation7.

Clinical and computerized algorithms have been developed to support clinicians in addressing the challenges 
of managing warfarin, and both have been shown to improve TTR 8–12. While effective, most of these algorithms 
are relatively simple, typically providing clear decision rules based on INR thresholds (such as increasing the 
dose of warfarin by 10% if INR = 1.5–2.0). This approach has the advantage of being highly interpretable and easy 
to implement, but the potential disadvantage of being ‘one-size fits all’, in that the same set of rules are applied 
irrespective of a patient’s age, ethnicity, concurrent medications, and other factors that may be associated with 
warfarin metabolism. Indeed, there is evidence that more data-driven approaches to warfarin dosing could 
provide incremental gains in TTR over existing algorithms, further reducing the risk of stroke in patients with 
atrial  fibrillation11,12.

Warfarin dosing for atrial fibrillation can be framed as a dynamic treatment regime  problem13. Dynamic 
treatment regimes are sets of rules or policies that describe how treatments are to be assigned in response to a 
patient’s state, including dynamically changing factors like  INR14,15. Initial approaches to optimizing dynamic 
treatment regimes employed statistical  methods16, but there is growing interest in reinforcement learning (RL) 
for this  application17,18. RL is a branch of machine learning in which an agent learns an optimal policy through 
interactions with an environment, aiming to maximize a reward function. RL has been applied with varying levels 
of success to dynamic treatment regime problems in  sepsis19,  cancer20,  epilepsy21,  diabetes22,  schizophrenia23, 
 anemia24, and  HIV25.

We used a novel semi-Markov decision  process26 formulation of the Batch-Constrained deep Q-learning27 
algorithm to develop an RL model that can dynamically recommend optimal warfarin dosing for patients with 
atrial fibrillation (Fig. 1). We developed and evaluated this model on four large non-overlapping data sets made 
up of patients in the control groups of the pivotal randomized clinical trials of dabigatran (RE-LY)28, edoxaban 
(ENGAGE AF-TIMI 48)29, apixaban (ARISTOTLE)30 and rivaroxaban (ROCKET AF)31, made available to the 
research team as part of the COMBINE AF  collaborative32. Each of these clinical trials compared a different 
anticoagulant to warfarin, providing us with a total sample (following data cleaning) of 28,232 patients on war-
farin with INR monitoring, followed for a median of 22.2 months, for a total of 892,333 dose–response pairs for 
training and evaluation. The use of randomized control trial data for reinforcement learning model development 
is novel and provides several notable advantages over most routinely collected data sets, including dedicated data 
collection and on-site monitoring to ensure high data quality, a clinically representative set of baseline patient 
features for accurate modeling of the state space, a more statistically robust approach to evaluation, and more 
generalizability thanks to a study population that includes patients living across six continents.

The primary objective of this study was to assess whether a reinforcement learning model for warfarin dos-
ing could achieve equivalent time in therapeutic range and event reduction compared to a previously published 
clinical  algorithm9 (referred to throughout as the “benchmark algorithm”). The secondary objective was to 
assess whether the inclusion of variables associated with warfarin metabolism (such as age, ethnicity, concur-
rent medications, etc.) improve performance over the traditional approach of focusing more strictly on INR.

Methods (online supplement)
Data sources
We developed and validated our model using data from randomized control trials that compared novel oral 
anticoagulants vs. warfarin. These trials were:

• ARISTOTLE: patients randomized to apixaban (n = 9120) or warfarin (n = 9081) with a median follow up of 
21.7 (16.1–28.0)  months30.

• ENGAGE AF-TIMI 48: patients randomized to higher dose edoxaban regimen (n = 7035), lower dose regi-
men edoxaban (n = 7034), or warfarin (n = 7036) with a median follow up of 33.6 (29.4–38.4)  months29.

• ROCKET AF: patients randomized to rivaroxaban (n = 7131) or warfarin (N = 7133) with a median follow 
up for 22.00 (15.8–27.8)  months31.

• RE-LY: patient randomized to higher dose dabigatran (n = 6076), lower dose dabigatran (n = 6015), or warfarin 
(n = 6022) with a median follow up for 24.0  months28.
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Patient cohort
Patients in all four trials had atrial fibrillation confirmed by electrocardiogram. All trials excluded patients who 
had rheumatic mitral stenosis, mechanical prosthetic valves, severe renal impairment, or recent major bleeding, 
or whose atrial fibrillation was due to a reversible condition. All four trials used an INR target of 2–3 for their 
warfarin arm. Patients on warfarin were followed for a median of 22.2 months. A difference between patients 
across the trials was the number of risk factors for stroke required for  inclusion32.

Exclusion criteria
We began with 29,272 patients in our combined data set. We excluded all patients who had no recorded 
dose(warfarin)-response(INR) pairs, as well as all patients with a weekly dose of > 140 mg (well beyond the rea-
sonable range and indicative of data entry errors). For the external validation set, we also excluded any patients 
who were missing covariates required for performance estimation (described below), leaving a total of 28,232 
patients.

Figure 1.  Warfarin dosing optimization as a sequential reinforcement learning task using semi-Markov 
Decision Processes. The figure illustrates the first several time intervals of a patient trajectory. The highlighted 
values in the top part of the figure illustrate a single patient trajectory. Each observed time step (T = 0, T = 1, etc.) 
has a corresponding International Normalized Ratio (INR) test result. The action space is illustrated in purple 
and is defined as percent changes in warfarin dose—the arrows illustrate that the effect of the change in dose 
is observed at the following time step. The dynamic elements of the state space are INR test results. We employ 
a semi-Markov Decision Process framework to handle the inconsistent time intervals between observations 
inherent to warfarin management, illustrated in the bottom part of the figure. Linear interpolation (Rosendaal’s 
method) is used to generate INR values for intermediate unobserved time steps. We then calculate intermediate 
rewards based on interpolated INR values (rewarded when INR is in the range of 2–3) and apply a cumulative 
discounted rewards to each observed time step. The cumulative discounted reward for an observed time step 
is applied to the action taken at the previous observed time step (e.g., the dosing action observed at T = 1 is 
rewarded based on the INR value observed at T = 2). We do not model warfarin initiation, so there is no reward 
function at T = 0. Observed time step are displayed in darker shades; unobserved interpolated time steps are 
displayed in lighter shades.
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Data preprocessing
For all trials, we extracted patients in the warfarin arms. To ensure each warfarin dose recorded would have a 
corresponding INR measurement, we removed all warfarin doses recorded before a patient’s first INR measure-
ment and after their last INR measurement.

We extracted a subset of data from the trials based on clinical expert input about the features most relevant 
to warfarin dosing decisions. We extracted the following features for inclusion in our study: age, sex, weight, 
region, smoking status, concomitant medications (aspirin/amiodarone/thienopyridines), diabetes status, history 
of congestive heart failure, history of hypertension, history of myocardial infarction, current absolute warfarin 
dose, current INR, previous 4 INRs, whether the patient experienced a stroke during the study period, whether 
the patient experienced a major bleed during the study period, and whether the patient was hospitalized during 
the study period.

We discretized some continuous variables, which is known to aid in the learning process. These include age, 
weight, and warfarin dose, with the resulting categorical variable one-hot encoded with the first level dropped 
(i.e. we created binary dummy variables for each level of the category).

There were differences across the trials in how warfarin doses were recorded, so we normalized to weekly 
doses since this is reflective of how warfarin is prescribed in clinical practice.

The action space was constructed by categorizing warfarin dose adjustments based on clinical expert 
input and reference to existing clinical  algorithms8,9. Possible actions were: decrease > 20%, decrease 10–20%, 
decrease ≥ 10%, no change, increase ≤ 10%, increase 10–20%, and increase > 20%.

Patient trajectories were organized as longitudinal sequences of dose (warfarin)-response (INR) pairs. We 
elected to split patient trajectories in a few scenarios. The first is when a significant adverse event was recorded 
(ischemic stroke, hemorrhagic stroke, major bleeding, hospitalization), since our RL model is meant to inform 
the management of atrial fibrillation in the community, not acute stroke or hemorrhage. We also split trajectories 
in cases where more than 90 days passed between clinical visits, since in these cases patients may be receiving 
care outside of the clinical trial (due to international travel, for example) and thus we deemed imputation unreli-
able in this context. Thanks to the rigor of data collection for randomized control trials, these data sets required 
minimal data cleaning, however some missing or impossible values for warfarin dose and INR were identified. 
In these cases, we elected to split patient trajectories rather than to impute values for the missing data, because 
imputing values for either feature could result in cases where our model received incorrect rewards, introducing 
noise into our learned policy. Given the length of patient trajectories and low level of missingness in this data 
set, we determined that splitting trajectories in these cases would not negatively impact the learning process. 
Impossible values (such as INR = 0) were treated as missing. After implementing these trajectory splits, we were 
left with 42,384 patient trajectories for development and evaluation.

Model development
Our RL model was developed with the Batch Constrained Q-learning  algorithm27 using a formulation designed 
for discrete action  spaces33. The Batch Constrained Q-learning algorithm employs double deep Q-learning34,35, 
accompanied by a generative network to constrain the action space to actions previously observed. We selected 
this algorithm for its robustness in an “offline” setting where there are suboptimal clinical decisions in the 
observed data set and where complex pharmacodynamics of warfarin introduce a degree of uncertainty in pre-
dicting patient response to dose changes.

Reinforcement learning models, including the Batch Constrained Q-learning algorithm, typically structure 
the interaction between an agent and its environment as a Markov decision process, which assumes that state 
transitions occur at regularly spaced timesteps. However, in clinical practice warfarin dosing decisions are made 
at irregular timesteps. To account for this, we model our decision problem as a semi-Markov decision  process26,36.

In regular clinical practice, warfarin dose decisions are made during a clinic or virtual visit, and that dose 
is maintained until the next visit, when a new INR result is available. Using the semi-Markov decision process 
framework, we model these clinical decisions as “options”, which are sequences of “primitive actions” which we 
model as daily dose adjustments. For example, if a clinician prescribes a dose adjustment of "Increase by > 20%" 
on day 5, and the next visit does not occur until day 10, we model this as an option consisting of the primitive 
action sequence “Increase > 20%” on day 5, and “no change” on days 6–9.

In this framework, the reward for each option is derived from rewards for each primitive action. We use 
Rosendaal’s linear interpolation  method37 to generate INR values to reward each primitive action in an option 
(+ 1 for INR in range, 0 for INR out of range), which are used to calculate a cumulative discounted reward for 
each option (Fig. 1).

Using this framework, the goal of the Batch Constrained Q-learning algorithm is to the learn the policy

which maps the current patient state s to the best available option o according to its expected return Q(s, o) . The 
argmax function returns the option o from the set O(s) with the maximum value of Q(s, o) , where O(s) is the set 
of options provided by the generative network for state s . The policy π(s) is learned by optimizing the estimate 
of the expected return via stochastic gradient descent. The learning process was governed by the following 
hyperparameters: batch size, learning rate, threshold, number of hidden layers, dimensionality of hidden layers, 
and the moving average parameter for the value estimator. Hyperparameters were optimized using grid search.

Using this RL framework, we developed a model using current and previous INR values and warfarin doses 
as model inputs (ie. patient state). For the secondary objective we developed a second model that made use of 
all of the clinical features described in the previous section.

π(s) = argmaxo∈O(s)Q(s, o)



5

Vol.:(0123456789)

Scientific Reports |         (2024) 14:4516  | https://doi.org/10.1038/s41598-024-55110-9

www.nature.com/scientificreports/

Implementation of the benchmark algorithm and non-optimal policies
Comparing a RL policy against observed clinician behavior can lead to overly optimistic assessments of model 
 performance33,34. To address this, we implemented three additional policies to evaluate our RL policy against.

The first of these was a clinical algorithm that provides clear warfarin dosing rules based on INR thresholds: 
if INR is less than 1.5 then increase warfarin dose by 15%, if INR 1.5–1.99 then increase by 10%; if INR 2.0–3.0 
then no change, if INR 3.0–4.0 then reduce dose by 10%, if INR 4.0–4.99 then hold the dose for one day and then 
decrease by 10%, and if the INR was greater than 5.00 the dose was to be held until the INR was therapeutic and 
then decrease by 15%. Use of this type of algorithm has been shown to provide significant improvement in TTR 
over un-assisted clinician decision  making9,35, and thus we refer to it throughout as the “benchmark algorithm.”

We also implemented two intentionally non-optimal policies against which to compare both the benchmark 
algorithm and our RL policy. One of these is a “no change” policy, which always maintains the current warfarin 
dose, regardless of changes in INR. The second is a “random” policy, which randomly selects a dose change at 
each observed time step, with the available options weighted based on their observed frequency in our data set.

Performance evaluation
To evaluate the relationship between algorithm-consistent dosing and TTR, we fit weighted linear regression 
models at the center level. Center-level algorithm-consistency was calculated by averaging the difference between 
the observed warfarin dose and the dose recommended under each policy. Center-level TTR was calculated by 
averaging the values obtained from patients in each center. Models were weighted by the number of patients per 
center, and were developed with mean center algorithm-consistency as a predictor and mean center TTR as the 
outcome. A coefficient of determination  (R2) was reported for each model.

To estimate the relationship between center-level algorithm-consistency and TTR while controlling for 
patient, center and country-level factors, we developed multilevel, multivariable linear regression models, with 
patients nested in centers, and centers nested in countries. Patient-level characteristics included age (years); 
weight (kg); sex (male vs. female); ethnicity (white vs. other); current smoking status (yes vs. no); history of heart 
failure (yes vs. no), hypertension (yes vs. no), diabetes mellitus (yes vs. no), stroke (yes vs. no); previous warfarin 
use (yes vs. no); current amiodarone use (yes vs. no); and current insulin use (yes vs. no). Center-level charac-
teristics included specialty (anticoagulation clinic vs. other), setting (secondary/tertiary hospital vs. primary), 
and center-level mean algorithm-consistent warfarin dosing (%). Country-level characteristics included the 2006 
country Gross Domestic Product (high income vs. medium/low income), Disability Adjusted Life Expectancy 
(years), and Health System Performance Index. We also included random intercept for center and country.

Finally, to estimate the association between algorithm-consistent dosing and the composite outcome of stroke, 
systemic embolism, or major hemorrhage we developed multilevel, multivariable Cox proportionate hazard 
models. The Cox models were adjusted for the same patient-, center-, and country-level characteristics as in the 
previous multilevel model, including random intercepts. Additionally, four medication variables were included, 
which were baseline use of aspirin (yes vs. no), β-blockers (yes vs. no), ACE-inhibitors (yes vs. no), or statins (yes 
vs. no). Because the effect of warfarin dosing on clinical outcomes is mediated through INR control, TTR was 
not included as a covariate in the Cox models. Patients who experienced stroke, systemic embolism, or major 
hemorrhage were censored when the first adverse event happened, and algorithm-consistency was calculated 
using warfarin doses before their first adverse event; for patients who did not experience an event, algorithm 
consistency was calculated using all warfarin doses throughout the study. Algorithm-consistency was calculated 
for each center and was analyzed as a center-level variable.

To evaluate whether algorithm consistent dosing at the center-level was a marker of generalized high quality 
care, independent of its influence on warfarin control, we refit the multilevel Cox proportional hazards model 
on patients taking dabigatran to assess whether center-level algorithm consistency could independently predict 
center-level outcomes for dabigatran patients.

Ethics
This paper is a sub-study of COMBINE  AF32, approved by the Duke University Institutional Review Board. Addi-
tionally, each of the four randomized control trials used in this study had institutional review board  approval28–31. 
All participants in these trials provided informed consent, which included consent for secondary use of trial 
data in future research.

Results
A total of 28,232 patients with atrial fibrillation from the warfarin arms of four clinical trials of novel oral 
anticoagulants vs. warfarin were included in our study. The development set was made up 22,502 patients from 
52 countries enrolled in the ARISTOTLE, ENGAGE AF-TIMI 48 and ROCKET AF trials. External validation 
set was made up of 5,730 patients from 44 countries enrolled in the RE-LY trial. All countries included in the 
external validation set were represented in the development set. The studies were well balanced with respect to 
most baseline patient characteristics (Table 1). Studies varied slightly in the distribution of continent (RE-LY 
had more patients from North America and Western Europe, for example) and ethnicity (RELY and ENGAGE 
have relatively few patients who identified as Hispanic). The most significant difference between the studies 
was the relatively higher rates of comorbidities in ENGAGE and ROCKET (mean CHADS2 score of 2.8 and 3.5 
respectively), vs. ARISTOTLE and RE-LY  (CHADS2 scores of 2.1), which was due to differences in the num-
ber of risk factors for stroke required for inclusion in each trial (1 for RE-LY and ARISTOTLE, 2 or more for 
ENGAGE and ROCKET).

Policies based on observed clinician behavior, the benchmark algorithm and our RL model are visualized in 
Fig. 2. Observed clinician behavior suggests some clinicians tend to maintain a dose even when INR well out 
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Development
(Train/Tune) External validation

ARISTOTLE
(n = 8664)

ENGAGE AF-TIMI 48
(n = 6898)

ROCKET AF
(n = 6940)

RE-LY
(n = 5730)

Baseline characteristics

 Age 69.0 (9.7) 70.5 (9.4) 71.1 (9.4) 71.6 (8.5)

 Female (%) 34.9 37.4 39.3 36.1

 Region (%)

  East Asia 11 10.3 10.4 12.1

  Eastern Europe 23.6 35.9 39.5 15.5

  Latin America 19 12.6 13.1 5.2

  North America 24.8 22.3 19 36.4

  South Asia 3.3 3.3 1.8 2.9

  Western Europe 18.3 15.5 16.2 27.8

 Race (%)

  Asian 14.6 13.7 12.3 15.5

  Black 1.1 1.2 1.1 1.1

  Other 1.7 4.0 2.8 8.9

  White 82.6 81.1 83.7 74.5

 Hispanic (%) 19.9 0.6 16.5 4.7

 Weight (kg) 84.3 (20.7) 83.8 (20.1) 81.8 (19.0) 82.9 (19.7)

 Systolic BP (mmHg) 131.3 (16.5) 130.0 (15.2) 132.2 (16.2) 131.2 (17.3)

 BMI 29.4 (6.1) 29.5 (5.9) 29.0 (5.7) 28.8 (5.8)

 Diabetes (%) 25.1 35.9 39.5 23.4

 Hypertension (%) 87.8 93.7 90.7 78.7

 CAD (%) 32.6 33.5 23.4 27.8

 MI (%) 14 11.8 18 16.1

 CABG (%) 6.3 6.9 7.2 N/A

 PCI (%) 9.3 6.8 8.8 N/A

 HF (%) 35.4 57.5 62.2 31.8

 Stroke or TIA (%) 16.9 28.6 51.8 20.0

 Paroxysmal AF (%) 15.4 25.3 17.1 33.6

 Ever smoked (%) 47.5 40.6 32.8 50.7

  CHADS2 score 2.1 (1.1) 2.8 (1.0) 3.5 (0.9) 2.1 (1.1)

  CHADS2 = 1 (%) 33.2 0.1 0 28.5

  CHADS2 = 2 (%) 36.4 46.9 13.2 36.9

  CHADS2 >  = 3 (%) 29.8 53 86.8 32

 Prior VKA use (%) 67 73.7 62.4 68

 Aspirin (%) 30.9 29.5 36.4 40.3

 Thienopyridines (%) 2 2.3 1.8 6

 Beta blockers (%) 63.4 66.2 65.4 62

 Calcium channel blockers (%) 30.3 30.6 27.3 32.3

 Digoxin (%) 33 29 38.6 28.9

 Proton pump inhibitors (%) 13.6 8 12.4 13.7

 Creatinine 1.1 (0.3) 1.1 (0.3) 1.1 (0.3) 1.5 (6.6)

Adverse events (% per patient-year)

 Death 2.35 1.57 3.21 1.29

 Ischemic stroke 0.82 0.95 1.70 0.85

 Major bleeding 3.42 3.54 3.64 3.09

 Minor bleeding 9.16 6.85 21.46 30.65

 Hemorrhagic stroke 0.49 0.48 0.54 0.37

 Hospitalization 20.24 32.61 9.92 37.21

Study characteristics

 Number of trajectories 11,133 11,425 8,254 11,539

 Trajectory length in days 459.8 (309.6) 502.8 (400.6) 487.6 (303.3) 293.7 (258.4)

Continued
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of range (clinicians maintained the dose 32% of the time when INR was < 1.5 and 25% of the time when INR 
was > 3.5), while others will make relatively large dose adjustments in the same circumstances (36% of the time 
clinicians increased the dose by > 20% when INR was < 1.5 and 28% of the time decreased the dose by > 20% when 
the INR was > 3.5). Observed clinical behavior appears to include examples of clinically unintuitive behavior, 
such as cases where clinicians decrease the dose dramatically when INR was < 1.5 and increased it substantially 
when INR was > 3.5. Upon reviewing these cases, we found them to be clinical scenarios in which a clinician had 
temporarily suspended and then resumed a patient’s warfarin dose in response to an extreme INR or a clinical 
event such as an emergency surgery. The benchmark algorithm provides dosing recommendations based purely 

Table 1.  Baseline patient characteristics, adverse event rates and study characteristics by trial. Continuous 
variables listed as mean (standard deviation). Categorical variables listed as %. Likely erroneous values/
outliers (described in “methods” section) were not included in calculations for weight, body mass index, or 
creatinine clearance. BMI = body mass index, CABG = coronary artery bypass graft, CAD = coronary artery 
disease, MI = myocardial infarction, NSAID = non-steroidal anti-inflammatory, PCI = percutaneous coronary 
intervention, PPI = proton pump inhibitor, TIA = transient ischemic attack, VKA = vitamin K antagonist.

Development
(Train/Tune) External validation

ARISTOTLE
(n = 8664)

ENGAGE AF-TIMI 48
(n = 6898)

ROCKET AF
(n = 6940)

RE-LY
(n = 5730)

 Number of INRs per trajectory 29.5 (13.6) 38.5 (17.2) 26.8 (13.3) 28.9 (14.7)

 TTR (%) 55.9 58.1 54.8 61.7

Figure 2.  Comparison of clinician, reinforcement learning (RL), and benchmark policies. The figure illustrates 
clinician, benchmark algorithm and RL policies using heatmaps, where the X axis illustrates INR result bins, 
and the Y axis illustrates the distribution of dose recommendations within each INR result bin. On average, the 
RL policy recommends larger dose changes in the context of very high and very low INR values than either the 
clinician or benchmark policies.
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on INR thresholds, and so produces a very clean policy with no apparently unintuitive recommendations. The 
benchmark algorithm was designed to minimize dramatic swings in INR and so does not recommend any dose 
changes greater than 15%, even when INR is well out of range. The RL policy appears to be more aggressive 
than the others, rarely maintaining a dose when the INR is out of range and recommending dosage adjustments 
of > 20% relatively frequently (63% of cases where INR was < 1.5 and 20% of cases where INR was > 3.5). We 
conducted a manual post hoc review of cases where the RL policy appears to offer unintuitive dose adjustments 
when INR out of range and found that these were examples of the same temporary warfarin suspension/resump-
tion scenarios described above.

We evaluated the potential effectiveness of the RL policy to improve TTR using a weighted linear regression 
of the association between mean center algorithm agreement and mean center TTR. This analysis was conducted 
on our external validation set, which included 5730 patients from 903 centers spread across 44 countries. This 
analysis showed a positive association between RL-consistent dosing and TTR at the center-level  (R2 = 0.56). 
We carried out the same analysis for the benchmark algorithm and found a similarly strong association between 
algorithm consistent dosing and TTR  (R2 = 0.53) that is consistent with previous  research9 (Fig. 3).

We further explored the relationship between algorithm consistent dosing and TTR using a multilevel, mul-
tivariable linear regression, with patients nested in centers, and centers nested in countries (Table 2). After 
adjusting for patient, center, and country characteristics, center-level RL-consistent dosing was the strongest 
predictor of TTR, with each 10% increase in algorithm-consistent dosing at the center level predicting a 6.78% 
improvement in TTR (95% CI 6.29, 7.28, p < 0.001). We repeated this analysis for the benchmark algorithm and 
found comparable results, with each 10% increase in algorithm-consistent dosing predicting a 6.10% increase 
in TTR (95% CI 5.67, 6.54, p < 0.001).

To examine the degree to which the improvement in TTR associated with RL-consistent dosing might trans-
late into reductions in stroke and other events, we developed a multilevel, multivariable Cox proportional hazard 
model to examine the relationship between center-level algorithm-consistency and a composite outcome of 
stroke, systemic embolism, or major hemorrhage (Table 3). We found that each 10% increase in RL-consistent 
dosing was associated with a 11% decrease in the composite outcome (HR 0.89; 95% CI 0.81, 0.98, p = 0.015). 

Figure 3.  Weighted linear regression of the association between mean center algorithm-consistency and mean 
center time in therapeutic range (TTR). Mean center algorithm-consistent dosing and TTR were calculated by 
averaging the values obtained from patients in each center. The regression model was weighted by the number 
of patients per center. Each data point represents a single center, and the size of the data point represents the 
number of patients in that center.
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Table 2.  Multilevel multivariable linear regression model for patient-level time in therapeutic range.

Characteristics Adjusted change in mean TTR 95% CI p value

Patient-level

 Age (per year) − 0.02 − 0.08, 0.04 0.594

 Weight (per kg) 0.02 − 0.01, 0.05 0.187

 Male 1.11 0.08, 2.14 0.035

 White 2.32 0.84, 3.85 0.003

 Current smoker − 4.24 − 6.03, − 2.43  < 0.001

 History of heart failure − 2.33 − 3.39, − 1.26  < 0.001

 History of hypertension − 0.02 − 1.18, 1.16 0.979

 History of diabetes mellitus − 1.26 − 2.45, − 0.08 0.038

 Previous stroke 0.01 − 1.43, 1.45 0.993

 Previous warfarin use 2.54 1.57, 3.48  < 0.001

 Current amiodarone use − 1.85 − 3.35, − 0.34 0.016

 Current insulin use − 3.03 − 5.40, − 0.67 0.012

Center-level

 RL-consistent dosing (per 10%) 6.78 6.29, 7.28  < 0.001

  Secondary/tertiary hospital 1.28 − 0.22, 2.75 0.093

  Anticoagulation clinic 0.29 − 1.17, 1.74 0.698

Country-level

 High income 2.58 − 1.03, 6.18 0.175

 Disability Adjusted Life Expectancy 0.14 − 0.36, 0.64 0.605

 Health System Performance Index 0.95 − 22.66, 24.64 0.94

Table 3.  Multi-level multivariable cox proportional hazard model for stroke, systemic embolism, or major 
hemorrhage.

Characteristics Adjusted hazard ratio 95% CI p value

Patient-level

 Age (per year) 1.03 1.02, 1.05  < 0.001

 Weight (per kg) 0.99 0.99, 1.00 0.012

 Male 1.1 0.90, 1.36 0.35

 White 0.71 0.56, 0.89 0.004

 Current smoker 1.31 0.92, 1.87 0.13

 History of heart failure 1.23 1.00, 1.52 0.046

 History of hypertension 1.3 1.01, 1.67 0.04

 History of diabetes mellitus 1.19 0.94, 1.51 0.14

 Previous stroke 1.3 1.00, 1.70 0.053

 Previous warfarin use 1.04 0.85, 1.27 0.71

 Current amiodarone use 0.96 0.69, 1.34 0.82

 Current insulin use 1.64 1.11, 2.42 0.013

 Baseline use of β-blocker 0.94 0.77, 1.14 0.52

 Baseline use of aspirin 1.24 1.01, 1.52 0.036

 Baseline use of ace-inhibitor 0.97 0.80, 1.17 0.73

 Baseline use of statin 1.09 0.90, 1.33 0.36

Center-level

 RL-consistent dosing (per 10%) 0.89 0.81, 0.98 0.015

  Secondary/tertiary hospital 0.82 0.61, 1.09 0.16

  Anticoagulation clinic 0.95 0.72, 1.24 0.68

Country-level

 High income 1.72 1.19, 2.50 0.004

 Disability Adjusted Life Expectancy 1 0.95, 1.06 0.95

 Health System Performance Index 0.11 0.01, 1.37 0.087
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We repeated this analysis for the benchmark algorithm and found that every 10% increase in agreement was 
associated with an 10% decrease in the composite outcome (HR 0.90; 95% CI 0.83, 0.98, p = 0.018).

The association between algorithmically consistent dosing and the composite clinical outcome suggests a 
potential causal relationship, but a lower event rate at centers with better anticoagulation management could 
alternately be the result of generally higher quality care at those centers. However, if the lower composite clinical 
event rate were the result of higher quality of care at the center-level, then we would expect to see a similarly lower 
rate of events among dabigatran patients at the same centers. To assess this, we refit the Cox model for dabigatran 
patients in the evaluation set (N = 9467), but found no association between center-level algorithm consistent 
dosing and the composite clinical event rate for patients on dabigatran (HR 0.96; 95% CI 0.90, 1.02, p = 0.16).

To assess whether the inclusion of variables associated with warfarin metabolism provided any improvement 
in performance over a more strict focus on INR and previous dose, we used the same multilevel, multivariable 
regression models to evaluate a second RL model that included clinical features such as age, ethnicity, and 
concurrent medications in addition to INR and previous warfarin doses. There was very little difference in the 
performance of these two models, with each 10% increase in algorithm-consistent dosing predicting a 6.78% 
improvement in TTR in the case of the INR/dose only model and 6.49% in the case of the model that included 
the additional clinical features. The difference was slightly larger in the case of events, with each 10% increase 
in algorithm-consistent dosing associated with a 10% decrease in the composite outcome for the INR/dose only 
model and 7% for the model that included the additional clinical features.

Discussion
In this study of patients with atrial fibrillation receiving vitamin K antagonist therapy, we demonstrate that a RL 
model could achieve TTR improvement and event reduction equivalent to an established rules-based warfarin 
dosing algorithm designed by clinical experts. This data driven model was developed using 3 international 
randomized control trials, and externally validated on a fourth trial of patients living in 44 countries across 6 
continents. In addition to potentially improving warfarin dosing for atrial fibrillation (still being used com-
monly around the world despite the rise of novel oral anticoagulants) the methodology described in this paper 
may have important applications in other clinical domains, including dosing of warfarin for other indications 
(such as patients with mechanical valves) as well as optimization of other medications where dosing is based on 
sequential dose–response relationships, such as heparin, insulin, oral antihyperglycemic drugs, and phenytoin.

This study helps address some of the existing knowledge gaps with respect to the use of machine learning 
to improve warfarin dosing. A number of machine learning-based systems have been developed, but many 
of these have been focused on patients within a single jurisdiction or ethnic group, which may limit their 
 generalizability41–46. A number of machine learning studies have leveraged International the Warfarin Pharma-
cogenetics Consortium dataset of 5700 patients from 21 countries, however many of these have incorporated 
genetic markers associated with warfarin  metabolism46–50, which may offer valuable performance improvements, 
but cannot be easily integrated into routine clinical practice (while single nucleotide polymorphisms CYP2C9 
and VKORC1 were available for a subset of our patients, we elected not to use them in order to enhance the 
generalizability of our model for real world clinical settings, especially low and middle income countries where 
warfarin is still routinely used). Ours is also the first study we are aware of to evaluate the use of machine learning 
for the long-term dynamic management of warfarin in the community, versus warfarin initiation or short-term 
management during a hospital  stay42–47. Our study is the largest its kind by a considerable margin, which is 
relevant given the data-hungry nature of machine learning methods.

Our study also reveals that clinical features related to warfarin metabolism do not appear to provide sufficient 
information to justify their inclusion in a model. While one of the strengths of a machine learning approach is to 
be able to incorporate high dimensional data, in this case the established clinical approach of including only INR 
and previous warfarin doses to drive decision making produced the best performing model. While are unable to 
say definitively what was responsible for this phenomenon, given the nature of neural networks it is likely that 
it is due to a form of overfitting. In particular, the personalized model may have been learning spurious correla-
tions between demographic features and INR that do not generalize between our development data set and the 
external validation data set (Table S1).

A common limitation of most reinforcement learning research in the health domain has been the lack of 
rigorous statistical evaluation. Unlike supervised learning approaches that can be evaluated using standard 
techniques for classification and regression, evaluation of RL models on observational data have typically been 
limited to importance sampling or ad hoc methods (such as U-curves), both of which have limitations that can 
produce performance estimates that are overly-optimistic19,38,39. We were able to address this limitation by taking 
advantage of the multicenter structure of our data to apply statistically robust techniques developed in a previous 
study of warfarin dosing  algorithms9,40. This approach allowed us to provide a rigorous estimate the relationship 
between algorithmically consistent dosing, TTR, and patient outcomes.

Our study has a number of important advantages over some other reinforcement learning applications in 
health care, owing to the structure of the warfarin dosing problem. In many clinical domains where RL has been 
applied, such as sepsis, data sets have not always contained all the data relevant to clinical decision making, which 
can lead to estimates confounded by spurious  correlation38. In addition, RL studies in domains such as sepsis 
can suffer from a sparsity of rewards, where events of interest can be so infrequent that it becomes challenging to 
assess the value of an individual treatment  decision39. In our case, however, the data set contained all the relevant 
data points used to manage warfarin in routine clinical practice. Moreover, the causal connection between INR 
and clinically relevant outcomes is well-established, which allowed us to use INR results to reward (or not) every 
decision the model observed during training.
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Finally, it is important to note that while our study establishes that RL can be used to learn an optimal policy 
for warfarin dosing, it provides a relatively small improvement over that of a rules-based clinical algorithm. 
While our study suggests promise for the future of artificial intelligence to learn directly from clinical data to 
enhance care, it is important to recognize just how effective a well-researched, interpretable rule-based algorithm 
developed by clinical experts can be in supporting better clinical practice.

Limitations
Our study is retrospective, so prospective evaluation through a randomized control trial should be undertaken 
prior to adoption of our model into routine clinical practice. Because our study is based on data from the set-
ting of clinical trials with strict inclusion/exclusion criteria and selected centers, our results may underestimate 
real-world variation in TTR between  centers51,52 as well as the association between warfarin dosing and clinical 
outcomes. While our evaluation methods account for some social factors such as country-level GDP, we were 
not able to consider factors such as income or education level, which can include warfarin dose variability, TTR 
and outcomes. Our methodology employs deep neural networks, whose inner workings are black boxes – while 
explainable machine learning techniques may go some way to increasing the clinical acceptability of black box 
models, these techniques have some limitations of their  own53.

Summary
In summary, we trained a deep reinforcement learning model on longitudinal data from 22,502 patients on warfa-
rin, and externally validated this model on a further 5730 warfarin patients from 44 countries across 6 continents. 
Our findings suggest that a machine learning algorithm is capable of optimizing time in therapeutic range for 
patients taking warfarin. A digital clinical decision support system to promote algorithm-consistent warfarin 
dosing could optimize time in therapeutic range and improve clinical outcomes in atrial fibrillation globally.

Data availability
Access to the RCT data used for this study is governed by the COMBINE AF steering committee. Investigators 
interested in working with this data set should contact a member of the steering committee to discuss potential 
 collaborations32. The complete source code for this study is publicly available on  GitHub54. We have deployed 
the final model for demonstration and validation purposes as a publicly available web  tool55.
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