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Radiomics for residual tumour 
detection and prognosis in newly 
diagnosed glioblastoma based 
on postoperative  [11C] methionine 
PET and T1c‑w MRI
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Alex Zwanenburg 1,2,4, Ivan Platzek 8, Jörg Kotzerke 4,6, Michael Baumann 1,3,5, 
Mechthild Krause 1,2,4,5,9, Esther G. C. Troost 1,2,4,5,9 & Steffen Löck 1,2,4,5*

Personalized treatment strategies based on non‑invasive biomarkers have potential to improve 
patient management in patients with newly diagnosed glioblastoma (GBM). The residual tumour 
burden after surgery in GBM patients is a prognostic imaging biomarker. However, in clinical patient 
management, its assessment is a manual and time‑consuming process that is at risk of inter‑rater 
variability. Furthermore, the prediction of patient outcome prior to radiotherapy may identify 
patient subgroups that could benefit from escalated radiotherapy doses. Therefore, in this study, 
we investigate the capabilities of traditional radiomics and 3D convolutional neural networks for 
automatic detection of the residual tumour status and to prognosticate time‑to‑recurrence (TTR) 
and overall survival (OS) in GBM using postoperative  [11C] methionine positron emission tomography 
(MET‑PET) and gadolinium‑enhanced T1‑w magnetic resonance imaging (MRI). On the independent 
test data, the 3D‑DenseNet model based on MET‑PET achieved the best performance for residual 
tumour detection, while the logistic regression model with conventional radiomics features performed 
best for T1c‑w MRI (AUC: MET‑PET 0.95, T1c‑w MRI 0.78). For the prognosis of TTR and OS, the 
3D‑DenseNet model based on MET‑PET integrated with age and MGMT status achieved the best 
performance (Concordance‑Index: TTR 0.68, OS 0.65). In conclusion, we showed that both deep‑
learning and conventional radiomics have potential value for supporting image‑based assessment 
and prognosis in GBM. After prospective validation, these models may be considered for treatment 
personalization.

The standard of care in newly diagnosed glioblastoma multiforme (GBM) is maximal surgical resection, sub-
sequent concurrent chemoradiation (RCT) with temozolomide followed by maintenance temozolomide for 
6  months1,2. Despite the multimodal treatment, patients with GBM face an overall poor prognosis with a high 
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recurrence rate and 5-year survival of less than 10%3,4. Gross total resection of GBM has been associated with 
improved local control and survival compared to subtotal or partial  resection5–7. However, due to infiltrative 
growth patterns, total resection cannot always be achieved, and residual tumour cells persist after resection, 
leading to tumour recurrence and poor  prognosis8.

In addition to the extent of resection, several factors that impact the survival in GBM have been identified 
including age, O6-methylguanine–DNA methyltransferase (MGMT) promoter methylation status, isocitrate 
dehydrogenase (IDH), and Karnofsky performance status (KPS) among  others9–11. Many studies have performed 
gene-expression profiling to identify genes whose expression can predict patient survival in  GBM12–14. However, 
none of these markers are currently used in clinical routine for personalized treatment approaches and reliable 
biomarkers are urgently  needed11.

Post-surgical examination of GBM, including the assessment of the residual tumour status, is mainly based 
on gadolinium-diethylenetriaminepentaacetic acid (Gd-DTPA) enhanced T1c-w MRI. However, the reliability of 
T1c-w MRI alone in distinguishing tumour tissue from, inflammatory reparative changes after surgery is limited, 
and it suffers from high interindividual variability in target delineation for treatment  planning15,16. Studies have 
shown that post-surgical amino acid positron-emission tomography (PET) such as L-[methyl-11C] methionine 
(MET) and O-(2-[18F]fluoroethyl)-L-tyrosine (FET) PET, respectively, has superior diagnostic value compared 
to T1c-w MRI as it can differentiate treatment-related changes from residual tumour progression with higher 
 accuracy17,18. Concurrent PET/MRI offers great potential for the detection of residual tumour and guided therapy 
intensification for treatment  personalization18,19.

In recent years, conventional radiomics and deep learning (DL)-based radiomics have been widely used as 
non-invasive methods for computer assisted diagnosis and prognosis in various cancer  entities20–23. Conventional 
radiomics extracts and analyses handcrafted features from medical imaging data, while (DL)-based radiomics 
uses deep neural networks such as convolutional neural networks (CNNs) to perform the same task. Currently, 
only few studies have evaluated automatic detection of residual tumours. Zeng et al.24 and Miere et al.25 have 
reported an auto-segmentation method for the GBM residual tumour volume on T1c-w MRI. For prognostic 
modelling in GBM, various studies have evaluated conventional radiomics using multiparametric MRI (mpMRI) 
to evaluate overall survival (OS) and progression free survival (PFS)26–29. Integrating pre-treatment MRI radiom-
ics features with clinical and molecular features was shown to further improve the prognostic  performance30. 
Recently, a study by Garcia-Ruiz et al.31 showed the high correlation of radiomics features extracted from the 
enhancing residual tumour region on early post-surgical MRI with OS (AUC 0.71). Only a limited number of 
studies have conducted radiomics analyses to assess the prognostic significance of FET-PET imaging in  GBM32,33. 
However, these investigations were specifically based on post-RCT PET images.

To the best of our knowledge, comparative analysis of conventional feature-based and DL-based radiomics 
has not yet been performed for the detection of residual tumours and to evaluate the prognostic role of pre-RCT 
MET-PET/MRI in patient with GBM. The recently published dataset of the prospective PETra  trial18 is well suited 
for that task since it contains both imaging modalities. Therefore, in this study we develop and independently 
validate conventional and DL-based radiomics models to identify the residual tumour status and prognosticate 
TTR and OS in newly diagnosed GBM patients using MET-PET and T1c-w MRI.

Materials and methods
Patient data
Imaging and clinical data of 132 adult patients with GBM was used, originating from the PETra trial, which is 
a prospective one-arm, single-centre, nonrandomized biomarker study as previously described (85 patients; 
clinicaltrials.gov; NCT01873469)18, and from an additional retrospective validation cohort (47 patients). All 
patients were newly diagnosed with histologically confirmed GBM and were treated at the University Hospital 
and Faculty of Medicine Carl Gustav Carus, Dresden, Germany. All 85 patients from the PETra trial (ethics id. 
EK-41022013) were allocated to the training data, and the 47 consecutive patients from validation trial (ethics 
id. EK-390072021) were allocated to the independent test data. All patients gave written informed consent. The 
study was approved by the ethics committee of TU Dresden (EK-41022013, EK-390072021) and was conducted 
in accordance with the relevant guidelines and regulations, i.e. the Declaration of Helsinki, version 2013. Patients 
underwent standard RCT with temozolomide and radiotherapy dose of 60 Gy in 2 Gy-fractions, starting within 
7 weeks after surgery. The inclusion criteria for this retrospective radiomics analysis were: T1c-w MRI acquired 
contemporaneously with MET-PET before RCT with sufficient imaging quality, i.e. absence of strong artifacts, 
and availability of the considered endpoints.

Image acquisition, endpoints, and contouring
The PET/MRI investigations were carried out on a 3 Tesla Ingenuity TF PET/MRI scanner (Philips Healthcare, 
Best, The Netherlands). For post-surgical MRI, the T1c-w sequence was utilized for this study. Image acquisition 
details for MET-PET and T1c-w MRI of training and test data are summarized in Supplementary Table S1 and 
 in18. The considered endpoints were the residual tumour status individually assessed on MET-PET and T1c-w 
MRI, and time-to-recurrence (TTR), and overall survival (OS) using both imaging modalities.

To determine the presence of residual tumour after surgery, qualitative evaluation of MET-PET and T1c-w 
MRI data was performed individually to establish binary ground truth labels. A nuclear medicine expert (B.B.) 
evaluated the reconstructed MET-PET images acquired 20–40 min after tracer injection using the ROVER soft-
ware package (ABX). Residual tumour status on MET-PET was labelled as positive (1) if there were focal uptake 
areas representing the presence of true residual tumours without physiologically enhanced uptake or enhance-
ment in postsurgical alteration. The residual tumour status for T1c-w MRI was evaluated by a radiation oncolo-
gist (A.S.) using early postsurgical T1c-w MRI in combination with operative reports and the second baseline 
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T1c-w MRI, acquired contemporaneously with MET-PET (used in this analysis; acquisition median 23 days 
after surgery). If the second T1c-w MRI showed no residual tumour, the residual T1c-w MRI status was set as 
negative (0). In case of distinct progression between the two T1c-w MRI scans, the status was changed to positive 
(1). Difficult cases with small residual tumours or laminar enhancement, hampering the clear distinction from 
residual blood in the cavity, were independently reviewed by an experienced radiologist (I.P.). A more detailed 
description of the qualitative analysis performed by human raters to evaluate residual tumour status is given  in18.

The survival endpoints TTR and OS were calculated from the first day of RCT to the day of the event (local 
recurrence for TTR and death for OS) or censoring. For the patients with the observed event, the event time was 
accompanied by an event indicator variable of 1, whereas for patients without an event, the last follow-up time 
was used together with an event indicator variable of 0.

PET/MRI images were co-registered to the treatment planning computed tomography (CT) using the treat-
ment planning system RayStation 8B SP2 (RaySearch Laboratories, Stockholm, Sweden) and the clinical target 
volume (CTV) was transferred to MET-PET and T1c-w MRI.

Study design
We developed and independently validated conventional radiomics and DL-based signatures for predicting the 
residual tumour status and for the prognosis of TTR and OS in patients with GBM based on MET-PET and 
T1c-w MRI data acquired before RCT. Figure 1 summarizes the design of this study.

For the conventional radiomics analysis, we utilized the CTV to separately compute imaging features in MET-
PET and T1c-w MR imaging. These features included first-order features, second-order texture features, and 
Laplacian of Gaussian (LoG) transformed intensity features. The features were filtered for stability under small 
image perturbations and clustered. Separate radiomics models were developed using the training data (N = 85) for 
each imaging modality and independently validated on the test data (N = 47). In our DL-based radiomics analy-
sis, three different 3D-CNN architectures were used, i.e. 3D-VGGNet, 3D-Resnet, and 3D-DenseNet. 3D-CNN 
models were trained from scratch on image patches extracted around the CTV centre of mass individually for 
each imaging modality. Training was performed using two approaches, without data augmentation and with data 
augmentation. We then applied the developed models to independent test data and compared their performance. 

Figure 1.  Study design. (a) Image preprocessing. (b) Radiomics features were extracted from each imaging 
modality, analysed for robustness, and clustered. Radiomics signatures for MET-PET and T1c-w MRI were 
developed in a cross-validation approach and applied to the test data. (c) 3D-CNN models were trained in a 
cross-validation approach. Subsequently, the performance of ensemble predictions was evaluated on the test 
data.



4

Vol:.(1234567890)

Scientific Reports |         (2024) 14:4576  | https://doi.org/10.1038/s41598-024-55092-8

www.nature.com/scientificreports/

The final predictions from both approaches for the prognosis of TTR and OS were integrated with important 
clinical/molecular features in multivariable Cox regression, which was then validated on the test dataset. We 
describe image processing and modelling in more detail in the following paragraphs.

Image pre‑processing, and feature extraction
The pre-processing steps used for conventional radiomics and DL-modelling are depicted in Fig. 1a. For both 
analyses, T1c-w MR imaging was subjected to bias correction using the N4ITK  algorithm34 and soft tissue 
masking via the Canny Edge detection  algorithm35. After bias correction, z-score normalization was applied to 
the intensity values of T1c-w MRI within the soft tissue mask. PET imaging was converted to (body-weight) 
Standardized Uptake Values (SUV), and SUV values outside the [0,10] range were truncated to remove potential 
outliers. Finally, the entire volume was normalized to the [0,1] range to standardize the data.

Further pre-processing was specific to conventional radiomics or DL-based radiomics analysis. For the DL-
based radiomics analysis, we aligned the orientation of MET-PET and T1c-w MR images and resampled these 
to isotropic 2.0 × 2.0 × 2.0  mm3 voxels using trilinear interpolation. A single image volume of size 60 × 60 × 44, 
centred around the CTV centre of mass was extracted in the axial plane for both imaging modalities.

For the conventional radiomics analysis, further image pre-processing followed by feature extraction was car-
ried out using the MIRP Python toolkit (version 1.1.3)36. MET-PET and T1c-w MR image voxels were resampled 
to 2.0 × 2.0 × 2.0  mm3 and 1.0 × 1.0 × 1.0  mm3, respectively, using trilinear interpolation. LoG filters with kernel 
widths σ = 2 mm for MET-PET and σ = 1 mm for T1c-w MRI were applied to the base images. The choice of kernel 
width was based on the original slice thickness of each imaging modality. A total of 270 and 152 intensity-based 
and texture-based features were extracted from the 3D CTV on the baseline MET-PET and T1c-w MRI, respec-
tively. In addition, 57 first-order intensity-based features were extracted from the CTV on the LoG transformed 
images for both imaging modalities. This resulted in a total of 327 and 209 features extracted from MET-PET 
and T1cw-MRI, respectively. Further details on feature classes are summarized in Supplementary Table S2. 
Image pre-processing and feature extraction in MIRP were implemented according to the recommendations 
of the Image Biomarker Standardization Initiative (IBSI)37. The definitions used to calculate the features can be 
found in the IBSI reference manual. Image processing parameters are summarized in Supplementary Table S3.

To ensure reproducible results in radiomics analysis, the imaging features should remain stable under minor 
perturbations, such as slight variations in acquisition parameters or positioning  uncertainties36. To assess feature 
robustness, we performed the following image augmentations on the training data: adding Gaussian noise (mean 
0, standard deviation equal to that in the image), random volume changes of the CTV (0%, − 15%, 15%), and 
translations (0.0, 0.25, and 0.75 mm) in all three spatial dimensions. All combinations of these perturbations 
were considered, leading to 81 perturbed images for each original dataset. The intra-class correlation coefficient 
(ICC) was calculated with a 95% confidence interval, quantifying the similarity of feature values under different 
perturbations for every feature. Features with the lower boundary of the 95% confidence interval of the ICC 
below 0.8 were  removed36.

Feature redundancy was lessened through clustering of highly similar features. The Spearman correlation 
coefficient ( ρ ) was used as a similarity metric with average linkage as a criterion for merging two clusters; ρ ≥ 
0.8 was defined for placing features into the same cluster. The feature with the highest mutual information with 
the endpoint was selected as the representative for each cluster. The clustering process was done separately for 
MET-PET and T1c-w MRI-based feature sets.

Conventional radiomics modelling
Figure 1b illustrates the workflow for conventional radiomics analysis. We implemented a workflow containing 
four major processing steps to derive radiomics signatures from the pre-processed feature sets: (i) feature pre-
processing, (ii) feature selection, (iii) model building with internal validation, and (iv) testing. This workflow 
was implemented using the open-source end-to-end statistical learning software package familiar (1.0.0)38 in 
R (version 4.0.3).

Steps (i)–(iii) were first performed using 5 repetitions of fivefold stratified cross-validation (CV) nested in 
the training dataset to identify an optimal signature, i.e. the steps were repeatedly performed on the internal 
training part and validated on the internal validation part of the CV folds. After identifying the final signature, a 
final model was developed on the entire training data and validated on the test dataset. The following procedure 
was performed for each of the 25 CV runs:

a. Features were transformed using the Yeo-Johnson transformation to align their distribution to a normal 
distribution. Afterwards, features were z-transformed to mean zero and standard deviation one. Both trans-
formations were performed on the internal training part and applied unchanged to the features of the internal 
validation part.

b. Four supervised feature-selection algorithms were considered: minimal redundancy maximum relevance 
(MRMR)39, mutual information maximization (MIM)40, elastic-net (EN)41, and univariate regression (UR)42. 
To avoid potential overfitting, only the five most relevant features were selected in each CV fold.

c. The selected features were used by three different classifiers: logistic regression (GLM_logistic), random forest 
(RF), and Xgboost linear model (XGB_lm) for the detection of residual tumour status and Cox regression 
(Cox), random survival forest (RSF), and XGB_lm for prognosis of TTR and OS. Model hyperparameters 
were tuned automatically using a variant of the sequential model-based optimisation (SMBO)43 algorithm 
based on a bootstrap sampling of the training data. Each classifier was built on the internal training part, 
which was validated on the internal validation part.
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After cross-validation, features were ranked according to their occurrence across the 25 CV folds for each of 
the feature-selection methods. The top 5 most commonly occurring features that appeared in at least 75% (i.e. 3 
out of 4) of feature-selection methods were selected. If a subset of these features showed a Spearman correlation 
ρ > 0.5 with each other on the entire training data, the most relevant feature was considered, i.e. the one showing 
higher association with endpoint on the training data. A detailed example of the feature-selection scheme for the 
detection of residual tumour status and prognosis of TTR using MET-PET imaging is presented in Supplementary 
Section 1: Tables S4, S5 and Fig. S1a,b, respectively. The resulting radiomics signature was then used to build a 
classification or survival model using the entire training dataset.

Deep‑learning‑based radiomics
Three different 3D-CNN models, i.e. 3D-VGGNet, 3D-ResNet, and 3D-DenseNet, were trained from scratch in 
our DL-based radiomics analysis. Model architectures were adapted to get the best performance on the internal 
validation data.

The 3D-VGGNet model consist of 3 convolution blocks with 2 convolution layers in first two blocks and 
3 convolution layers in third block (filter size = 3 × 3 × 3, activation = ReLU) followed by max-pooling (pool-
size = 2 × 2 × 2) and dropout layer (rate = 0.4). The first block comprised 64 filters. The number of filters was 
doubled in each subsequent block. A batch normalization and flattening operation followed the last convolutional 
block. The 3D-ResNet network was based on a vanilla ResNet18 implementation for 3D image data adapted 
 from44. The first convolutional layer was modified to use a filter size of 3 × 3 × 3, a stride of 2 and global average 
pooling after the last residual block followed by the flattening layer. The 3D-DenseNet121 network was adapted 
 from45. Instead of using 4 dense blocks as in the original DenseNet  implementation46, only 3 dense blocks (6, 12, 
24 layers per block) were used. Like the 3D-ResNet18 adaptation we used a filter size of 3 × 3 × 3 with a stride of 2 
in the first convolution layer and global average pooling after the last residual block followed by a flattening layer.

To further enhance the performance of the architectures mentioned above, they were modified by adding 
a group of four fully connected (FC) layers with 512, 512, 256, and 128 neurons at the end of the network. To 
prevent overfitting, a dropout rate of 0.4 was applied between these FC layers. The model’s output was determined 
by a single dense neuron with tanh activation. Overview of the 3D-CNN architectures utilized in this study is 
presented in Supplementary Figs. S2 and S3.

For model training, we employed an Adam optimizer and a batch size of 16. The training process employed 
a maximum of 300 epochs with early stopping (patience = 100) and an adaptive learning rate that utilized expo-
nential decay (initial learning rate = 1.10–4, decay steps = 1000, decay rate = 0.96) through Keras callbacks. To 
optimize model losses for detecting residual tumour status, binary cross-entropy (BCE) loss was used, a com-
monly used loss function for binary classification  problems47. Model losses for the TTR and OS endpoints 
were optimized using a survival-specific loss function, i.e. Cox proportional hazard model (CPHM) similar to 
previous  work23,48,49. The CPHM minimizes the negative of the Cox partial log-likelihood function to estimate 
log-hazard values for each batch of imaging data, which were then transformed by tanh activation to restricted 
hazard output within the range of (exp(− 1), exp(1)).

For the analysis of each endpoint, network training was performed within 5 repetitions of fivefold cross-
validation (CV), stratified by the event status, on the training dataset. For each of the CV folds, training volumes 
were augmented by changing contrast, brightness, Gamma correction, Gaussian noise, and Gaussian blur using 
the open-source batchgenerators python package for data  augmentation50. Details regarding data augmentation 
parameters are provided in Supplementary Section 2 and Supplementary Table S6. Model training was performed 
on the training split of the CV folds and model losses were evaluated at the end of each epoch on the internal 
validation fold. Since each of the 25 CV runs resulted in a trained model, an ensemble prediction was created 
by averaging outputs for each patient. Training ensemble prediction was obtained by averaging the predicted 
output for each patient across the 20 models for which that patient was part of the training fold. Similarly, inter-
nal validation ensemble prediction was computed by averaging the predicted output using the remaining five 
models for which the patient was assigned to the internal test fold. All trained 25 models were then applied to 
independent test data and a patient’s ensemble prediction was computed by averaging over all 25 model predic-
tions. To assess the benefit of data augmentation on model generalization to unseen data, the above pipeline was 
also implemented without augmenting the training data.

Combination with clinical data
Finally, in order to create joint clinical and imaging signatures for TTR and OS prognosis, clinical/molecular 
features that were significantly associated to TTR and OS in univariable Cox regression were first used to create 
a stand-alone clinical signature using multivariable Cox regression. Then, we integrated these clinical features 
with the selected radiomic signature and with the 3D-CNN ensemble prediction. In order to avoid correlation 
between image-based and clinical features, we calculated the Spearman correlation between them and retained 
only those features with a correlation of < 0.5. Finally, a multivariable Cox model was fitted on the training data, 
and then applied to the test data.

Statistical analysis
The following baseline clinical parameters were available: gender, age, ECOG status, MGMT promoter methyla-
tion status, IDH mutation status, and resection type. Categorical clinical features were compared between training 
and test data by the Chi-squared (χ2) test whereas continuous features were compared using the Mann–Whitney-
U test. Available clinical features were associated with TTR and OS by univariable Cox regression.

Associations between the final model predictions and the endpoints were evaluated by the AUC for the 
detection of residual tumour status and by the C-index for the prognosis of TTR and OS. The estimated value 
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and the 95% confidence interval of these metrics were computed. For creating a confusion matrix based on the 
final radiomics and DL prediction for residual tumour status classification, an optimal cutoff was selected on 
the training data using the Youden index and transferred to the internal validation and independent test data. 
For association with TTR and OS, patients were stratified into low and high-risk groups using an optimal cutoff 
on the training data that was based on maximally selected rank  statistics51. The cutoff was transferred to the 
internal validation and independent test data and TTR and OS of stratified groups were assessed with Kaplan 
Meier curves compared with the log-rank test.

Model calibration was assessed via the Hosmer–Lemeshow goodness of fit test (HL test)52 for the prediction 
of residual tumour status and the Greenwood Nam d’Agostino test (GND test)53 for TTR and OS respectively, and 
by creating calibration plots. Correlations between features were assessed by the Spearman correlation coefficient 
( ρ ). All tests were two-sided with a significance level of 0.05. The importance of individual features in the final 
signature was assessed through univariate fitting of a logistic regression model (residual tumour status) or Cox 
regression (TTR and OS) and computing Wald-test p-values.

Conventional radiomics analysis was performed in R version 4.0.3, while DL-based radiomics analysis was 
performed in Python 3.7.0 and Keras (v2.3.1) with TensorFlow (v2.1.0) on NVIDIA GeForce RTX 2080 Max-Q. 
Our code is publicly available from https:// github. com/ oncor ay/ cnn- petra.

Results
Patient characteristics of the training and test data are summarized and compared in Table 1. A significant dif-
ference between the two cohorts was observed for MGMT status and age. Patients in the training dataset had a 
lower percentage of methylated MGMT status (p-value 0.019), and a slightly lower median age (p-value 0.049) 
compared to the test data. In univariate Cox analysis, a significant association to TTR and OS was observed for 
MGMT status (OS: p < 0.001), age (TTR: p 0.034, OS: p 0.001) and IDH status (TTR: p 0.018) on the training 
data, as shown in Supplementary Table S7. Due to the small number of IDH mutated cases (N = 6), however, 
IDH status was not considered for the clinical signature.

Table 2 (top rows) presents the results for the classification of residual tumour status in MET-PET and T1c-w 
MRI using conventional radiomics, including model names and finally selected features. In internal CV, overall 
higher performance for the prediction of residual tumour status in MET-PET was observed for all considered 
machine learning models (AUC 0.93) compared to T1c-w MRI (AUC 0.66–0.68). Similarly, on the test data, a 
higher performance was observed for detection of residual tumour status in MET-PET (AUC 0.90–0.91) com-
pared to T1c-w MRI (AUC 0.73–0.78). Overall, logistic regression model showed best performance compared 
to other machine learning methods for residual tumour detection in both imaging modalities. Corresponding 
confusion matrices for the logistic regression model are shown in Supplementary Fig. S4a with a sensitivity of 0.73 
and 0.54 and a specificity of 0.88 and 0.87 on the test data for residual tumour status in MET-PET (threshold 0.77) 
and T1c-w MRI (threshold 0.38), respectively. The selected MET-PET feature was log_ih_kurt_fbn_n16 (IBSI: 
C317). It represents the kurtosis of the discretized histogram (16 bins) on the LoG transformed images. High 
values indicate the presence of high intensities within the CTV with pronounced peaks of MET uptake, which 
was related to a positive residual tumour status in comparison to the PET-negative group with relatively low 
values of this feature. The feature showed a significant contribution both in training and test (p < 0.01), box plots 
are presented in Supplementary Fig. S5. The definition of the selected features is given in Supplementary Table S8 
and the logistic regression models for the best performing signatures are presented in Supplementary Table S9.

Table 1.  Patient, tumour, and treatment characteristics for the training and test data. BIO, biopsy; ECOG, 
Eastern Co-operative Oncology Group; GTR, gross total resection; IDH, isocitrate dehydrogenase; MGMT, 
O6-methylguanine DNA methyltransferase; MRI, magnetic resonance imaging; OS, overall survival; PET, 
positron emission tomography; STR, subtotal resection; TTR, Time-to-recurrence. Age was compared using 
Mann–Whitney-U test, TTR and OS were compared using log-rank test and Categorical variables were 
compared using χ2 test between training and test data.

Variable

Training (85) Test (47)

p-valueMedian Range Median Range

Age Years 58 23–82 61 24–77 0.049

TTR Months 7.43 0–73.0 9.76 1.15.58.0 0.60

OS Months 16.6 1.54–73.0 13.9 1.94–58.0 0.10

Number % Number %

Gender Male/female 51/34 60.0/40.0 31/16 66.0/34.0 0.63

ECOG 0/1/2/unknown 45/35/5/0 52.9/41.2/5.9/0 21/19/3/4 44.7/40.4/6.4/8.5 0.054

MGMT Wildtype/methylated/unknown 56/29/0 65.9/34.1/0 20/26/1 42.6/55.3/2.1 0.019

Resection GTR/STR/BIO 49/29/7 57.6/34.1/8.2 26/21/0 55.3/44.7/0.0 0.09

IDH Wildtype/mutated/unknown 75/6/4 88.2/7.1/4.7 44/2/1 93.6/4.3/2.1 0.60

PET status 0/1 (negative, positive) 28/57 32.9/67.1 17/30 36.2/63.8 0.85

MRI status 0/1 (negative, positive) 49/36 57.6/42.4 23/24 48.9/51.1 0.44

TTR status 0/1 (censored, event) 11/74 12.9/87.1 12/35 25.5/74.5 0.11

OS status 0/1 (censored, event) 13/72 15.3/84.7 17/30 36.2/63.8 0.011

https://github.com/oncoray/cnn-petra
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The same analysis was then repeated using 3D-CNNs. In general, 3D-CNNs trained with data augmentation 
showed higher performance in internal CV folds compared to 3D-CNN models trained without data augmenta-
tion for residual tumour detection as well as for the prognosis of TTR and OS (Supplementary Tables S10 and 
S11). Therefore, only models created with data augmentation were evaluated on the test data. Table 2 (bottom 
rows) presents the results of DL-based radiomics for predicting the residual status, including model names. In 
internal CV, DenseNet showed the highest AUC for both imaging modalities. As for conventional radiomics, 
detection of residual tumour status in MET-PET (AUC 0.92–0.96) was more accurate than in T1c-w MRI (AUC 
0.71–0.77). On the test data, the highest performance was also achieved by DenseNet on MET-PET (AUC 0.95), 
while VGGNet showed a better performance for T1c-w MRI (AUC 0.71). Confusion matrices for best perform-
ing models are presented in Supplementary Fig. S4b showing a sensitivity of 0.97 and 0.38 and a specificity of 
0.71 and 0.87 for MET-PET (threshold 0.56) and T1c-w MRI (threshold 0.40) based classification, respectively. 
Figure 2 shows the receiver operating characteristic (ROC) curves of the described models from conventional 
radiomics and DL. The corresponding calibration plots are shown in Supplementary Fig. S6.

Table 3 presents the results for the prognosis of TTR and OS using conventional radiomics. In internal CV, 
acceptable performance was only observed for TTR prediction based on MET-PET (C-index 0.58–0.61). This 
translated to the test cohort, where the signatures developed on MET-PET showed a better performance (C-index 
0.58–0.59) than the signatures developed on T1c-w MRI (C-index 0.53–0.54). Furthermore, prediction of OS 
on the test cohort yielded acceptable results with T1c-w MRI (C-index 0.62–0.63). None of the models achieved 
significant stratification of patients in low and high-risk groups of OS on the test data (p-value > 0.05).

The Cox regression model containing clinical features (age and MGMT status) showed a decent performance 
for prognosis of TTR on the test data, with significant risk group stratification (C-index 0.59, p 0.004), while the 
performance for prognosis of OS was relatively low (C-index 0.55, p 0.32). Combining this clinical signature 
with imaging signatures showed improved prognostic performance with significant stratification of the patients 
into low and high-risk groups for TTR (clinical + MET-PET: C-index 0.66, p < 0.001; Clinical + T1cw-MRI: 
C-index 0.62, p 0.008), while for the prognosis of OS, the performance still remained low. Figure 3 shows the 
Kaplan–Meier curves for the clinical model (a) the clinical + MET-PET model (b), and the clinical + T1cw-MRI 
model (c) for prognosis of TTR. The corresponding calibration plots are shown in Supplementary Fig. S7a–c. 
Corresponding model and transformation parameters for the best performing signatures developed are presented 
in Supplementary Table S12.

The selected MET-PET features for the prognosis of TTR and OS were log_stat_min and stat_max 
(IBSI:1GSF), respectively. Both features are intensity-based statistical features that describe how intensities (or 
SUV values in case of MET-PET imaging) within the ROI are distributed. The highest SUV present within the 
CTV on baseline MET-PET is captured by the stat_max feature, which is closely related to the minimum SUV 
on LoG transformed MET-PET images. High values of stat_max and consequently low values of log_stat_min 
indicate MET uptake in the residual tumour. Image-based interpretation of these features is presented in Sup-
plementary Fig. S8. Patients in the low-risk group of TTR showed relatively high values of log_stat_min, i.e. 
no high SUV present (a), while patients in the high risk group had lower log_stat_min, which translates to the 
existence of bright voxels or alternatively high values of stat_max in the CTV (b).

Table 4 presents the results for the prognosis of TTR and OS using 3D-CNN models trained with data aug-
mentation. Overall, MET-PET showed a higher predictive performance than T1c-w MRI for both endpoints and 
the DenseNet performed best (test data, TTR: C-index 0.66, OS: C-index 0.64). For both endpoints, the DenseNet 
prediction led to significant patient stratifications into risk groups (TTR: p 0.027, OS: p 0.033). Integrating these 

Table 2.  Area under the curve (AUC) values for cross-validation (CV) and independent test data for residual 
tumour detection based on MET-PET and T1c-w MRI using conventional radiomics (top six rows) and deep 
learning (DL) radiomics (bottom six rows). Values in parenthesis represent the 95% confidence interval. Best 
test performance is marked in bold.

Modality Model CV train AUC CV valid AUC Features Final training AUC Final test AUC 

MET-PET

GLM logistic 0.95 (0.88–0.99) 0.93 (0.60–1.00) log_ih_kurt_fbn_n16 0.92 (0.86–0.97) 0.91 (0.81–0.98)

RF 0.97 (0.90–1.00) 0.93 (0.57–1.00) log_ih_kurt_fbn_n16 0.93 (0.87–0.97) 0.90 (0.80–0.97)

XGB_lm 0.94 (0.87–0.99) 0.93 (0.58–1.00) log_ih_kurt_fbn_n16 0.92 (0.86–0.97) 0.91 (0.81–0.98)

T1c-w MRI

GLM logistic 0.78 (0.62–0.90) 0.66 (0.22–0.97) dzm_ldhge_3d_fbn_n32, 
ih_rmad_fbn_n32 0.76 (0.65–0.87) 0.78 (0.64–0.89)

RF 0.87 (0.62–0.89) 0.68 (0.22–0.99) dzm_ldhge_3d_fbn_n32, 
ih_rmad_fbn_n32 0.86 (0.78–0.94) 0.73 (0.58–0.87)

XGB_lm 0.76 (0.74–0.98) 0.66 (0.24–0.99) dzm_ldhge_3d_fbn_n32, 
ih_rmad_fbn_n32 0.77 (0.63–0.87) 0.78 (0.64–0.90)

MET-PET

DenseNet 1.00 (0.99–1.00) 0.96 (0.93–0.99) – – 0.95 (0.89–1.00)

ResNet 1.00 (1.00–1.00) 0.92 (0.87–0.98) – – 0.81 (0.70–0.94)

VGGNet 1.00 (1.00–1.00) 0.95 (0.90–1.00) – – 0.93 (0.86–1.00)

T1c-w MRI

DenseNet 1.00 (0.99–1.00) 0.77 (0.68–0.87) – – 0.63 (0.47–0.80)

ResNet 1.00 (1.00–1.00) 0.73 (0.63–0.84) – – 0.61 (0.44–0.78)

VGGNet 0.99 (0.98–1.00) 0.71 (0.59–0.82) – – 0.71 (0.55–0.86)
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models with the clinical parameters age and MGMT status slightly improved their performance (test data, TTR: 
C-index 0.68, OS: C-index 0.65) and patient stratification was still significant (TTR: p 0.017, OS: p 0.039). Figure 4 
shows the Kaplan–Meier curves for the best performing Clinical + DenseNet model for prognosis of TTR (a) 
and OS (b) using MET-PET imaging. The corresponding calibration plots are shown in Supplementary Fig. S9.

Discussion
We investigated conventional radiomics and deep-learning-based radiomics (3D-CNNs) for detection of residual 
tumour status and to prognosticate TTR and OS in patients with newly diagnosed GBM based on MET-PET and 
T1c-w MRI. Overall, classification of residual tumour status and prognosis of TTR and OS on MET-PET was 
possible with a higher accuracy than on T1c-w MRI. In terms of modelling, the best performance in independent 
test data for detection of residual tumour status on MET-PET was achieved by the 3D-DenseNet (AUC 0.95), 
while logistic regression using conventional radiomics features performed best for T1c-w MRI (AUC 0.78). 
For prognosis of TTR and OS, the best performance on the independent test data was achieved by combining 
a clinical signature (age and MGMT) with a 3D-DenseNet ensemble model based on MET-PET imaging, with 
significant stratification of the patients in a low and high-risk group.

Several studies have examined the utilization of radiomics and automated algorithms for the purpose of 
diagnostic and prognostic modelling in GBM. Given that MRI currently represents the most extensively available 
imaging modality for GBM patient management, the majority of these studies have assessed the effectiveness of 
their proposed methods on MRI data. To the best of our knowledge, this is the first radiomics based evaluation 
of the diagnostic and prognostic role of pre-RCT  [11C] MET-PET together with T1c-w MRI in adult patients 
with newly diagnosed GBM.

Commonly, the imaging-based assessment of the residual tumour status is done visually by experienced 
radiation oncologists, nuclear medicine experts, and radiologists in a complex evaluation procedure that is at risk 
for inter-rater  variability54. In post-operative management of GBM, most of studies examined a semi-automated 
computer aided volumetry (CAV) approach for residual tumour detection on post-operative T1c-w MRI using 
small cohorts. For example, the studies by Kanaly et al.55 and Chow et al.56 demonstrated that a semi-automated 

Figure 2.  Receiver operating characteristics (ROC) curves of the best performing conventional radiomics and 
deep-learning-based model for classification of residual tumour status on (a, b) T1c-w MRI and (c, d) MET-
PET in training and test data.
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CAV approach for residual tumour segmentation can reduce inter-observer variability. Among fully automated 
approaches for residual tumour segmentation, Meier et al.25 used an end-to-end machine learning based algo-
rithm with a performance comparable to a human rater. Krivoshapkin et al.57 used an automated tool based 
on a mathematical model and showed that automatically measured residual tumour burden was a significant 
predictor of OS (p-value < 0.001). While our analysis did not involve segmentation, we were able to demonstrate 
the high performance of MET-PET in detecting residual tumour. This result can also be useful for segmentation 
algorithms by providing a reliable initialization method for identifying the target region of radiotherapy planning.

The use of radiomics analysis for prognostic modeling in GBM has been extensively investigated. However, it 
is worth noting that a large proportion of these studies have focused on pre-treatment mpMRI data as the primary 
imaging modality for analysis. Li et al.58, Kickingereder et al.,59 and Chaddad et al.60 showed that a prognostic 
model built with second order texture features extracted from pre-treatment mpMRI are significantly associ-
ated to OS in GBM (C-index 0.7058, C-index 0.6559, log-rank test p-value < 0.0160). Carles et al.33 and Manabe 
et al.61 observed that second-order texture features extracted from [18F]-FDG PET and MET-PET can predict 
OS (p 0.03833 and p < 0.0561, respectively). Verma et al.62 found higher order pre-treatment MRI features as a 
prognostic marker for PFS in GBM (C-index 0.80). Other studies have demonstrated that simple features (not 
strictly radiomics) extracted from pre-treatment MET-PET and MRI can also prognosticate OS in  GBM63–65. A 
recent study by Garcia-Ruiz et al.31 showed that a radiomics signature (first-order and second-order features) 
from the enhancing residual tumour region obtained by subtracting early post-surgical T1c-w from T1w MRI 
has prognostic value for predicting > 2-year OS status (AUC 0.71). In our conventional radiomics analysis, which 
involved the extraction of handcrafted features from pre-RCT T1c-w MRI data, we found that both first-order 
(intensity histogram) and second-order texture (distance zone matrix) features exhibited a notable correlation 
with overall survival (OS) in the training data. However, the signature was unable to demonstrate similar success 
when applied to the test data.

Studies have also demonstrated improved prognostic performance of patient clinical\molecular features when 
combined with radiomics features extracted from pre-treatment mpMRI. For the prediction of OS, Lao et al.66 
showed that a model combining CNN-based deep features with clinical parameters (age and KPS) has improved 
prognostic performance than clinical features alone (C-index radiomics + clinical 0.74), while Tixier et al.67 
showed that Gabor skewness features extracted from T1c-w MRI when combined with MGMT have improved 
prognostic performance compared to MGMT alone (log-rank p-value MGMT + radiomics 0.001). Similarly, 
Kickingereder et al.59 showed that combined clinical and radiomics model has better prognostic performance 
for OS prediction than individual models (C-index 0.69). Overall, the performance of our best performing con-
ventional radiomics signature for the prognosis of OS based on features extracted from MET-PET and T1c-w 
MRI was somewhat lower (MET-PET C-index 0.60, T1c-w MRI C-index 0.63) than the results presented in 
literature. However, a full comparison with previous studies is not possible as we used post-surgical imaging 

Table 3.  Concordance index (C-index) for the endpoint time to recurrence (TTR) and overall survival 
(OS) based on MET-PET imaging and T1c-w MRI data using conventional radiomics. Values in parenthesis 
represent the 95% confidence interval. Best performance is marked in bold.

Endpoint Modality Model CV train C-index CV valid C-index Features Final training C-index Final test C-index p-value test

TTR 

MET-PET

Cox 0.66 0.60

log_stat_min

0.64 (0.57–0.71) 0.59 (0.48–0.70) 0.25

RSF 0.64 0.58 0.64 (0.57–0.51) 0.58 (0.47–0.69) 0.23

XGB_lm 0.66 0.61 0.64 (0.56–0.71) 0.59 (0.48–0.70) 0.25

T1c-w MRI

Cox 0.62 0.51 ivh_diff_i25_i75, dzm_
zd_var_3d_fbn_n32, 
loc_peak_glob

0.60 (0.52–0.67) 0.54 (0.42–0.64) 0.58

RSF 0.64 0.53 0.64 (0.58–0.72) 0.53 (0.42–0.65) 0.89

XGB_lm 0.62 0.51 0.59 (0.52–0.66) 0.54 (0.44–0.65) 0.23

Clinical Cox – – Age, MGMT 0.72 (0.65–0.79) 0.59 (0.49–0.71) 0.004

Clinical + MET-PET Cox – – Age, MGMT, log_stat_
min 0.74 (0.68–0.79) 0.66 (0.56–0.76)  < 0.001

Clinical + T1c-w MRI Cox – –
Age, MGMT, 
ivh_diff_i25_i75, dzm_
zd_var_3d_fbn_n32, 
loc_peak_glob

0.74 (0.67–0.79) 0.62 (0.51–0.73) 0.008

OS

MET-PET

Cox 0.63 0.52

stat_max

0.60 (0.53–0.68) 0.60 (0.46–0.74) 0.84

RSF 0.65 0.51 0.60 (0.52–0.68) 0.60 (0.48–0.70) 0.85

XGB_lm 0.63 0.54 0.60 (0.53–0.68) 0.60 (0.47–0.73) 0.84

T1c-w MRI

Cox 0.62 0.49
ivh_diff_i25_i75, dzm_
zd_var_3d_fbn_n32

0.60 (0.53–0.67) 0.63 (0.49–0.73) 0.86

RSF 0.65 0.51 0.61 (0.53–0.70) 0.62 (0.48–0.74) 0.63

XGB_lm 0.62 0.49 0.59 (0.52–0.66) 0.62 (0.50–0.73) 0.3

Clinical Cox – – Age, MGMT 0.74 (0.69–0.81) 0.55 (0.45–0.66) 0.32

Clinical + MET-PET Cox – – Age, MGMT, stat_max 0.75 (0.60–0.80) 0.59 (0.48–0.69) 0.21

Clinical + T1c-w MRI Cox – –
Age, MGMT, ivh_
diff_i25_i75, dzm_zd_
var_3d_fbn_n32

0.76 (0.70–0.81) 0.57 (0.46–0.67) 0.25
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(acquired after median 23 days) instead of pre-treatment imaging for prognostic modelling, where the tumour 
was mainly removed.

Further we also observed methodological heterogeneity found across the radiomics studies mainly due to the 
use of different software implementations and underreporting. This limitation is also highlighted in our recent 
 study68. Thus, there is a strong need for a standard radiomics process for signature definition, both for reproduc-
ibility and progression of radiomics towards clinical application. To enhance the reliability of existing radiomics 

Figure 3.  Kaplan–Meier plots for the prognosis of TTR on the training and test cohort using the Cox regression 
model based on (a) the clinical signature, (b) the clinical + MET-PET signature, and (c) the clinical + T1c-w 
MRI signature. Imaging-based signatures were developed using conventional radiomics. All models resulted in 
significant patient stratification into low and high-risk groups (p < 0.01) on the test set.



11

Vol.:(0123456789)

Scientific Reports |         (2024) 14:4576  | https://doi.org/10.1038/s41598-024-55092-8

www.nature.com/scientificreports/

models, initiatives such as the  IBSI37 are attempting to establish reporting guidelines for image processing and 
feature extraction. To tackle this problem, we have established and independently validated conventional radi-
omics signatures using the MIRP software, which is developed in accordance with the IBSI  guidelines37, and we 
report parameters and algorithms used for their extraction, transformation, stability analysis, and modelling.

The lower performance of MRI-based classification in our radiomics analysis can be attributed to the clinical 
practice of assessing the extent of resection and tumour residual status in GBM through early post-operative 
MRI (within 24–48 h of surgery). Later MRI scans are susceptible to non-tumour-related contrast enhancement 

Table 4.  Ensemble concordance index (C-index) values for cross validation (CV) on the training and test data 
for TTR and OS prediction based on MET-PET and T1c-w MRI data using deep learning (DL). Significant 
values are in [bold].

Endpoint Modality Model C-index train C-index valid C-index test p-value test

TTR 

MET-PET

DenseNet 0.84 (0.79–0.88) 0.68 (0.60–0.75) 0.66 (0.51–0.81) 0.027

ResNet 0.90 (0.85–0.93) 0.63 (0.56–0.71) 0.61 (0.43–0.79) 0.168

VGGNet 0.84 (0.79–0.89) 0.69 (0.62–0.76) 0.55 (0.44–0.67) 0.763

T1cw-MRI

DenseNet 0.86 (0.82–0.90) 0.63 (0.56–0.71) 0.50 (0.43–0.58) 0.406

ResNet 0.82 (0.78–0.85) 0.60 (0.51–0.70) 0.55 (0.46–0.64) 0.096

VGGNet 0.66 (0.60–0.73) 0.53 (0.46–0.60) 0.56 (0.45–0.68) 0.857

Clinical + DenseNet MET-PET Cox 0.85 (0.81–0.88) 0.74 (0.67–0.79) 0.68 (0.53–0.83) 0.017

OS

MET-PET

DenseNet 0.82 (0.77–0.87) 0.61 (0.53–0.69) 0.64 (0.43–0.86) 0.033

ResNet 0.87 (0.84–0.91) 0.55 (0.47–0.62) 0.61 (0.44–0.77) 0.227

VGGNet 0.88 (0.82–0.93) 0.70 (0.64–0.76) 0.53 (0.42–0.65) 0.426

T1cw-MRI

DenseNet 0.84 (0.80–0.89) 0.62 (0.55–0.69) 0.60 (0.43–0.77) 0.067

ResNet 0.87 (0.82–0.92) 0.58 (0.50–0.65) 0.59 (0.49–0.70) 0.191

VGGNet 0.59 (0.51–0.66) 0.49 (0.42–0.57) 0.65 (0.55–0.76) –

Clinical + DenseNet MET-PET Cox 0.82 (0.77–0.87) 0.69 (0.63–0.75) 0.65 (0.51–0.78) 0.039

Figure 4.  Kaplan–Meier estimates for risk-group stratification for (a) time to recurrence (TTR) and, (b) 
overall survival (OS) in training, internal validation and independent test data based on the respective joint 
clinical + ensemble predictions (3D-DenseNet model) on MET-PET data.



12

Vol:.(1234567890)

Scientific Reports |         (2024) 14:4576  | https://doi.org/10.1038/s41598-024-55092-8

www.nature.com/scientificreports/

caused by inflammatory/repair-related changes, referred to as confounding effects. These changes can be mis-
taken for tumour remnants, leading to inaccurate  diagnoses69. Consequently, using only the second baseline 
MRI for analysis, which was the only MRI available, is limited in terms of diagnostic accuracy. Since the residual 
tumour burden is a prognostic imaging biomarker in  GBM18,70, misinterpretation of residual tumours can also 
lead to reduced prognostic performance. An example of such case is discussed in Supplementary Section 3 with 
Supplementary Fig. S10, showing a second baseline T1c-w MR image with confounding effects of surgically 
induced contrast enhancement. This contrast enhancement led to a misclassification of the T1c-w MR residual 
tumour status by the 3D-DenseNet model and indicates that the inclusion of early post-operative MRI may help 
to improve predictions. On the other hand, MET-PET is capable of providing better differentiation of nonspe-
cific postoperative changes in GBM and therefore provides improved prognostic and diagnostic  performance71.

In our review of relevant studies, as summarized in Table S13, numerous pre-treatment MRI-based radiom-
ics investigations focus on the patient prognosis in  GBM58–60,62,64–67. However, only a limited number of studies 
incorporate pre-treatment MET-PET with small sample sizes (N =  4261, N =  5263). Considering the significance 
of residual tumour burden as a prognostic imaging biomarker in  GBM18,19, understanding the residual tumour 
status post-surgery may aid in refining treatment planning and tailoring therapies to the specific tumour burden, 
potentially improving treatment efficacy. Therefore, the radiomics based evaluation of post-operative data, in 
particular based on MET-PET imaging, may offer a better diagnostic and prognostic performance by providing 
clearer insights into the extent of residual disease. In this study, we included a relatively large data set of MET-PET 
imaging from a prospective clinical trial to establish the feasibility of such analysis. Further research is needed 
to evaluate the clinical applicability of proposed models.

In context of radiomics modelling, there is no ‘one size fit all’ scheme. Different machine learning and DL 
models have different performance, and the choice of an optimal model may not be immediately apparent. 
Therefore, trying multiple models can help to identify the model that best fits the data and achieves the highest 
performance. A study by Bae et al.72 compared conventional machine learning based radiomics with deep neural 
network (DNN) based radiomics analysis to distinguish GBM from brain metastases using pre-operative T2-w 
MRI and showed improved diagnostic value of the DNN compared to the best-performing machine learning 
model. Other studies have compared different machine learning models trained on radiomics features for dif-
ferentiating  gliomas73,74 and for prognostic modelling in other cancer  entities23 and showed that model perfor-
mance varies with algorithm used. In our radiomics analysis, we observed a limited gain from complex classifiers 
such as Xgboost_lm and RF compared to simple logistic regression, probably due to elaborate feature selection. 
Furthermore, we were able to show that CNNs, despite being highly parametrized models, were able to achieve 
a somewhat better performance than conventional radiomics. The improved performance of DL models can be 
attributed to the use of 3D-CNN models together with extensive data augmentation, as explained in the meth-
odology of this study. Due to the volumetric nature of medical imaging, 3D-CNNs are more promising than 2D 
alternatives as they incorporate potentially relevant spatial  information75. In our analysis, the performance benefit 
observed for residual tumour status detection and prognosis of TTR and OS on MET-PET via the 3D-DenseNet 
may be attributed to the use of multi-layer feature concatenation, which increases the representation capacity of 
CNNs. The generalizability of our 3D-CNN models was validated using an independent test cohort. Neverthe-
less, our conventional radiomics model outperformed the 3D-CNN model in predicting the status of residual 
tumour on T1c-w MRI, which is a commonly accessible modality for GBM. Thus, the choice between these 
models should depend on the specific requirements and availability of imaging data.

There are several open research questions concerning decision support and prognostication of outcome in 
newly diagnosed GBM that can be explored for future research with the help of DL. First, a prognostic model 
based on single-modality medical imaging only partially reflects the available tumour information. Similar to 
clinicians, who perform diagnoses and give prognostic suggestions, predictive models may be based on multi-
modal imaging data to extract more diverse aspects of phenotypical tumour information and integrate them in 
model development. In our conventional radiomics approach, we conducted such analyses, where we combined 
the final signatures developed from T1c-w MRI, MET-PET, and clinical/molecular features into a multivariable 
Cox model to predict the TTR and OS, however, leading to a similar performance as the best single models. One 
possible explanation for this result is that the lower performing T1c-w MRI may not add relevant information 
to the more reliable biomarkers from MET-PET imaging in the joint signature.

Prediction of the tumour recurrence location in GBM can enable more targeted and personalized therapies. 
Studies have investigated the use of machine learning based pattern recognition methods to provide predic-
tive spatial maps of the early recurrence region using pre-treatment  MRI76,77. However, additional research is 
needed to validate these findings and optimize the predictive models used for glioblastoma recurrence location 
prediction.

Our study has limitations. Even though the dataset used for this analysis is, so far, unique in the field of 
medical imaging, it contains a relatively low number of patients in the training and test cohorts, which may lead 
to model overfitting and wide confidence intervals. To overcome the problem of potential model overfitting, 
we used an extensive feature selection approach in conventional radiomics and data augmentation in the DL 
analysis. In addition, there is a small class imbalance in our tumour residual status detection analysis due to the 
smaller number of negative instances. We aimed to mitigate this problem by internal cross-validation (CV) on 
the training data for both conventional and DL based radiomics analysis. A fivefold CV approach was used and 
repeated 5 times, to ensure that each fold contained a sufficient number of negative instances for training and 
validation and that the finally considered ensemble model performance was sufficiently robust.

This study adheres to the 2016 WHO classification of brain  tumours78, which categorizes IDH-mutant brain 
tumours as glioblastoma. However, in the updated 2021 WHO  classification79, IDH-mutant tumours are no 
longer designated as glioblastoma but rather classified as astrocytoma, IDH-mutant. To assess the impact of this 
recent WHO classification on the generalizability of our results, we performed a re-validation of the radiomics 
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signature, excluding IDH-mutant patients from the validation cohort. The re-validation showed only a minimal 
change of up to ± 2% in AUC and C-index, indicating the overall robustness of the proposed models.

In future work, we aim to validate our findings by additional datasets and adjust the present models if 
required. This approach will not only address the limitation of the currently relatively small dataset but may 
also contribute to a more balanced representation of tumour residual status and patient characteristics, thus 
eliminating disparities between the training and test cohorts. After additional prospective validation, our models 
may ultimately aid clinicians in diagnosis and prognosis, potentially reducing required resources, inter-rater 
variability, and facilitate the development of personalized radiotherapy.

In conclusion, we developed and independently tested conventional and DL-based radiomics for predicting 
the residual tumour status and prognosticate TTR and OS in patients with newly diagnosed GBM using MET-
PET and T1c-w MRI acquired after surgery. Overall, residual tumour detection and prognosis on MET-PET was 
possible with a higher accuracy than on T1c-w MRI.

Data availability
The data that support the findings of this study are available on request from the corresponding author (S.L.). 
The data is not publicly available due to patient data privacy policy.

Received: 1 August 2023; Accepted: 20 February 2024

References
 1. Stupp, R. et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N. Engl. J. Med. 352, 987–996 (2005).
 2. Wick, W. et al. Gliome, S2k-Leitlinien. Deutsche Gesellschaft für Neurologie (Hrsg.), Leitlinien für Diagnostik und Therapie in der 

Neurologie (2021).
 3. Alexander, B. M. & Cloughesy, T. F. Adult glioblastoma. J. Clin. Oncol. 35, 2402–2409 (2017).
 4. Stupp, R. et al. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in 

glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol. 10, 459–466 (2009).
 5. Wang, L. et al. What is the advance of extent of resection in glioblastoma surgical treatment—a systematic review. Chin. Neurosurg. 

J. 5, 1–6 (2019).
 6. Coburger, J., Wirtz, C. R. & Konig, R. Impact of extent of resection and recurrent surgery on clinical outcome and overall survival 

in a consecutive series of 170 patients for glioblastoma in intraoperative high field magnetic resonance imaging. J. Neurosurg. Sci. 
61, 233–244 (2017).

 7. Brown, T. J. et al. Association of the extent of resection with survival in glioblastoma: A systematic review and meta-analysis. JAMA 
Oncol. 2, 1460–1469 (2016).

 8. Rao, J. S. Molecular mechanisms of glioma invasiveness: The role of proteases. Nat. Rev. Cancer 3, 489–501 (2003).
 9. Lutterbach, J., Sauerbrei, W. & Guttenberger, R. Multivariate analysis of prognostic factors in patients with glioblastoma. Strahl-

enther Onkol. 179, 8–15 (2003).
 10. Sizoo, E. M. et al. Symptoms and problems in the end-of-life phase of high-grade glioma patients. Neuro-oncology 12, 1162–1166 

(2010).
 11. Zhou, G. et al. Remote ischemic conditioning in cerebral diseases and neurointerventional procedures: Recent research progress. 

Front. Neurol. 9, 339 (2018).
 12. Rich, J. N. et al. Gene expression profiling and genetic markers in glioblastoma survival. Cancer Res. 65, 4051–4058 (2005).
 13. Yamanaka, R. et al. Identification of expressed genes characterizing long-term survival in malignant glioma patients. Oncogene 

25, 5994–6002 (2006).
 14. Candido, S. et al. The analysis of miRNA expression profiling datasets reveals inverse microRNA patterns in glioblastoma and 

Alzheimer’s disease. Oncol. Rep. 42, 911–922 (2019).
 15. Dhermain, F. Radiotherapy of high-grade gliomas: current standards and new concepts, innovations in imaging and radiotherapy, 

and new therapeutic approaches. Chin. J. Cancer 33, 16 (2014).
 16. Wee, C. W. et al. Evaluation of variability in target volume delineation for newly diagnosed glioblastoma: A multi-institutional 

study from the Korean Radiation Oncology Group. Radiat. Oncol. 10, 1–9 (2016).
 17. Piroth, M. D. et al. Relapse patterns after radiochemotherapy of glioblastoma with FET PET-guided boost irradiation and simula-

tion to optimize radiation target volume. Radiat. Oncol. 11, 1–9 (2016).
 18. Seidlitz, A. et al. Final results of the prospective biomarker trial PETra:[11C]-MET-accumulation in postoperative PET/MRI pre-

dicts outcome after radiochemotherapy in glioblastomabiomarker trial: MET-PET predicts outcome after RCTx in glioblastoma. 
Clin. Cancer Res. 27, 1351–1360 (2021).

 19. Wang, Y. et al. C11 methionine PET (MET-PET) imaging of glioblastoma for detecting postoperative residual disease and response 
to chemoradiation therapy. Int. J. Radiat. Oncol. Biol. Phys. 102, 1024 (2018).

 20. Gillies, R. J., Kinahan, P. E. & Hricak, H. J. R. Radiomics: images are more than pictures, they are data. Radiology 278, 563 (2016).
 21. Song, J. et al. A review of original articles published in the emerging field of radiomics. Eur. J. Radiol. 127, 108991 (2020).
 22. Zhu, W., Xie, L., Han, J. & Guo, X. J. C. The application of deep learning in cancer prognosis prediction. Cancers 12, 603 (2020).
 23. Starke, S. et al. 2D and 3D convolutional neural networks for outcome modelling of locally advanced head and neck squamous 

cell carcinoma. Sci. Rep. 10, 1–13 (2020).
 24. Zeng, K. et al. Segmentation of gliomas in pre-operative and post-operative multimodal magnetic resonance imaging volumes 

based on a hybrid generative-discriminative framework. In Internation Workshop on Brainlesion: Glioma, Multiple Sclerosis, Stroke 
and Traumatic Brain Injuries, MICCAI. 184–194 (2016).

 25. Meier, R. et al. Automatic estimation of extent of resection and residual tumor volume of patients with glioblastoma. J. Neurosurg. 
127, 798–806 (2017).

 26. Yang, D., Rao, G., Martinez, J., Veeraraghavan, A. & Rao, A. Evaluation of tumor-derived MRI-texture features for discrimination 
of molecular subtypes and prediction of 12-month survival status in glioblastoma. Med. Phys. 42, 6725–6735 (2015).

 27. Chaddad, A. et al. Prediction of survival with multi-scale radiomic analysis in glioblastoma patients. Med. Biol. Eng. Comput. 56, 
2287–2300 (2018).

 28. Kickingereder, P. et al. Radiogenomics of glioblastoma: machine learning–based classification of molecular characteristics by using 
multiparametric and multiregional MR imaging features. Radiology 281, 907–918 (2016).

 29. Lee, M. H. et al. Prediction of IDH1 mutation status in glioblastoma using machine learning technique based on quantitative 
radiomic data. World Neurosurg. 125, e688–e696 (2019).

 30. Osman, A. F. Automated brain tumor segmentation on magnetic resonance images and patient’s overall survival prediction using 
support vector machines. in International MICCAI Brainlesion Workshop. 435–449 (2017).



14

Vol:.(1234567890)

Scientific Reports |         (2024) 14:4576  | https://doi.org/10.1038/s41598-024-55092-8

www.nature.com/scientificreports/

 31. Garcia-Ruiz, A. et al. Precise enhancement quantification in post-operative MRI as an indicator of residual tumor impact is associ-
ated with survival in patients with glioblastoma. Sci. Rep. 11, 695 (2021).

 32. Lohmann, P. et al. FET PET radiomics for differentiating pseudoprogression from early tumor progression in glioma patients 
post-chemoradiation. Cancers 12, 3835 (2020).

 33. Carles, M. et al. FET-PET radiomics in recurrent glioblastoma: Prognostic value for outcome after re-irradiation?. Rad. Oncol. 16, 
1–10 (2021).

 34. Tustison, N. J. et al. N4ITK: Improved N3 bias correction. IEEE Trans. Med. Imaging 29, 1310–1320 (2010).
 35. Canny, J. A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach Intell. 6, 679–698 (1986).
 36. Zwanenburg, A. et al. Assessing robustness of radiomic features by image perturbation. Sci. Rep. 9, 1–10 (2019).
 37. Zwanenburg, A. et al. The image biomarker standardization initiative: standardized quantitative radiomics for high-throughput 

image-based phenotyping. Radiology 295, 328–338 (2020).
 38. Zwanenburg, A. & Löck, S. familiar: End-to-End Automated Machine Learning and Model Evaluation. https:// github. com/ alexz 

wanen burg/ famil iar (2021).
 39. Peng, H., Long, F. & Ding, C. Feature selection based on mutual information criteria of max-dependency, max-relevance, and 

min-redundancy. IEEE Trans. Pattern Anal. Mach. Intell. 27, 1226–1238 (2005).
 40. Gelfand, I. M. & IAglom, a. Calculation of the amount of information about a random function contained in another such function 

199–224 (Providence American Mathematical Society, 1959).
 41. Zou, H. & Hastie, T. Regularization and variable selection via the elastic net. J. R. Stat. Soc. Series B Stat. Methodol. 67, 301–320 

(2005).
 42. Cox, D. R. The regression analysis of binary sequences. J. R. Stat. Soc. Series B Stat. Methodol. 20, 215–232 (1958).
 43. Jones, D. R., Schonlau, M. & Welch, W. J. Efficient global optimization of expensive black-box functions. J. Global Optim. 13, 455 

(1998).
 44. Jihong Ju, J. S. keras-resnet3d. https:// github. com/ Jihon gJu/ keras- resne t3d# keras- resne t3d, (2019).
 45. Dudovitch, G. A 3D implementation of DenseNet & DenseNetFCN. https:// github. com/ GalDu de33/ Dense NetFCN- 3D (2019).
 46. Huang, G., Liu, Z., Van Der Maaten, L. & Weinberger, K. Q. Densely connected convolutional networks. in Proceedings of the IEEE 

Conference on Computer Vision and Pattern Recognition. 4700–4708 (2017).
 47. Gneiting, T. & Raftery, A. E. Strictly proper scoring rules, prediction, and estimation. J. Am. Stat. Assoc. 102, 359–378 (2007).
 48. Katzman, J. L. et al. DeepSurv: Personalized treatment recommender system using a Cox proportional hazards deep neural network. 

BMC Med. Res. Methodol. 18, 1–12 (2018).
 49. Mobadersany, P. et al. Predicting cancer outcomes from histology and genomics using convolutional networks. Proc. Natl. Acad. 

Sci. 115, E2970–E2979 (2018).
 50. Isensee, F. et al. batchgenerators—a python framework for data augmentation. https:// github. com/ MIC- DKFZ/ batch gener ators 

(2020).
 51. Hothorn, T. & Lausen, B. On the exact distribution of maximally selected rank statistics. Comput. Stat. Data Anal. 43, 121–137 

(2003).
 52. Hosmer, D. W. & Lemesbow, S. Goodness of fit tests for the multiple logistic regression model. Commun. Stat. Theory Methods 9, 

1043–1069 (1980).
 53. Demler, O. V., Paynter, N. P. & Cook, N. R. Tests of calibration and goodness-of-fit in the survival setting. Stat. Med. 34, 1659–1680 

(2015).
 54. Kubben, P. L., Postma, A. A., Kessels, A. G., van Overbeeke, J. J. & van Santbrink, H. J. N. Intraobserver and interobserver agree-

ment in volumetric assessment of glioblastoma multiforme resection. Neurosurgery 67, 1329–1334 (2010).
 55. Kanaly, C. W. et al. A novel, reproducible, and objective method for volumetric magnetic resonance imaging assessment of enhanc-

ing glioblastoma. J. Neurosurg. 121, 536–542 (2014).
 56. Chow, D. et al. Semiautomated volumetric measurement on postcontrast MR imaging for analysis of recurrent and residual disease 

in glioblastoma multiforme. Am. J. Neuroradiol. 35, 498–503 (2014).
 57. Krivoshapkin, A. L. et al. Automated volumetric analysis of postoperative magnetic resonance imaging predicts survival in patients 

with glioblastoma. World Neurosurg. 126, e1510–e1517 (2019).
 58. Li, Q. et al. A fully-automatic multiparametric radiomics model: towards reproducible and prognostic imaging signature for 

prediction of overall survival in glioblastoma multiforme. Sci. Rep. 7, 14331 (2017).
 59. Kickingereder, P. et al. Radiomic profiling of glioblastoma: identifying an imaging predictor of patient survival with improved 

performance over established clinical and radiologic risk models. Radiology 280, 880–889 (2016).
 60. Chaddad, A. & Tanougast, C. Extracted magnetic resonance texture features discriminate between phenotypes and are associated 

with overall survival in glioblastoma multiforme patients. Med. Biol. Eng. Comput. 54, 1707–1718 (2016).
 61. Manabe, O. et al. Preoperative texture analysis using 11C-methionine positron emission tomography predicts survival after surgery 

for glioma. Diagnostics 11(2), 189 (2021).
 62. Verma, R. et al. Tumor habitat–derived radiomic features at pretreatment MRI that are prognostic for progression-free survival in 

glioblastoma are associated with key morphologic attributes at histopathologic examination: A feasibility study. Radiol. Art. Intell. 
2, e190168 (2020).

 63. Kobayashi, K. et al. Prognostic value of volume-based measurements on 11 C-methionine PET in glioma patients. Eur. J. Nuclear 
Med. Mol. Imaging 42, 1071–1080 (2015).

 64. Pérez-Beteta, J. et al. Tumor surface regularity at MR imaging predicts survival and response to surgery in patients with glioblas-
toma. Radiology 288, 218–225 (2018).

 65. Gutman, D. A. et al. MR imaging predictors of molecular profile and survival: multiinstitutional study of the TCGA glioblastoma 
data set. Radiology 267, 560–569 (2013).

 66. Lao, J. et al. A deep learning-based radiomics model for prediction of survival in glioblastoma multiforme. Radiology 7, 10353 
(2017).

 67. Tixier, F. et al. Preoperative MRI-radiomics features improve prediction of survival in glioblastoma patients over MGMT methyla-
tion status alone. Oncotarget 10, 660 (2019).

 68. Shahzadi, I. et al. Analysis of MRI and CT-based radiomics features for personalized treatment in locally advanced rectal cancer 
and external validation of published radiomics models. Sci. Rep. 12, 10192 (2022).

 69. Albert, F. K., Forsting, M., Sartor, K., Adams, H.-P. & Kunze, S. J. N. Early postoperative magnetic resonance imaging after resec-
tion of malignant glioma: Objective evaluation of residual tumor and its influence on regrowth and prognosis. Neurosurgery. 34, 
45–61 (1994).

 70. Matsuo, M. et al. Impact of [11C] methionine positron emission tomography for target definition of glioblastoma multiforme in 
radiation therapy planning. Int. J. Radiat. Oncol. Biol. Phys. 82, 83–89 (2012).

 71. Palanichamy, K. & Chakravarti, A. Diagnostic and prognostic significance of methionine uptake and methionine positron emission 
tomography imaging in gliomas. Front. Oncol. 7, 257 (2017).

 72. Bae, S. et al. Robust performance of deep learning for distinguishing glioblastoma from single brain metastasis using radiomic 
features: model development and validation. Sci. Rep. 10, 1–10 (2020).

 73. Cho, H. H., Lee, S. H., Kim, J. & Park, H. Classification of the glioma grading using radiomics analysis. PeerJ 6, e5982 (2018).

https://github.com/alexzwanenburg/familiar
https://github.com/alexzwanenburg/familiar
https://github.com/JihongJu/keras-resnet3d#keras-resnet3d
https://github.com/GalDude33/DenseNetFCN-3D
https://github.com/MIC-DKFZ/batchgenerators


15

Vol.:(0123456789)

Scientific Reports |         (2024) 14:4576  | https://doi.org/10.1038/s41598-024-55092-8

www.nature.com/scientificreports/

 74. Nakamoto, T. et al. Prediction of malignant glioma grades using contrast-enhanced T1-weighted and T2-weighted magnetic 
resonance images based on a radiomic analysis. Sci. Rep. 9, 1–12 (2019).

 75. Singh, S. P. et al. 3D deep learning on medical images: A review. Sensors 20, 5097 (2020).
 76. Akbari, H. et al. Imaging surrogates of infiltration obtained via multiparametric imaging pattern analysis predict subsequent 

location of recurrence of glioblastoma. Neurosurgery 78, 572–580 (2016).
 77. Rathore, S. et al. Radiomic signature of infiltration in peritumoral edema predicts subsequent recurrence in glioblastoma: Implica-

tions for personalized radiotherapy planning. J. Med. Imaging 5, 021219–021219 (2018).
 78. Wesseling, P. & Capper, D. W. H. O. WHO 2016 classification of gliomas. Neuropathol. Appl. Neurobiol. 44(2), 139–150 (2018).
 79. Reuss, D. E. Updates on the WHO diagnosis of IDH-mutant glioma. J. Neuro-oncol. 162, 461–469 (2023).

Acknowledgements
The present study was financed in parts by the Federal Ministry of Education and Research (BMBF), Grant 
Number 03WKDB2D, as a co-operation of academia and industry (Attomol GmbH, GA Generic Assays GmbH, 
Lipotype GmbH, PolyAn GmbH, Gesellschaft für medizinische und wissenschaftliche genetische Analysen, BTU 
Cottbus-Senftenberg, DKTK Dresden).

Author contributions
I.S., together with A.Z., and S.L. developed the tools for data analysis, analysed the data and wrote the paper. 
M.B., M.K. and E.G.C.T., S.L., conceived the project and reviewed the manuscript. A.S., B.B., I.P., J.K., performed 
segmentation of imaging data, provided expert opinion and reviewed the manuscript.

Funding
Open Access funding enabled and organized by Projekt DEAL.

Competing interests 
Dr. Baumann, CEO and Scientific Chair of the German Cancer Research Center (DKFZ, Heidelberg) is respon-
sible for collaborations with a large number of companies and institutions worldwide. In this capacity, he has 
signed contracts for research funding and/or collaborations, including commercial transfers, with industry and 
academia on behalf of his institute(s) and staff. He is a member of several supervisory boards, advisory boards, 
and boards of trustees. Dr. Baumann confirms that there is no conflict of interest for this paper. Dr. Baumann 
confirms that, to the best of his knowledge, none of the above funding sources were involved in the preparation 
of this paper. Dr. Krause received funding for her research projects by IBA (2016), Merck KGaA (2014–2018 for 
preclinical study; 2018–2020 for clinical study), Medipan GmbH (2014–2018), Attomol GmbH (2019–2021), GA 
Generic Assays GmbH (2019–2021), BTU Cottbus-Senftenberg (2019–2021), Gesellschaft für medizinische und 
wissenschaftliche genetische Analysen (2019–2021), Lipotype GmbH (2019–2021), PolyAn GmbH (2019–2021). 
Dr. G.C. Troost received funding for her research projects by Merck KGaA (since 2017 for clinical study), Medi-
pan GmbH (2014–2018), Attomol GmbH (2019–2021), GA Generic Assays GmbH (2019–2021), BTU Cottbus-
Senftenberg (2019–2021), Gesellschaft für medizinische und wissenschaftliche genetische Analysen (2019–2021), 
Lipotype GmbH (2019–2021), PolyAn GmbH (2019–2021), by Astra Zeneca (since 2019 for clinical study). 
Moreover, she is a member of the Scientific Advisory Board of IBA. Dr. Zwanenburg, Dr. Löck, Dr. Beuthien-
Baumann, Dr. Seidlitz, Dr. Kotzerke, Dr. Platzekand, and Iram Shahzadi declare no potential conflict of interest.

Additional information
Supplementary Information The online version contains supplementary material available at https:// doi. org/ 
10. 1038/ s41598- 024- 55092-8.

Correspondence and requests for materials should be addressed to S.L.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2024

https://doi.org/10.1038/s41598-024-55092-8
https://doi.org/10.1038/s41598-024-55092-8
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Radiomics for residual tumour detection and prognosis in newly diagnosed glioblastoma based on postoperative [11C] methionine PET and T1c-w MRI
	Materials and methods
	Patient data
	Image acquisition, endpoints, and contouring
	Study design
	Image pre-processing, and feature extraction
	Conventional radiomics modelling
	Deep-learning-based radiomics
	Combination with clinical data
	Statistical analysis

	Results
	Discussion
	References
	Acknowledgements


