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Any kidney dimension and volume variation can be a remarkable indicator of kidney disorders. Precise 
kidney segmentation in standard planes plays an undeniable role in predicting kidney size and volume. 
On the other hand, ultrasound is the modality of choice in diagnostic procedures. This paper proposes 
a convolutional neural network with nested layers, namely Fast‑Unet++, promoting the Fast and 
accurate Unet model. First, the model was trained and evaluated for segmenting sagittal and axial 
images of the kidney. Then, the predicted masks were used to estimate the kidney image biomarkers, 
including its volume and dimensions (length, width, thickness, and parenchymal thickness). Finally, 
the proposed model was tested on a publicly available dataset with various shapes and compared 
with the related networks. Moreover, the network was evaluated using a set of patients who had 
undergone ultrasound and computed tomography. The dice metric, Jaccard coefficient, and mean 
absolute distance were used to evaluate the segmentation step. 0.97, 0.94, and 3.23 mm for the 
sagittal frame, and 0.95, 0.9, and 3.87 mm for the axial frame were achieved. The kidney dimensions 
and volume were evaluated using accuracy, the area under the curve, sensitivity, specificity, precision, 
and F1.

Renal ultrasound plays a critical role in kidney dimension prediction and evaluation of its function. The imag-
ing modality assesses renal anatomy and image guidance for renal  interventions1. Ultrasound is the modality of 
choice due to its lower cost, ease of accessibility, lack of radiation, and  availability2. Several studies indicate the 
robustness and reliability of volume measurements using ultrasound validated by magnetic resonance imaging 
(MRI)3,4. Specifically, any variations in the anatomical characteristics of the kidney (such as kidney and parenchy-
mal thickness) are associated with clinical disorders. For instance, a small kidney length may indicate subclinical 
atherosclerotic or irreversible chronic renal  disease4. In addition, a large kidney length may also be related to 
higher cardiovascular  risks5. Moreover, a diminished parenchymal thickness may increase the risk of end-stage 
renal disease (ESRD) in boys with posterior urethral  valves6. However, the quality of the ultrasound imaging 
and its interpretation depend completely on the radiologist’s skills and expertise. On the other hand, investors 
favor the imaging system since it is a noninvasive diagnostic and screening approach. Many kidney disorders, 
such as Autosomal dominant polycystic kidney disease (ADPKD), need several follow-ups. Moreover, the kid-
ney length seems to be related to the early assessment of the efficacy of the  therapies7,8. Despite the significance 
of determining the kidney’s anatomical characteristics in ultrasound images, the procedure is challenging and 
suffers from inter and intraobserver  variability4. Thus, several automatic and semi-automatic approaches have 
been developed to overcome this issue, including the level-set  approach9, statistical shape  model10,11, graph  cut12, 
texture  analysis13, and support vector machine (SVM)14. Marsousi et al.9 used offline training datasets to generate 
a 3-D kidney shape model using a proposed shape model representation called the complex-valued implicit shape 
model. Zheng et al.12 drew a graph of image pixels near the boundaries of the kidney instead of creating one of 
the entire image and combined image pixels with texture feature maps derived from Gabor filters. Xie et al.13 
utilized ultrasound images’ shape priors combined with their texture. The image texture was obtained by apply-
ing a bank of Gabor filters, and the shape priors were gathered using Leventon and Faugeras’s  method15. Ardon 
et al.14 proposed an SVM method to conquer the high variability in kidney appearance in 3D ultrasound images.
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In recent years, several aspects of medical image analysis have been influenced by deep  learning16–22, and 
image segmentation has been affected the most. Various deep approaches have been proposed to distinguish 
the object of interest from its background in medical images. Some include U-net23, V-net24,  SegNet25, Fully 
Convolutional Networks (FCN)26, and several promotions of U-net19,27–30. These promotions are a testament to 
the performance and popularity of U-net-based medical image segmentation approaches. Several deep learning-
based methods have recently been proposed for kidney image segmentation using boundary distance regres-
sion and pixel-wise  segmentation31,32, 3D U-net33, modified  FCN34, and regular convolutional neural networks 
(CNN)35. Yin et al.32 utilized a pre-trained CNN to extract high-level image features from kidney images. They 
created the boundary distance map of the image using a boundary distance regression network. Finally, the map 
was fed to a pixel-wise classification network to predict kidney masks. Ravishankar et al. tried to incorporate 
prior shape information into the FCN through an augmented dataset. They achieved an 83.95% of dice similar-
ity coefficient (DSC) as their best  result34. In the Supplementary information file, a table is provided comparing 
kidney segmentation methods using ultrasound images from the literature.

There have been several attempts for kidney segmentation in computed tomography (CT) images. Sharma 
et al.35 concentrated on kidney segmentation in Autosomal Dominant Polycystic Kidney Disease (ADPKD) 
patients, characterized by kidney enlargement. They utilized a specific architecture of CNN to segment kidneys 
in CT images. Türk et al. developed a hybrid segmentation model based on V-net24 for kidney segmentation on 
210 CT  images36. They furthered their work by utilizing an improved U-Net3D model for kidney  segmentation37 
and a two-stage bottleneck block architecture for renal tumor  segmentation38 in the same dataset.

The main bottleneck of the proposed methods is the relatively high computational cost of predicting the 
object mask. This is due to the excessive number of parameters in these models. We have proposed a modifica-
tion of Fast-Unet to overcome the problem. Fast-Unet is a high-performance novel CNN architecture that aims 
to segment fetal ultrasound  images39. The key point in the network is using 2 × 2 stride in the convolution layers 
that downsamples the spatial resolution of feature maps, thus making the network needless to the pooling layer. 
Inspired by U-net++, we have introduced Fast-Unet++ architecture, which utilizes diagonal layers to produce 
the final feature map, thus creating a more precise prediction.

In summary, the main contributions of this manuscript are:

1- We have proposed a novel CNN architecture that accurately segments the kidney in ultrasound images at 
sagittal and axial views.

2- This is the first contribution introducing a method for automatically predicting all kidney parameters, includ-
ing its length, width, thickness, volume, and parenchymal thickness.

The latter contribution demonstrates the main clinical value of the proposed method, as the results show. 
To our knowledge, this is the first attempt to extract five kidney parameters automatically from ultrasound 
 images31,32,40. Supriyanto et al.41 proposed a semi-automatic approach based on the level set and tried to measure 
kidney dimensions (including the length, width, thickness, and volume) in only six samples. Kim et al.42 devel-
oped an automated method for kidney volume measurement in children using ultrasound. However, they only 
validated the predicted values with the CT dataset.

The proposed network was evaluated for the segmentation and the predicted kidney image biomarkers. In 
addition, a publicly-available dataset was used to compare the segmentation performance with other related 
 networks43. Heretofore, there has been one published  article44 on segmenting the presented data using  nnUnet45 
and a contrastive learning method proposed by Chaitanya et al.46. Therefore, we compared our approach with 
Fast-Unet, nnUnet, and Chaitanya et al.’s method. Fast-Unet architecture, the promotion implemented to propose 
Fast-Unet++, the results achieved, and a discussion of the results presented are discussed in the sections below.

Materials and methods
Prepared dataset
We trained and validated the proposed architecture for collating kidney ultrasound images in the sagittal and 
axial views. To ensure sufficient image variability in the training phase, the dataset was collected from several 
imaging centers with several ultrasound devices from May 2020 to January 2023. The imaging centers include 
(1) Shahid Hasheminejad, Tehran, Iran; (2) Javadolaemmeh Hospital, Jajarm, Iran; (3) and a private clinic in 
Bardaskan, Iran. The image acquisition was performed using Luna ultrasound device (SIMUT, Karaj, Iran), 
Affinity 50 device (Philips, Amsterdam, Netherlands), Voluson 730 Expert ultrasound scanner (General Electric, 
Austria), and Logiq S7 ultrasound device (General Electric, Austria). In addition, two observers delineated the 
kidney contours using ImageJ (National Institutes of Health, US). The total dataset consisted of 744 2D ultra-
sound images in the sagittal and axial views (372 left and 372 right in 372 subjects). The subjects were, on average, 
45.2 years old. The male-to-female ratio was 63:37. The dataset was split into 80% for train and 20% for test sets.

The image spacing parameter differs in various datasets, ranging from 0.23 to 0.36 mm/pixel. In addition, the 
images were captured at different resolutions and resized to 320 × 480 pixels.

Subjects with decreased renal function, abnormal urinalysis findings, renal parenchymal abnormalities, and 
urinalysis anomalies were excluded. Among the 744 subjects, 13 underwent both kidney ultrasound and CT. The 
main reason for using CT images was to compare the results of biomarkers’ prediction with the ones achieved 
from an imaging modality with a higher level of anatomy representation.

Fast‑Unet++
Our previous paper proposed Fast-Unet39, which used convolution layers with a 5 × 5 kernel and 2 × 2 stride. 
Leaky Rectified Linear Units (Leaky ReLU) with 0.2 negative slope coefficient are set as the activation function in 
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the encoder path and the ReLU activation function in the decoder path. The decoder path also used the dropout 
layer with a probability of 50% and the batch normalization layer.

As described in the paper on Fast-Unet39, the architecture incorporates several modifications that enhance its 
computational efficiency compared to the classical U-Net architecture. These modifications include decreasing 
the spatial dimension of inputs by convolutional strides rather than max-pooling layers, employing transposed 
convolutions with stride 2 × 2 for up-sampling, eliminating two additional 2D convolutional layers in the out-
put, and utilizing batch-normalization layers in both encoder and decoder modules. These optimizations (also 
present in the Fast-Unet++ architecture) collectively reduce the model’s computational complexity significantly 
compared to classical UNet.

Inspired by UNet+47 and MFP-Unet27 architectures, we have introduced a nested convolution network in this 
paper, namely Fast-Unet++. The proposed network has two main advantages over the Fast-Unet architecture, 
using nested blocks and utilizing all of the feature maps in the top-most level of abstraction for producing the 
output layer. The latter advantage, known as deep supervision, is presented in our previously published paper, 
MFP-Unet27. Figure 1 depicts the proposed architecture.

As presented in Fig. 1, in the Fast-Unet++ architecture, the skip connection is re-designed. Instead of a direct 
link between corresponding encoder-decoder blocks, one or more convolution layers are involved in the path. 
The number of convolution layers and feature maps depends on the level of encoding decoding. These nested 
convolution blocks are considered as two groups based on their input. For example, group one layers have two 
inputs consisting of convolution blocks of the same and the next encoding level. On the other hand, group two 
layers have three inputs comprising (1) a nested layer at the upper level of encoding, (2) a previous nested layer 
at the same level, and (3) convolution blocks of the same level of encoding. Similar to the last layer of the decoder 

Figure 1.  Fast-Unet++ architecture. The nested blocks and deep supervision are the main promotions of Fast-
Unet++.
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in the Fast-Unet architecture, the nested layers are composed of up-convolution, ReLU activation function, and 
batch normalization.

In addition to the transformative nested skip connections and deep supervision, the Fast-Unet++ archi-
tecture exhibits several novel features that distinguish it from previous models and contribute to its efficacy in 
kidney segmentation. First, with feature fusion (three types of inputs listed above in group two), the model can 
dynamically adjust the importance of feature maps based on local image cues, ensuring that every segmentation 
decision uses the most relevant data. Moreover, incorporating additional convolution layers in the decoder path 
enhances feature refinement, leading to smoother and more accurate segmentation boundaries. Moreover, our 
model implements a progressive refinement strategy in the decoder path, where each nested convolution block 
refines segmentation details iteratively, culminating in a more granular and contextually informed output. Finally, 
the model’s robustness to image variations, including noise, artifacts, and variations in kidney morphology, 
demonstrates its generalizability to a wide range of ultrasound images.

These architectural novelties translate into tangible advancements, delivering not just incremental improve-
ments but a noteworthy leap in performance—evidenced by superior segmentation accuracy in empirical evalu-
ations of both Fast-Unet and UNet++. Our extensive experiments and comparative analyses substantiate the 
distinctiveness and efficacy of Fast-Unet++ in addressing intricate ultrasound image segmentation challenges.

Measurement of kidney image biomarkers
After kidney segmentation in sagittal and axial views, post-processing algorithms were performed to calculate 
the renal dimensions and volume. These algorithms, grouped based on the input image and illustrated in Fig. 2, 
are presented in the following:

Post‑processing of sagittal images
The segmented area of the sagittal-view images was used to calculate the kidney length (KL), thickness (KT), and 
parenchymal thickness. Figure 2a–e represents the post-processing related to the calculation of KL. Figure 2a 
shows the segmented kidney capsule in the sagittal view image. The green contour represents the ground truth, 

Figure 2.  Post-processing of sagittal view image. (a) Segmentation of the capsule. The ground truth is the 
green contour and the predicted mask is the red one. (b) Finding the farthest pairs of points between two poles, 
(c) kidney length (KL), (d) tailored crop, (e) rotation of the image to make it horizontal, (f) finding kidney 
thickness, (g) segmentation of sinus, (h) finding the farthest pairs of points between sinus and capsule’s masks, 
and (i) parenchyma length.
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delineated by the expert radiologist, and the red contour represents the predicted contour by Fast-Unet++. The 
upper and lower poles of the kidney, which were extracted from the mask, are shown in Fig. 2b. The farthest pairs 
of points between the two poles were found using a grid search algorithm. The colored lines in Fig. 2b illustrate 
the procedure, and the determined points are shown in Fig. 2c. The KL is the distance between these two points.

The second row of Fig. 2 is related to the calculation of the kidney thickness. First, the image was cropped 
using a tailored-crop algorithm based on two points annotating the  KL48. The resulting square-shaped image 
enclosed the kidney and some of the background, as shown in Fig. 2d. Next, the cropped image was rotated-
padded based on the angle achieved from the KL’s line. In this way, the kidney would be horizontal (Fig. 2e). 
Finally, to achieve the kidney thickness, the topmost point of the rotated mask was found, and the corresponding 
downmost point was reached. These points annotate the kidney thickness depicted in Fig. 2f.

The algorithm of the parenchymal thickness calculation is shown in the third row of Fig. 2. The kidney sinus 
was segmented using Fast-Unet++, and the farthest points between the upper contour of the kidney mask and 
the sinus mask were found (Fig. 2g, h). The distance between these two points is considered the parenchymal 
thickness.

Post‑processing of axial images
We applied an algorithm to calculate kidney thickness using the axial plane, which some radiologists prefer. 
Figure 3 shows that the kidney thickness was measured in the axial plane as the maximum length parallel to the 
hilum. After the kidney segmentation, the major axis of the mask was calculated using the first eigenvector of 
the principal component analysis (PCA). Then, the mask was rotated horizontally using the angle achieved from 
eigenvectors (Fig. 3b). When the level of the hilum is on the left, the rightmost point of the mask represents the 
kidney border terminal and vice versa. This point is shown as point 2 in Fig. 3c. Point 1 was determined by find-
ing the first line that passes through four points in the mask contour and assigning the middle point as the point.

The upper and lower parts of the contour were separated to measure the kidney width. For each point in the 
upper part, the nearest point in the lower part was found. Therefore, the longest distance between these pairs 
of points was determined as the kidney thickness (Fig. 3d, e). Finally, the rotation algorithm is applied in the 
opposite direction to achieve the real places of the determined points, as shown in Fig. 3f.

Kidney volume prediction
According to various  publications3,4,49, the kidney volume extracted from ultrasound images highly correlates 
with the values extracted with MRI and CT scans. KL and KT are needed for predicting kidney volume, meas-
ured from the sagittal view image, and KW from the axial view image. Thus, the kidney volume was calculated 
using the following formula:

(1)Kidney Volume = KL× KW × KT × 0.523

Figure 3.  Post-processing of axial view image. (a) Segmentation of axial image, (b) rotation of the image to 
make it horizontal, (c) estimating kidney thickness (KT) by finding two terminal points, (d) separation of upper 
and lower parts of the mask and finding the longest distance, (e) kidney width (KW) and KT, and (f) KW and 
KT in the original image.
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Implementation details and evaluation metrics
The proposed model was implemented using Python 3.8.12, Tensorflow 2.3.0, and Keras 2.4.3. The batch size 
was 32, and the maximum number of iteration steps was 47. The hardware used to train the deep learning 
model contained a GeForce RTX 2060 Graphics processing unit (GPU), HP 32GB DDR4 RAM, and Intel Core 
i5-7400 CPU. The Adam stochastic  optimization50 was used to compile the model with a learning rate of 10e-4. 
A random normal initializer with a mean of 0 and a standard deviation of 0.02 was used to initialize the filters 
of the proposed model. The hyperparameter optimization method used to select the best parameters (including 
the learning rate, the batch size, and the convolution kernel size) was a grid search. The grid search consisted of 
training the model with a range of values for each parameter and selecting the ones producing the best results. 
The results were evaluated using the mean dice similarity coefficient (DSC)51.

Segmentation performance was measured using DSC, Jaccard coefficient (JC)52, and mean absolute distance 
(MAD)53. The predicted measurements were also evaluated using accuracy, the area under the curve (AUC), 
sensitivity, specificity, precision, and F1  score54,55.

The convolutional layers dominate the computational complexity of the proposed model. The number of 
floating-point operations (FLOPs) required to compute the output of a convolutional layer is given by:

 where K is the kernel size of the convolutional filter.  Cin is the number of input channels.  Cout is the number of 
output channels. N is the number of pixels in the input image.

For the Fast-Unet++ model, the total number of FLOPs is approximately 1.5e10.

Result
Figure 4 shows the results of the segmentation network on ultrasound images of the kidney in sagittal and axial 
views. In this Figure, the green contour shows the ground truth that an expert delineates, and the red contour 
depicts the predicted mask by the proposed network. The promising agreement between the manual and auto-
matic contour proves the robustness of the proposed method.

To enhance the interpretability of the proposed Fast-Unet++ architecture, we applied grad-CAM analysis 
to visualize the model’s activation patterns and identify the regions that contribute most significantly to the 
segmentation predictions. The results are visualized in Fig. 5.

We also calculated DSC for 100 random samples of the test image set and presented them in a Swarm scatter 
plot, a scatter plot with the points offset (jittered) in the x-dimension. In this Figure (introduced in the Supple-
mentary information file), sagittal images are labeled as one, and axial images are labeled as two. As the Figure 
shows, the network performs better in s sagittal than axial images.

Speckle noise is a common artifact in ultrasound images that can degrade the performance of image segmen-
tation models. Previous studies have shown that denoising algorithms can improve the segmentation accuracy 
of ultrasound  images56,57. We evaluated the performance of our Fast-Unet++ model on ultrasound images with 
and without denoising. We used the adaptive bilateral  filter58 method for denoising. We found that denoising 
did not significantly improve the segmentation accuracy of our model.

(2)FLOPs = 2K2× Cin × Cout × N

Figure 4.  Segmentation results of the ultrasound kidney in the sagittal (top row) and axial (bottom row) 
images. The green contours represent the manual segmentation and the red contours represent automatic 
results.
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We believe that our Fast-Unet++ model is designed to be robust to noise. The model uses skip connections 
to allow information from earlier layers of the network to be propagated to later layers. This helps the model to 
learn to distinguish between relevant features and noise.

Quantitative analysis of the proposed segmentation network using our prepared dataset was performed 
using DSC, JC, and MAD metrics and compared with the results of two other related networks (Fast-Unet and 
UNet + +) to evaluate how our proposed modifications influence the results. Table 1 shows the results based on 
imaging views (sagittal and axial). The achieved metrics in sagittal view images are better than those achieved 
in axial view images, which was expected according to our previously presented results.

Beyond that, the network was compared with several networks using a publicly-available  dataset43. The com-
pared models contained Fast-Unet39,  nnUnet45,  SwinUNETR59, UNet++47, DeepLabV3 + 60,  FCN26,  PSPNet61, 
traditional U-Net23, and a method proposed by Chaitanya et al.46. The dataset was collected in 5 years from over 
500 patients. All images were categorized into three groups according to the acquisition view. The ground truth 
annotation was delineated for the kidney capsule, cortex, medulla, and sinus. Since our proposed method was 
trained for segmenting the kidney capsule and sinus, we compared our results in these two regions. Some of the 
results presented by Singla et al.44 and the rest presented by Valente et al.62, used different evaluation metrics; 
therefore, we quoted the results from both studies with their own metrics. The results are presented in Table 2. 
Due to the dataset in this study providing segmentation from two experts, Table 2 shows the predictions based 
on both ground truths. As Singla et al.44 did not report their results based on two experts’ masks, just one could 
be presented.

The final evaluation of the proposed network compares the predicted kidney mage biomarkers (length, width, 
thickness, volume, and parenchymal thickness) with those achieved via CT scan. As mentioned, 13 cases had CT 
images, along with kidney ultrasounds. We used accuracy, AUC, sensitivity, specificity, precision, and F1 score 
to compare the results. According to Table 3, the proposed method produces robust results across all metrics. To 
be more accurate, we used the kidney width estimated from sagittal images in the present comparison.

Discussion
In this study, we proposed a novel CNN-based model for kidney segmentation from ultrasound images in sagittal 
and axial views and predicting kidney image biomarkers and volume. As far as we know, this is the first attempt 
to predict three kidney dimensions in addition to its volume and parenchymal thickness. We developed our 
previously published model, Fast-Unet39, by adding nested layers inspired by Unet++47. Compared with these 
networks, Fast-Unet++ takes advantage of the low computation cost of Fast-Unet and nested layers of Unet++. 

Figure 5.  Grad-CAM analysis results in some samples of sagittal and axial images. Top row is the original 
images and bottom row is the resulted grad-CAM analysis.

Table 1.  Evaluation of the segmentation of kidney images. The values are with the form of (mean ± standard 
deviation). DSC Dice similarity coefficient, JC Jaccard coefficient, MAD Mean absolute distance.

Network View DSC JC MAD

Fast-Unet++
Sagittal 0.97 ± 0.02 0.94 ± 0.01 3.23 ± 0.89

Axial 0.95 ± 0.04 0.90 ± 0.00 3.87 ± 1.02

Fast-Unet
Sagittal 0.94 ± 0.01 0.91 ± 0.01 4.73 ± 0.93

Axial 0.83 ± 0.0 0.8 ± 0.02 6.83 ± 1.23

UNet++
Sagittal 0.91 ± 0.02 0.85 ± 0.02 4.99 ± 1.1

Axial 0.84 ± 0.0 0.79 ± 0.05 6.07 ± 012
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Therefore, combining these two structures yields better results, as reported in Table 1. Fast-Unet, however, per-
formed better than Unet++, explainable by the intrinsic features of its architecture. As quantitative and qualitative 
results show, segmentation of the kidney in the sagittal frame yields more satisfying results due to the clearer 
borders of the kidney in these images. Thus, this project did not use an axial view for parenchymal thickness, as 
some radiologists do. In addition, the grad-CAM results demonstrate that the model effectively focuses on the 
kidney region, with high activation values highlighting the key anatomical features that guide the segmentation 
process. This analysis provides valuable insights into the model’s decision-making process and reinforces its 
ability to accurately segment the kidney in ultrasound images.

A comprehensive dataset was acquired from various imaging centers and imaging vendors (GE, Philips, and 
Simut) for the training and evaluation of the network. Since the ultrasound images of the kidney are affected 
by the operator’s experience, the imaging system, and the defined preset, collecting such an extensive dataset 
provides an illustrative vision of the network’s performance.

We compared the network’s performance with the CT images as the gold standard since the final goal of 
this study was to predict clinically routinely measured dimensions of the kidney. According to the results, our 
proposed model reliably represents all kidney dimensions, especially in length and width. This was predictable 
because sagittal images had higher quality, and kidney borders were more clearly defined than sinus borders. In 
addition, the evaluation of the kidney volume shows acceptable values in all metrics. To our knowledge, Kim 
et al.′s42 study is the only paper comparing kidney volumes predicted using artificial intelligence from ultrasound 
images with CT images. Their results show a 90% correlation between the predicted and reference values. While 

Table 2.  Evaluation of the segmentation of kidney images using the public dataset. The  HD1 and  SSD2 metrics 
are reported on millimeters. DSC Dice similarity coefficient, HD Hausdorff distance, SSD Symmetric surface 
distance.

Network Capsule/s1 Sinus/s1 Capsule/s2 Sinus/s2

Proposed method
DSC = 0.95
HD = 2.03
SSD = 2.9

DSC = 0.87
HD = 4.7
SSD = 3.2

DSC = 0.96
HD = 2
SSD = 2.45

DSC = 0.88
HD = 4.12
SSD = 2.98

Fast-Unet
DSC = 0.93
HD = 4.15
SSD = 4.3

DSC = 0.87
HD = 4.73
SSD = 5.5

DSC = 0.93
HD = 2.78
SSD = 3.81

DSC = 0.88
HD = 4.11
SSD = 4.2

nnUnet DSC = 0.86
HD = 10.8

DSC = 0.77
HD = 8.6 – –

Chaitanya et al DSC = 0.82
HD = 10.9

DSC = 0.7
HD = 9 – –

DeepLabV3 + DSC = 0.93
SSD = 4.3

DSC = 0.82
SSD = 4.7

DSC = 0.94
SSD = 3.8

DSC = 0.83
SSD = 4.2

SwinUNETR DSC = 0.92
SSD = 5.4

DSC = 0.81
SSD = 5.4

DSC = 0.92
SSD = 6.2

DSC = 0.84
SSD = 5.2

UNet++ DSC = 0.92
SSD = 6.3

DSC = 0.83
SSD = 5.0

DSC = 0.92
SSD = 6.6

DSC = 0.85
SSD = 4.3

FCN DSC = 0.93
SSD = 4.6

DSC = 0.8
SSD = 5.1

DSC = 0.94
SSD = 4

DSC = 0.8
SSD = 4

PSPNet DSC = 0.92
SSD = 5.6

DSC = 0.81
SSD = 5.6

DSC = 0.92
SSD = 5.8

DSC = 0.84
SSD = 5.4

U-Net DSC = 0.94
SSD = 3.9

DSC = 0.84
SSD = 4.0

DSC = 0.95
SSD = 3.6

DSC = 0.88
SSD = 3.6

Table 3.  Comparing the predicted kidney dimension in ultrasound images with the results of CT images. The 
values are in the form of (mean ± standard deviation). AUC  Area under the curve.

Metric

Dimension

Length Width Thickness Parenchyma Volume

Accuracy 0.96 ± 0.01
p-value < 1e-5

0.95 ± 0.01
p-value < 1e-5

0.92 ± 0.00
p-value < 1e-5

0.89 ± 0.03
p-value = 7e-5

0.91 ± 0.03
p-value = 2e-4

AUC 0.95 ± 0.01
p-value = 1e-4

0.94 ± 0.01
p-value = 2e-4

0.89 ± 0.03
p-value < 1e-5

0.89 ± 0.04
p-value = 5e-4

0.91 ± 0.00
p-value = 6e-5

Sensitivity 0.89 ± 0.00
p-value < 1e-4

0.91 ± 0.00
p-value = 3e-4

0.88 ± 0.00
p-value < 1e-5

0.88 ± 0.01
p-value = 2e-4

0.9 ± 0.04
p-value = 5e-4

Specificity 0.91 ± 0.02
p-value < 1e-5

0.90 ± 0.02
p-value < 1e-5

0.89 ± 0.01
p-value = 7e-5

0.83 ± 0.00
p-value = 6e-5

0.9 ± 0.02
p-value < 1e-5

Precision 0.95 ± 0.02
p-value < 1e-5

0.95 ± 0.02
p-value < 1e-5

0.9 ± 0.02
p-value = 8e-4

0.87 ± 0.01
p-value = 7e-5

0.89 ± 0.03
p-value < 1e-5

F1 0.92 ± 0.02
p-value = 1e-3

0.93 ± 0.02
p-value < 1e-5

0.89 ± 0.02
p-value = 7e-4

0.87 ± 0.03
p-value < 1e-5

0.9 ± 0.02
p-value < 1e-5
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they have shown promising results, their work suffers from a low number of training images and evaluation 
metrics. Moreover, they have used 3D ultrasound, which provides more accurate images.

Another evaluation procedure of the proposed method was comparing the results with two other CNNs 
using a public  dataset43. Since  nnUnet45 and Chaitanya et al.’s  approach46 have been tested on this public dataset, 
comparing the results of our proposed model with them brings a good insight into the model’s performance. As 
results show, the proposed model achieved better results in terms of DSC and HD. Although the MAD metric 
was calculated, it was not comparable because the authors did not provide this information in their paper. The 
main advantage of the proposed model that causes this superiority is that it is less complicated than those two.

One of the most important limitations of this work was that the radiologist’s skill in acquiring the input image 
directly influences the result of segmentation. Some models have been introduced to overcome this issue. For 
instance, van den Heuvel et al.63 proposed a model to automatically detect the fetal head and then estimate head 
circumference (HC) from a sequence of 2D ultrasound frames obtained using the obstetric sweep protocol (OSP). 
Their paper resulted from a program aimed at helping expand ultrasound in developing countries, which suffer 
from a lack of trained sonographers, with the help of artificial intelligence. This approach can be implemented 
for kidney image biomarker prediction, too. In other words, the sonographer sweeps the ultrasound transducer 
over the patient’s skin using a predefined protocol, which completely contains sagittal and axial views of the 
kidney. Then, a CNN model analyzes the frames to detect the best sagittal and axial ones. Finally, the image 
segmentation would be applied to the best frames.

The other limitation is the definition of the best frame for the estimation of kidney length and parenchymal 
thickness. According to the definition, kidney length is estimated in a frame where the largest view of the kidney 
is achieved. At the same time, this is not necessarily an excellent option for predicting parenchymal thickness 
since it needs a proper contrast between the sinus and parenchyma.

In addition, some abnormal structures, such as polycystic kidney (PKD) or tumors, can alter the kidney’s 
appearance and make it more difficult for the model to identify the correct segmentation  boundaries64. PKD is 
a genetic disorder characterized by the development of numerous fluid-filled cysts within the kidneys. These 
cysts can vary in size and distribution, dramatically altering the kidney’s morphology and complicating the 
segmentation process. Tumors, on the other hand, can have a variety of appearances, ranging from solid masses 
to cystic lesions. Their irregular shapes and heterogeneous echogenicity can make it difficult for the model to 
distinguish them from normal kidney tissue. To address these challenges, future studies may focus on utiliz-
ing prior knowledge about the characteristics of abnormal structures to guide the model’s segmentation and 
employing ensemble methods by combining multiple models, each trained on different aspects of the image, 
such as texture, shape, and intensity.

This work can be extended by predicting the thickness of the renal medulla and cortex, which are great 
representatives of kidney functions and can show disorders such as chronic kidney disease (CKD)65. This is 
achievable by a high-quality dataset in which the medulla appears clearly in sagittal images. However, this raises 
an important issue: differentiating between medulla and kidney cysts because the medulla appears hypoechoic 
in ultrasound images.

Conclusion
The proposed CNN architecture demonstrated robust kidney segmentation in both sagittal and axial frames. 
The model achieved promising values for kidney image biomarkers (including length, width, thickness, and 
parenchymal thickness) and kidney volume, particularly for sagittal frames. These results suggest that the model 
can be applied to clinical settings for kidney assessment. Future work should focus on improving the accuracy 
of parenchyma volume estimation and exploring the model’s performance in a larger and more diverse dataset.

Data availability
The public kidney dataset (Open Kidney Dataset) is available on https:// rsing la. ca/ kidne yUS/. Our prepared 
dataset is available from the corresponding author upon reasonable request.
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