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Development of a promising 
PPAR signaling pathway‑related 
prognostic prediction model 
for hepatocellular carcinoma
Qingmiao Shi 1,2, Yifan Zeng 1,2, Chen Xue 1, Qingfei Chu 1, Xin Yuan 1 & Lanjuan Li 1*

The peroxisome proliferator‑activated receptor (PPAR) signaling pathway plays a crucial role in 
systemic cell metabolism, energy homeostasis and immune response inhibition. However, its 
significance in hepatocellular carcinoma (HCC) has not been well documented. In our study, based 
on the RNA sequencing data of HCC, consensus clustering analyses were performed to identify PPAR 
signaling pathway‑related molecular subtypes, each of which displaying varying survival probabilities 
and immune infiltration status. Following, a prognostic prediction model of HCC was developed by 
using the random survival forest method and Cox regression analysis. Significant difference in survival 
outcome, immune landscape, drug sensitivity and pathological features were observed between 
patients with different prognosis. Additionally, decision tree and nomogram models were adopted 
to optimize the prognostic prediction model. Furthermore, the robustness of the model was verified 
through single‑cell RNA‑sequencing data. Collectively, this study systematically elucidated that the 
PPAR signaling pathway‑related prognostic model has good predictive efficacy for patients with HCC. 
These findings provide valuable insights for further research on personalized treatment approaches for 
HCC.
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Hepatocellular carcinoma (HCC) is an adverse outcome in patients with cirrhosis, particularly prevalent in Asia 
and posing a substantial disease  burden1,2. Despite advances in treatment, its high recurrence rate makes HCC 
a major challenge in clinical decision-making. Peroxisome proliferator-activated receptors (PPARs), including 
PPARα, PPARδ and PPARγ, are ligand-activated transcription factors of nuclear hormone receptor  superfamily3. 
PPARs play a vital role in systemic cell metabolism, energy homeostasis and immune response  inhibition4–6. Over 
the last decade, PPARs have been extensively evaluated in basic and clinical research, serving as drug targets for 
various human diseases. These include diabetes mellitus type 2, hyperlipidemia, nonalcoholic fatty liver disease 
(NAFLD), and the prevention of inflammatory processes such as primary biliary cholangitis (PBC)-induced 
liver  fibrosis7,8. Recently, cumulative evidence have suggested the potential effectiveness of PPAR agonist, such 
as bezafibrate (PPARα agonist), saroglitazar (PPARα/γ agonist), seladelpar (PPARδ agonist) and elafibranor 
(PPARα/δ agonist), for the treatment of cholestatic liver  disease9,10.

Cumulative evidence have suggested that PPAR signaling is closely associated with bile acid metabolism, 
gut microbiota and hepatocyte  proliferation11–13. For instance, Guomin et al. reported that PPARα promoted 
liver regeneration after partial hepatectomy (PHx) in  mice14. Additionally, multiple studies indicated that PPAR 
signaling pathway might participated in the pathogenesis of HCC. Gomez et al. demonstrated that PPARγ-
mediated signaling pathway in rats is involved in the prevention of HCC through  pirfenidone15. Zhewen et al. 
revealed that relationship between PPAR-γ and tumour microenvironment (TME)-related immunosuppression, 
wherein the drug resistance of immune checkpoint inhibitors (ICIs) in HCC is  impacted16. A cellular-level study 
revealed that simvastatin improved sorafenib resistance in HCC through the HIF-1α/PPAR-γ/PKM2  pathway17. 
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Similarly, natural and synthetic PPAR agonists have displayed enormous potential in the treatment of  HCC18. 
However, the bidirectional mechanism of the PPAR pathway in tumorigenicity remains inadequately explored.

Considering the serious health threat posed by HCC, it is vital to develop new and effective prognostic models. 
A study based on proteomics and bioinformatics suggested that Acyl-CoA oxidase 2 improved the outcome of 
patients with HCC through the PPARα pathway, making it a promising prognostic  marker19. In this study, we 
established a new algorithm based on PPAR signaling pathway-related genes, aiming to predict the outcomes 
of patients with HCC. Our findings may provide new strategies for clinical management and prognostic assess-
ment of HCC.

Results
Gene expression and mutation analysis of PPAR signaling pathway‑related genes in HCC
A bioinformatics analysis was conducted on the publicly available datasets using the 69 genes associated with 
the PPAR signaling pathway obtained from the Molecular Signatures Database. To examine the interrelationship 
between each PPAR-related gene and the prognosis of patients with HCC in the The Cancer Genome Atlas-Liver 
Hepatocellular Carcinoma (TCGA-LIHC) cohort, the 69 genes were analysed using univariate Cox analysis. 
Seven genes, namely NR1H3, ACSL3, MMP1, FABP6, FABP5, PPARG  and ME1, were identified as risk factors 
for survival, while four genes, namely CYP7A1, HMGCS2, SLC27A5 and CYP27A1, were identified as protective 
factors (Fig. 1A). The gene expression differences of these 11 prognostically relevant genes between HCC tissues 
and adjacent tissues were further evaluated. Among them, ACSL3, CYP7A1, CYP27A1, FABP6, ME1, MMP1, 
NR1H3 and PPARG  were highly expressed in HCC tissues, while FABP5, HMGCS2 and SLC27A5 were highly 
expressed in adjacent tissues (Fig. 1B). Moreover, the mutation frequency of these 11 genes in HCC was low 
(≤ 1%) (Fig. 1C). Gene copy number variation (CNV) analysis revealed that most genes had a lower proportion 
of “loss” compared to “gain” (Fig. 1D).

Identification of PPAR signaling pathway‑related molecular subtypes
Consensus clustering analysis was performed on the 11 genes related to the PPAR signaling pathway. The result 
indicated that the clustering was more stable when k = 3 (Fig. 2A, B). Based on the TCGA-LIHC and HCCDB18 
datasets, the cluster heatmap demonstrated a clear separation between the samples of the three subtypes (Fig. 2C, 
D). Furthermore, the K–M method showed that the survival outcomes of the three subtypes were statistically 
different. The median survival time of C2 was significantly longer than that of C3 in the TCGA-LIHC cohort 
(Fig. 2E). Similarly, in the HCCDB18 dataset, the overall survival of the C3 subtype was significantly shorter 
than that of the C2 subtype (Fig. 2F). Additionally, the heatmap of the three clusters illustrating the expression of 

Figure 1.  Gene expression and mutation analysis. (A) Univariate Cox regression of PPAR signaling pathway-
related genes in the TCGA-LIHC dataset. (B) Differential gene expression of potential prognosticative genes in 
HCC tissues and adjacent non-tumour tissues. (C) Mutation analysis. (D) The frequency of CNV mutations. ***, 
p < 0.001.
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these 11 genes among the subgroups visually demonstrated significant difference (Fig. 2G). Specifically, SLC27A5, 
CYP27A1, CYP7A1 and HMGCS2 were lowly expressed in the C3 subtype and highly expressed in the C2 subtype.

According to previous studies, the single-sample Gene Set Enrichment Analysis (ssGSEA) algorithm assessed 
the differences in the immune microenvironment among the three  subtypes20,21. The C1, C2 and C3 subtypes 
were revealed to have different degrees of immune cell infiltration, especially  CD4+ T cells, regulatory T cells, 
activated dendritic cells, MDSCs, plasmacytoid dendritic cells, type 2 T helper cells and T follicular helper 
cells (p < 0.0001) (Fig. 2H). The C3 subtype with poor prognosis had higher levels of immune cell infiltration 
and checkpoint expression than the C2 subtype (Fig. 2I). One-way analysis of variance was used to test the 
immune scores in innate and adaptive immunity, revealing similar results to that of ssGSEA (Fig. 2J). These 

Figure 2.  Establishment of PPAR signaling pathway-related molecular subtypes. (A) The curve of the 
cumulative distribution function (CDF). (B) Delta area curve of consensus clustering. (C-D) Clustering 
heatmap of samples when consensus matrix k was 3 in the TCGA-Liver Hepatocellular Carcinoma (TCGA-
LIHC) and HCCDB18 cohorts. (E–F) Kaplan–Meier (K-M) survival analysis in the (E) TCGA-LIHC and 
(F) HCCDB18 cohorts. (G) Expression heatmap of PPAR signaling pathway-related genes in the TCGA-
LIHC cohort. (H) Comparison of 28 immune cells evaluated using ssGSEA. (I) Comparison of 27 immune 
components. (J) Adaptive immunity and innate immunity scores. ns, non-significant; *, p < 0.05; **, p < 0.01; ***, 
p < 0.001;***, p < 0.001.
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findings indicate that the expression of PPAR signaling pathway-related genes is associated with the outcomes 
and immune microenvironment in patients with HCC.

Identification of prognosis‑related differentially expressed genes (DEGs) and the construction 
of a prognostic prediction model
To further investigate the potential biological behaviour of different molecular subtypes, we identified the DEGs 
between the following subtypes: C1 and C3, C1 and C2, C2 and C3 in the training dataset (Fig. 3A–C). A total of 
53 DEGs were determined among the three subtypes (Fig. 3D). A random survival forest model was constructed 
using the expression values of the 53 genes in the TCGA-LIHC dataset, and the top 20 genes with relative impor-
tance were identified (Fig. 3E). Based on variable importance, four genes were selected, namely G6PD, SLC10A1, 
ABCC1 and PKIB, for model construction (Fig. 3F). The expression levels of these genes were detected through 
in vitro experiments on LO2 and HepG2 cells using quantitative reverse transcription-polymerase chain reaction 
(qRT-PCR), revealing significant different expression levels in HepG2 and normal liver cells (Fig. 3G). Further-
more, a multivariate Cox analysis was performed and the risk coefficient was obtained (Fig. 3H). The predictive 
model, based on the TCGA-LIHC dataset, consisted of the four genes weighted by their risk coefficients as below: 
RiskScore = 0.29*G6PD − 0.014*SLC10A1 + 0.01*ABCC1 + 0.03*PKIB. According to RiskScore, the samples were 
divided into high-risk and low-risk groups, and the predictive ability of the prognostic model was demonstrated 
in both the training (TCGA-LIHC) and validation (HCCDB18) cohorts (Fig. 3I, J).

Figure 3.  Prognosis-related DEGs and the prognostic prediction model. (A–C) Volcanic plot of DEGs between 
the following pairs of clusters: (A) C1 and C3 clusters; (B) C1 and C2 clusters; (C) C2 and C3 clusters. (D) 
The Venn diagram of DEGs. (E) The random survival forest model identifies the top 20 genes with relative 
importance. (F) Using the variable importance method to achieve variable hunting. (G) The expression 
levels of four potential genes in the HepG2 and LO2 cell lines using qRT-PCR. (H) Risk coefficients based on 
multivariate Cox regression analysis. (I–J) The K-M survival curves and ROC curves in the (I) TCGA-LIHC and 
(J) HCCDB18 cohorts. **, p < 0.01; ***, p < 0.001.
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Association of risk score with somatic mutations and tumour mutation burden (TMB)
The mutation data of patients with HCC processed by the mutect2 software was downloaded from the TCGA 
database. We screened 12,704 genes using Fisher’s precision probability test in each group (p < 0.05), resulting 
in 78 genes. The somatic mutation characteristics of the top 20 genes were visualised in a waterfall plot (Fig. 4A, 
B). TP53, RYR2, AXIN1, CSMD3, FAT3, RB1, DOCK2, SPEG, DNAH10 and TG were the top 10 mutation genes. 
Patients with a low-risk score had significantly higher frequencies of these mutations, except for AXIN1. Typically, 
patients with high TMB produce more neoantigens and may benefit more from ICI  therapy22. However, Spearman 
analysis revealed no significant correlation between TMB and risk score (Fig. 4C), and there was no difference 
in TMB distribution after risk stratification (Fig. 4D). However, when considering both risk stratification and 
TMB, the high-TMB + low-risk group and low-TMB + low-risk group exhibited significantly better outcomes 
compared to the high-TMB + high-risk and low-TMB + high-risk groups (Fig. 4E).

Correlation between risk score and clinicopathological characteristics
We explored the correlation between risk score and each characteristic, including tumour-node-metastasis 
(TNM) classification, tumour stage and pathology grade. There were significant differences in risk score levels 
among T stage, stage and grade in the TCGA-LIHC cohort. Patients with HCC with T1, S1, or G1 were signifi-
cantly associated with lower risk scores. As the clinical grade increased, the risk score also increased (Fig. 5A). 
Moreover, the analysis of PPAR signaling pathway-related gene enrichment score among T stage, stage and grade 
revealed similar results as risk score (Fig. 5B).

Immune and drug sensitivity analysis under different risk states
Next, we used ssGSEA method to analyze the enrichment degree of pathways from h.all.v7.4.Symbols.gmt genset, 
and the heatmap shows 41 pathways with significant differences between high-risk and low-risk groups (Fig. 6A). 

Figure 4.  Association of risk score with somatic mutations. (A–B) Characteristics of somatic mutation in the 
(A) high-risk group and (B) low-risk group. (C) Correlation analysis between TMB and risk score. (D) The 
distribution of TMB according to different risk statuses. (E) The K-M survival curves of risk groups combined 
with TMB.
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The analysis of the tumour immune microenvironment (TIME) under different risk states showed variations 
in the degree of immune cell infiltration. In particular,  CD4+ T cells, DCs, MDSCs and regulatory T cells were 
significantly infiltrated in the high-risk samples (Fig. 6B–D). Additionally, we used the Estimation of Stromal 
and Immune cells in Malignant Tumor tissues using Expression data (ESTIMATE) to evaluate the stromal score, 
immune score, and ESTIMATE score in the TCGA-LIHC dataset, which revealed that the immune score in the 
high-risk group was higher than the low-risk group (Fig. 6E). These findings suggested that the overall survival 
of patients with HCC were related to the abundance of immune components.

The marker genes of 13 pathways were obtained from a previous  study23, and the risk scores were calculated 
using the ssGSEA algorithm in the TCGA-LIHC cohort. On evaluating the relationship between risk score and 
the above pathways, the risk score was observed to be significantly positively correlated with biological processes 
such as cell cycle, mismatch repair, DNA damage repair, homologous recombination and DNA replication 
(Fig. 6F).

Additionally, Tumor Immune Dysfunction and Exclusion (TIDE) analysis was conducted to assess the poten-
tial prognostic effect of ICI therapy in the defined risk stratification. The TIDE score of the low-risk group in 
the TCGA-LIHC dataset was lower than the high-risk group, suggesting that patients with HCC in the low-risk 
group were more likely to benefit from immunotherapy (Fig. 6G). Moreover, the sensitivity of patients with HCC 
in the high-risk group to 18 traditional chemotherapeutic drugs such as foretinib, belinostat and camptothecin 
was lower than those in the low-risk group (Fig. 6H).

Performance of the predictive model in immunotherapy datasets
The new predictive model was used to calculate the risk score of patients with HCC treated with immunotherapy 
in the IMvigor210 (Fig. 7A), GSE135222 (Fig. 7B) and GSE91061 (Fig. 7C) datasets. The high-risk patients 
exhibited notably worse overall survival, which verified the robustness of the prognostic model. Additionally, 
the score showed significantly higher values in patients with progressive disease (PD)/stable disease (SD), which 
was consistent with the results of the TIDE analysis. Therefore, these findings indicate that the prognostic model 
can also be applied to predict the response rate of immunotherapy.

Figure 5.  Clinicopathological characteristics based on the TCGA-LIHC dataset. (A) The distribution of risk 
score in different clinicopathological characteristics. (B) Evaluation of the PPAR signaling pathway-related gene 
enrichment score according to different clinicopathological characteristics. ns, non-significant; *, p < 0.05; **, 
p < 0.01; ***, p < 0.001;***, p < 0.001.
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Improvement of the prognostic prediction model combined with clinicopathological features
To assist clinical decision-making, we constructed a decision tree based on age, gender, TNM classification, stage, 
grade and risk score to optimize risk stratification. Based on the two main factors of risk group and T stage, 
three different risk subgroups were divided (Fig. 8A). There were significant differences in overall survival rates 
among the subgroups of S1, S2 and S3 (Fig. 8B). Patients with high-risk scores were defined as the S3 group, 
while patients in the S1 and S2 groups comprised low-risk patients (Fig. 8C). Additionally, distinct survival out-
comes were observed among the risk subgroups (Fig. 8D). Univariate and multivariate Cox regression analysis 
demonstrated that risk score was the most significant factor influencing the prognosis of patients with HCC 
(Fig. 8E, F). The nomogram results indicated that the risk score had the most significant effect on survival rate 
prognostication (Fig. 8G). The calibration curve (Fig. 8H) and decision curve (Fig. 8I) were generated to assess 
the predictive performance of the nomogram and the reliability of the model. These results indicated that, com-
pared to other clinical factors, the risk score and nomogram exhibited the strongest predictive ability for survival.

Figure 6.  Immune and drug sensitivity based on risk stratification in the TCGA-LIHC dataset. (A) Heatmap 
of pathway scores under different risk statuses. (B) Comparison of 28 immune cells. (C) Comparison of 27 
immune components assessed using ssGSEA. (D) Adaptive immunity and innate immunity scores. (E) The 
distribution of ESTIMATE score. (F) Analysis of the connection between human-gene signatures score and 
risk score. (G) The TIDE analysis under different risk statuses. (H) The sensitivity of patients with HCC to 
traditional chemotherapeutic drugs. ns, non-significant; *, p < 0.05; **, p < 0.01; ***, p < 0.001;***, p < 0.001.
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Verifying the robustness of the prognostic prediction model through single‑cell RNA‑sequenc‑
ing (scRNA‑seq) data
We analysed the scRNA-seq data of HCC samples from the GSE125449 and GSE149614 datasets. Using the cell 
canonical markers identified previously, all cells were reclassified into T cells, endothelial cells, B cells, fibroblasts 
and hepatocytes (Fig. 9A, C). On comparing the differences of PPAR signaling pathway-related gene enrichment 
score in different cell types, it was found that the score values were significantly different among the five cell 
subpopulations, and the hepatocytes exhibited the highest scores (Fig. 9B, D). Additionally, G6PD, SLC10A1 
and PKIB were relatively high-expressed in hepatocytes from both the GSE125449 and the GSE149614 dataset, 
which indicated that the genes included in the newly constructed prognostic model still had a considerable effect 
on HCC at the single cell level (Fig. 9E, F).

Discussion
Despite the implementation of prophylactic vaccination for hepatitis B virus (HBV) and various treatment 
methods for HCC, the incidence and mortality of HCC remain high due to the large population affected by HBV, 
alcoholic liver disease, chronic hepatitis C virus infection, NAFLD and autoimmune liver disease. It is therefore 
urgent to establish an effective prognostic model for estimating the risk of death and making adjuvant treatment 
decisions in patients with HCC.

Figure 7.  Performance of the prognostic prediction model in immunotherapy dataset. The K-M curves, 
survival status and disease progression of patients with HCC treated with immunotherapy in the (A) 
IMvigor210, (B) GSE135222 and (C) GSE91061 datasets.
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In recent years, the relationship between the prognosis of cancer and genes associated with the PPAR signaling 
pathway have extensively explored. PPAR pathway-related genes have been used to develop predictive models 
for uterine cervical  cancer24, renal clear cell  carcinoma25 and breast  cancer26,27. The liver is one of the organs with 

Figure 8.  Improvement of the prognostic model. (A) The survival decision tree. (B) The K-M survival curves. 
(C–D) Comparative analysis in the risk subgroups. (E) Univariate Cox regression analysis. (F) Multivariate Cox 
regression analyses. (G) The nomogram model. (H) The calibration curves and (I) the decision curve of the 
nomogram.
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the highest content of PPARα, which is related to the process of energy metabolism and immune regulation. In 
this study, PPAR pathway-related genes were utilised to establish a model for predicting the prognosis of HCC.

We analysed the potential of 69 genes as prognostic biomarkers and eventually identified 11 PPAR signaling 
pathway-related genes. Among these genes, the expression of PPARG in HCC and adjacent tissues was signifi-
cantly different and was identified as a risk factor for disease progression. PPARγ is predominantly expressed in 
adipose tissue, liver and immune cells. In the liver microenvironment, the balance between PPARγ-mediated 
inflammatory and anti-inflammatory cytokines influences the hepatic premalignant environment and  TME16,28. 
PPARγ signaling also affects the metabolic changes in the HCC-microenvironment, as evidenced by studies 
showing that inhibiting the PPARγ-ACLY/ACC axis can prevent the de novo synthesis of fatty acids, thereby 
inhibiting the occurrence and progression of  HCC29. Furthermore, according to the selected prognosis-related 
genes, we divided the patient samples obtained from the datasets into three subtypes, identified the DEGs and 
used four key genes (G6PD, SLC10A1, ABCC1 and PKIB) to establish the new prognostic prediction model.

Metabolic reprogramming, which involves changes in cellular bioenergetics to adapt to hypoxia and a nutri-
tion-deficit environment, plays a crucial role in  tumorigenesis30. The activation of glucose-6-phosphate dehydro-
genase (G6PD), a rate-limiting enzyme in the pentose phosphate pathway, leads to increased NADPH levels, oxi-
dative stress and initiation of carcinogenic  signals31. A study in 2020 reported that hepatic aldolase B can attenuate 
the occurrence of HCC by inhibiting G6PD, as demonstrated in Aldob knockout  mice32. Furthermore, clinical 

Figure 9.  Verification of the robustness of the prognostic prediction model at the single-cell level. (A, C) The 
UMAP plot displayed the proportion of cells in samples of the (A) GSE125449 and (C) GSE149614 datasets. (B, 
D) The difference of PPAR signaling score in five cell subpopulations in the (B) GSE125449 and (D) GSE149614 
datasets. (E–F) The expression of four genes in five cell subpopulations based on the (E) GSE125449 and (F) 
GSE149614 datasets. ns, non-significant; ***, p < 0.001.



11

Vol.:(0123456789)

Scientific Reports |         (2024) 14:4926  | https://doi.org/10.1038/s41598-024-55086-6

www.nature.com/scientificreports/

and cellular studies have confirmed that G6PD can activate signal transducer and activator of transcription 3 
(STAT3), which is associated with poor outcomes and the migration and invasion of cancer  cells33. Dingli et al. 
established a prognostic model of HCC based on endoplasmic reticulum stress-related genes and identified G6PD 
as a prognostic  signature34. These findings suggest that G6PD may be a promising prognostic target for HCC.

SLC10A1, which encodes a sodium taurocholate co-transporting polypeptide, is not only involved in bile 
salt-coupled chemotherapeutics transport and aerobic glycolysis but also serves as a receptor for  HBV35–37. It 
has been reported that overexpression of SLC10A1 at the cellular level exhibits a significant tumour suppres-
sive effect, inhibiting aerobic glycolysis and HCC proliferation and  migration36. Two previous researches using 
glycolysis-related genes and lipid metabolism-related genes revealed a strong prognostic efficacy of SLC10A1 as 
a marker  signature38,39. ABCC1 encodes a transporter associated with multidrug resistance, which has important 
significance in the treatment and prognosis of  HCC40. Furthermore, the upregulation of ABCC1 in HCC has 
also been associated with poor  prognosis41. The role of protein kinase inhibitor β (PKIB) as a prognostic marker 
of HCC was first reported in this study. More mechanism studies are needed to explore the molecular function 
of PKIB in HCC progression.

To achieve immune escape, the immune cell components of the tumour undergo changes. Although the effect 
of the TIME, which is composed of different components, on the development, metastasis and recurrence of HCC 
remains unknown, it has implications for choosing immunotherapy strategies to achieve optimal therapeutic 
 effects42,43. In a study based on 919 cases of HCC, the TIME was divided into three subtypes, among which the 
high-immune subtype with increased B cell and T cell infiltration was associated with a better  prognosis44. It is 
generally speculated that  CD8+ T cells,  CD4+ T cells, memory T cells, B cells and M1 macrophages are associ-
ated with good prognosis, while M2 macrophages, regulatory T cells and regulatory B cells are associated with 
poor prognosis. With the rapid development of new technologies such as cytometry by time-of-flight (CyTOF) 
analysis, the understanding of tumor immunity has been deepened and refined. It is worth mentioning that 
Tregs fully express checkpoint molecules such as cytotoxic T lymphocyte-associated antigen 4 and programmed 
cell-death 1 receptor and thus become a direct target for  ICIs45. In our study, samples with high-risk scores had 
higher levels and broader immune cell enrichment than the low-risk score samples, presumably induced by 
high TMB. In addition to immune cells, fibroblasts, as the main cell type in cancer-related stroma, participate 
in tumor-microenvironment interactions by secreting extracellular matrix proteins and growth  factors46,47. We 
also looked at this subpopulation in scRNA-seq analysis and found that the PPAR signaling pathway-related 
gene enrichment score was higher in fibroblasts than in T cells and B cells, which may help to explore potential 
interaction processes.

In this study, a new prediction model for HCC was established, comprising four genes based on PPAR signal-
ing pathway. The multi-level, multi-dimensional and multi-database verification showed that the model had good 
performance. However, this study has several limitations. Animal experiments or prospective clinical studies 
have not been conducted to validate the prognostic prediction model in real-world settings. There may be some 
informatics bias in the samples obtained from public databases. Further testing, evaluation and application of 
the prognostic prediction model to address these limitations will be the emphases of our future research.

Conclusions
In conclusion, we systematically elucidated the prognostic value of PPAR signaling pathway-related genes in 
patients with HCC and established a prognostic model comprising a four-gene signature (G6PD, SLC10A1, 
ABCC1 and PKIB). These gene signatures, which serve as potential biomarkers, are closely related to the survival 
of patients with HCC, thereby aiding in the personalised management of HCC.

Materials and methods
Data sources
The gene expression and corresponding clinical data of patients with HCC in the training dataset were obtained 
from the publicly available database TCGA-LIHC. The expression profile of the HCCDB18 dataset, which serves 
as the validation cohort, was obtained from the Hepatocellular Carcinoma  Database48. Patients treated with 
immunotherapy were selected from the IMvigor210  cohort23 and Gene Expression Omnibus (GEO) datasets 
(GSE91061 and GSE135222). Additionally, scRNA-seq data were acquired from GSE125449 and GSE149614 
datasets. Moreover, the 69 genes enriched in the Kyoto Encyclopedia of Genes and Genomes (KEGG) ‘PPAR 
signaling pathway’ were obtained from the Molecular Signatures Database (Table S1)49.

Cell culture and qRT‑PCR method
The hepatoma cell line HepG2 and normal hepatocyte line LO2 were purchased from the Chinese Academy 
of Sciences (Shanghai, China). Dulbecco’s modified Eagle’s medium (Gibco, USA) and RPMI-1640 medium 
(Gibco, USA) were used to culture HepG2 and LO2 cells, respectively. All culture systems contained 10% fetal 
bovine serum (Gibco, USA) and 1% penicillin/streptomycin (Beyotime, China) in a 5% CO2 incubator at 37 °C.

Total RNA was extracted from cultured cells using the RNeasy Mini Kit (QIAGEN, USA). Besides, the 
PrimeScript RT reagent Kit (Takara, Japan) was used to reverse RNA to cDNA and TB Green Premix (Takara, 
Japan) was utilized to amplify DNA. Table S2 shows the primer sequences (Tsingke Biotech, China) used for 
qRT-PCR. The  2-ΔΔCt method was carried out to the relative quantification of the target genes compared to the 
reference gene  GAPDH50.

Identification of molecular subtypes in the training dataset
Firstly, the ConsensusClusterPlus package (specific parameters: clusterAlg = ‘pam’, distance = ‘spearman’, 500 
sampling repetitions and a sampling ratio of 0.8) was used to determine the molecular subtypes based on PPAR 



12

Vol:.(1234567890)

Scientific Reports |         (2024) 14:4926  | https://doi.org/10.1038/s41598-024-55086-6

www.nature.com/scientificreports/

signaling pathway-related genes. Cumulative distribution function was adopted to determine the optimal number 
of clusters and principal component analysis (PCA) were performed to observe the separation between different 
subtypes.

DEGs screening and construction and validation of a PPAR signaling pathway‑related model
To identify differentially expressed PPAR signaling pathway-related genes, limma package was utilised to analyse 
the DEGs in the TCGA-LIHC dataset (FDR < 0.05, |log2FC|> log2(1.5)). The Random Survival Forest algorithm 
was employed to compress the 53 DEGs in the TCGA-LIHC dataset using the randomForestSRC package. Key 
prognostic genes with relative importance were identified using the variable importance method of variable 
hunting. Additionally, multivariate Cox analysis was performed using the selected four genes to obtain the hazard 
ratio and construct the optimal regression model.

Based on the risk coefficient of each gene, the following equation was developed to estimate the outcome of 
patients with HCC: risk score = Σβi × Expi, where i represents the prognostic gene, β represents the Cox regres-
sion coefficient and Exp indicates the normalised mRNA expression  level51,52.

The new score for each patient with HCC in the training and validation cohorts was categorised at the optimal 
cutoff point (high risk or low risk) using the surv_cutpoint function in survminer package. Kaplan–Meier sur-
vival analysis was used to compare the differences in median survival time and overall survival. Furthermore, the 
receiver operating characteristic (ROC) curve analysis was performed using the timeROC package in R software.

Somatic mutation analysis
The ‘maftools’ R package was used to analyse and visualise the mutation frequency. Tumour mutation burden 
was computed to assess the response to immunotherapy of patients with HCC.

Immune feature estimation
ssGSEA was employed to calculate PPAR signaling pathway-related gene enrichment score, immune scores, 
pathway scores and the relative abundance of immune cells infiltration in tissues. Additionally, the ESTIMATE 
algorithm was used to evaluate the stromal score, immune score and ESTIMATE score in the TCGA-LIHC 
 dataset53. TIDE algorithm was also used to evaluate the potential clinical efficacy of  ICIs54.

Clinical prediction and decision‑making
We evaluated the sensitivity of conventional chemotherapy drugs using the pRRophetic package. To further 
improve the prognostic model, we established a decision tree and a nomogram. The calibration curve of the 
nomogram was generated to examine the predictive value among the predicted 1-, 3- and 5-year survival rates 
and the standard curve. The decision curve was plotted to evaluate the reliability of the prognostic prediction 
model.

scRNA‑seq data processing
The scRNA-seq data was processed as follows: (1) scRNA-seq data were filtered (each gene was expressed in not 
less than three cells and each cell expressed at least 200 genes). (2) The percentage of mitochondria and rRNA 
was calculated to exclude low-quality cells, and the genes expressed in each cell were confirmed to be between 
200 and 8000, the mitochondrial content was below 10%, and the unique molecular identifier of each cell was 
not less than greater than 200. (3) The sample data was normalised using log-normalization. (4) The highly 
variable genes were filtered using the FindVariableFeatures function. (5) Genes were scaled using the ScaleData 
function, and the PCA was performed to reduce the dimension to identify anchor points. (6) To cluster the cell, 
a selection of dim = 10 was performed using the FindNeighbors and FindClusters functions (Resolution = 0.05). 
Cell markers were obtained from previous  studies55–57, and the data were reclassified into five types of cells based 
on the expression of these marker signatures.

Statistical analysis
All statistical data were analysed using R (version 4.0). All p-values were two-sided and statistical significance 
was set at p < 0.05.

Data availability
Publicly accessible datasets were analyzed in this study. The data can be found in the TCGA (http:// www. cancer. 
gov/ tcga), HCCDB (http:// lifeo me. net/ datab ase/ hccdb), and GEO (https:// www. ncbi. nlm. nih. gov/ geo). Accord-
ing to the journal’s guidelines, the data involved in this study are available from the corresponding author on 
request.

Received: 27 August 2023; Accepted: 20 February 2024

References
 1. Arnold, M. et al. Global burden of 5 major types of gastrointestinal cancer. Gastroenterology https:// doi. org/ 10. 1053/j. gastro. 2020. 

02. 068 (2020).
 2. Chen, Z. Valuing the prevention and treatment of liver disease to promote human wellbeing. Infect. Microb. Dis. 4(2), 47–48 (2022).
 3. Wagner, N. & Wagner, K.-D. The role of PPARs in disease. Cells https:// doi. org/ 10. 3390/ cells 91123 67 (2020).
 4. Rotman, N. & Wahli, W. PPAR modulation of kinase-linked receptor signaling in physiology and disease. Physiology (Bethesda, 

Md.) 25, 176–185. https:// doi. org/ 10. 1152/ physi ol. 00018. 2010 (2010).

http://www.cancer.gov/tcga
http://www.cancer.gov/tcga
http://lifeome.net/database/hccdb
https://www.ncbi.nlm.nih.gov/geo
https://doi.org/10.1053/j.gastro.2020.02.068
https://doi.org/10.1053/j.gastro.2020.02.068
https://doi.org/10.3390/cells9112367
https://doi.org/10.1152/physiol.00018.2010


13

Vol.:(0123456789)

Scientific Reports |         (2024) 14:4926  | https://doi.org/10.1038/s41598-024-55086-6

www.nature.com/scientificreports/

 5. Semple, R. K., Chatterjee, V. K. K. & O’Rahilly, S. PPAR gamma and human metabolic disease. J. Clin. Investig. 116, 581–589 (2006).
 6. Grabacka, M., Pierzchalska, M., Płonka, P. M. & Pierzchalski, P. The Role of PPAR Alpha in the Modulation of Innate Immunity. 

Int. J. Mol. Sci. https:// doi. org/ 10. 3390/ ijms2 21910 545 (2021).
 7. Maréchal, L. et al. The CD36-PPARγ pathway in metabolic disorders. Int. J. Mol. Sci. https:// doi. org/ 10. 3390/ ijms1 90515 29 (2018).
 8. Berthier, A., Johanns, M., Zummo, F. P., Lefebvre, P. & Staels, B. PPARs in liver physiology. Biochim. Biophys. Acta Mol. Basis Dis. 

1867, 166097. https:// doi. org/ 10. 1016/j. bbadis. 2021. 166097 (2021).
 9. Smets, L., Verbeek, J., Korf, H., van der Merwe, S. & Nevens, F. Improved markers of cholestatic liver injury in patients with primary 

biliary cholangitis treated with obeticholic acid and bezafibrate. Hepatology 73, 2598–2600. https:// doi. org/ 10. 1002/ hep. 31613 
(2021).

 10. Levy, C., Manns, M. & Hirschfield, G. New treatment paradigms in primary biliary cholangitis. Clin. Gastroenterol. Hepatol. 21, 
2076–2087. https:// doi. org/ 10. 1016/j. cgh. 2023. 02. 005 (2023).

 11. Piccinin, E., Villani, G. & Moschetta, A. Metabolic aspects in NAFLD, NASH and hepatocellular carcinoma: the role of PGC1 
coactivators. Nat. Rev. Gastroenterol. Hepatol. 16, 160–174. https:// doi. org/ 10. 1038/ s41575- 018- 0089-3 (2019).

 12. Wu, L. et al. RIPK3 orchestrates fatty acid metabolism in tumor-associated macrophages and hepatocarcinogenesis. Cancer Immu-
nol. Res. 8, 710–721. https:// doi. org/ 10. 1158/ 2326- 6066. CIR- 19- 0261 (2020).

 13. Yu, Q. et al. Gut microbiota, peroxisome proliferator-activated receptors, and hepatocellular carcinoma. J. Hepatocell Carcinoma 
7, 271–288. https:// doi. org/ 10. 2147/ JHC. S2778 70 (2020).

 14. Xie, G. et al. Hepatocyte peroxisome proliferator-activated receptor α enhances liver regeneration after partial hepatectomy in 
mice. Am. J. Pathol. 189, 272–282. https:// doi. org/ 10. 1016/j. ajpath. 2018. 10. 009 (2019).

 15. Silva-Gomez, J. A. et al. Hepatocarcinogenesis prevention by pirfenidone is PPARγ mediated and involves modification of nuclear 
NF-kB p65/p50 ratio. Int. J. Mol. Sci. https:// doi. org/ 10. 3390/ ijms2 22111 360 (2021).

 16. Xiong, Z. et al. Targeting PPAR-gamma counteracts tumour adaptation to immune-checkpoint blockade in hepatocellular carci-
noma. Gut https:// doi. org/ 10. 1136/ gutjnl- 2022- 328364 (2023).

 17. Feng, J. et al. Simvastatin re-sensitizes hepatocellular carcinoma cells to sorafenib by inhibiting HIF-1α/PPAR-γ/PKM2-mediated 
glycolysis. J. Exp. Clin. Cancer Res. 39, 24. https:// doi. org/ 10. 1186/ s13046- 020- 1528-x (2020).

 18. Wu, L., Guo, C. & Wu, J. Therapeutic potential of PPARγ natural agonists in liver diseases. J. Cell Mol. Med. 24, 2736–2748. https:// 
doi. org/ 10. 1111/ jcmm. 15028 (2020).

 19. Zhang, Q. et al. ACOX2 is a prognostic marker and impedes the progression of hepatocellular carcinoma via PPARα pathway. Cell 
Death Dis. 12, 15. https:// doi. org/ 10. 1038/ s41419- 020- 03291-2 (2021).

 20. He, Y., Jiang, Z., Chen, C. & Wang, X. Classification of triple-negative breast cancers based on immunogenomic profiling. J. Exp. 
Clin. Cancer Res. 37, 327. https:// doi. org/ 10. 1186/ s13046- 018- 1002-1 (2018).

 21. Charoentong, P. et al. Pan-cancer immunogenomic analyses reveal genotype-immunophenotype relationships and predictors of 
response to checkpoint blockade. Cell Rep. 18, 248–262. https:// doi. org/ 10. 1016/j. celrep. 2016. 12. 019 (2017).

 22. Tang, B. et al. Diagnosis and prognosis models for hepatocellular carcinoma patient’s management based on tumor mutation 
burden. J. Adv. Res. 33, 153–165. https:// doi. org/ 10. 1016/j. jare. 2021. 01. 018 (2021).

 23. Mariathasan, S. et al. TGFβ attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells. Nature 554, 
544–548. https:// doi. org/ 10. 1038/ natur e25501 (2018).

 24. Zhang, Y. et al. Development and validation of the promising PPAR signaling pathway-based prognostic prediction model in 
uterine cervical cancer. PPAR Res. 2023, 4962460. https:// doi. org/ 10. 1155/ 2023/ 49624 60 (2023).

 25. Xu, Y. et al. A New prognostic risk model based on PPAR pathway-related genes in kidney renal clear cell carcinoma. PPAR Res. 
2020, 6937475. https:// doi. org/ 10. 1155/ 2020/ 69374 75 (2020).

 26. Xu, Y. et al. Development and validation of a novel PPAR signaling pathway-related predictive model to predict prognosis in breast 
cancer. J. Immunol. Res. 2022, 9412119. https:// doi. org/ 10. 1155/ 2022/ 94121 19 (2022).

 27. Wang, Z., Dong, H., Li, W., Han, F. & Zhao, L. PPAR-δ as a prognostic biomarker and its association with immune infiltrates 
in breast cancer PPAR-δ as a prognostic biomarker and its association with immune infiltrates in breast cancer. J. Cancer 14, 
1049–1061. https:// doi. org/ 10. 7150/ jca. 81430 (2023).

 28. Ishtiaq, S. M., Arshad, M. I. & Khan, J. A. PPARγ signaling in hepatocarcinogenesis: Mechanistic insights for cellular reprogram-
ming and therapeutic implications. Pharmacol. Ther 240, 108298. https:// doi. org/ 10. 1016/j. pharm thera. 2022. 108298 (2022).

 29. Ning, Z. et al. USP22 regulates lipidome accumulation by stabilizing PPARγ in hepatocellular carcinoma. Nat. Commun. 13, 2187. 
https:// doi. org/ 10. 1038/ s41467- 022- 29846-9 (2022).

 30. Yoshida, G. J. Metabolic reprogramming: the emerging concept and associated therapeutic strategies. J. Exp. Clin. Cancer Res. 34, 
111. https:// doi. org/ 10. 1186/ s13046- 015- 0221-y (2015).

 31. Yang, H.-C., Stern, A. & Chiu, D.T.-Y. G6PD: A hub for metabolic reprogramming and redox signaling in cancer. Biomed. J. 44, 
285–292. https:// doi. org/ 10. 1016/j. bj. 2020. 08. 001 (2021).

 32. Li, M. et al. Aldolase B suppresses hepatocellular carcinogenesis by inhibiting G6PD and pentose phosphate pathways. Nat. Cancer 
1, 735–747. https:// doi. org/ 10. 1038/ s43018- 020- 0086-7 (2020).

 33. Lu, M. et al. Elevated G6PD expression contributes to migration and invasion of hepatocellular carcinoma cells by inducing 
epithelial-mesenchymal transition. Acta Biochim. Biophys. Sin. (Shanghai) 50, 370–380. https:// doi. org/ 10. 1093/ abbs/ gmy009 
(2018).

 34. Song, D. et al. Identification of an endoplasmic reticulum stress-related gene signature to evaluate the immune status and predict 
the prognosis of hepatocellular carcinoma. Front. Genet. 13, 850200. https:// doi. org/ 10. 3389/ fgene. 2022. 850200 (2022).

 35. Zollner, G. et al. Hepatobiliary transporter expression in human hepatocellular carcinoma. Liver Int. 25, 367–379 (2005).
 36. Chen, B., Xu, X., Wu, W., Zheng, K. & Yu, Y. LINC00659 inhibits hepatocellular carcinoma malignant progression by blocking 

aerobic glycolysis through FUS recruitment and SLC10A1 modulation. Anal. Cell Pathol. (Amst.) 5852963, 2023. https:// doi. org/ 
10. 1155/ 2023/ 58529 63 (2023).

 37. Hu, H.-H. et al. The rs2296651 (S267F) variant on NTCP (SLC10A1) is inversely associated with chronic hepatitis B and progres-
sion to cirrhosis and hepatocellular carcinoma in patients with chronic hepatitis B. Gut 65, 1514–1521. https:// doi. org/ 10. 1136/ 
gutjnl- 2015- 310686 (2016).

 38. Lu, C. et al. Integrated analysis reveals critical glycolytic regulators in hepatocellular carcinoma. Cell Commun. Signal 18, 97. 
https:// doi. org/ 10. 1186/ s12964- 020- 00539-4 (2020).

 39. Xiong, R. et al. Machine learning-based transcriptome analysis of lipid metabolism biomarkers for the survival prediction in 
hepatocellular carcinoma. Front. Genet. 13, 1005271. https:// doi. org/ 10. 3389/ fgene. 2022. 10052 71 (2022).

 40. Kunická, T. & Souček, P. Importance of ABCC1 for cancer therapy and prognosis. Drug Metab. Rev. 46, 325–342. https:// doi. org/ 
10. 3109/ 03602 532. 2014. 901348 (2014).

 41. Han, Y. H. et al. ABCC1 is a predictive biomarker for prognosis and therapy in hepatocellular carcinoma. Eur. Rev. Med. Pharmacol. 
Sci. 27, 3597–3611 (2023).

 42. Gajewski, T. F., Schreiber, H. & Fu, Y.-X. Innate and adaptive immune cells in the tumor microenvironment. Nat. Immunol. 14, 
1014–1022. https:// doi. org/ 10. 1038/ ni. 2703 (2013).

 43. Fu, T. et al. Spatial architecture of the immune microenvironment orchestrates tumor immunity and therapeutic response. J. 
Hematol. Oncol. 14, 98. https:// doi. org/ 10. 1186/ s13045- 021- 01103-4 (2021).

https://doi.org/10.3390/ijms221910545
https://doi.org/10.3390/ijms19051529
https://doi.org/10.1016/j.bbadis.2021.166097
https://doi.org/10.1002/hep.31613
https://doi.org/10.1016/j.cgh.2023.02.005
https://doi.org/10.1038/s41575-018-0089-3
https://doi.org/10.1158/2326-6066.CIR-19-0261
https://doi.org/10.2147/JHC.S277870
https://doi.org/10.1016/j.ajpath.2018.10.009
https://doi.org/10.3390/ijms222111360
https://doi.org/10.1136/gutjnl-2022-328364
https://doi.org/10.1186/s13046-020-1528-x
https://doi.org/10.1111/jcmm.15028
https://doi.org/10.1111/jcmm.15028
https://doi.org/10.1038/s41419-020-03291-2
https://doi.org/10.1186/s13046-018-1002-1
https://doi.org/10.1016/j.celrep.2016.12.019
https://doi.org/10.1016/j.jare.2021.01.018
https://doi.org/10.1038/nature25501
https://doi.org/10.1155/2023/4962460
https://doi.org/10.1155/2020/6937475
https://doi.org/10.1155/2022/9412119
https://doi.org/10.7150/jca.81430
https://doi.org/10.1016/j.pharmthera.2022.108298
https://doi.org/10.1038/s41467-022-29846-9
https://doi.org/10.1186/s13046-015-0221-y
https://doi.org/10.1016/j.bj.2020.08.001
https://doi.org/10.1038/s43018-020-0086-7
https://doi.org/10.1093/abbs/gmy009
https://doi.org/10.3389/fgene.2022.850200
https://doi.org/10.1155/2023/5852963
https://doi.org/10.1155/2023/5852963
https://doi.org/10.1136/gutjnl-2015-310686
https://doi.org/10.1136/gutjnl-2015-310686
https://doi.org/10.1186/s12964-020-00539-4
https://doi.org/10.3389/fgene.2022.1005271
https://doi.org/10.3109/03602532.2014.901348
https://doi.org/10.3109/03602532.2014.901348
https://doi.org/10.1038/ni.2703
https://doi.org/10.1186/s13045-021-01103-4


14

Vol:.(1234567890)

Scientific Reports |         (2024) 14:4926  | https://doi.org/10.1038/s41598-024-55086-6

www.nature.com/scientificreports/

 44. Kurebayashi, Y. et al. Landscape of immune microenvironment in hepatocellular carcinoma and its additional impact on histologi-
cal and molecular classification. Hepatology 68, 1025–1041. https:// doi. org/ 10. 1002/ hep. 29904 (2018).

 45. Granito, A. et al. Hepatocellular carcinoma in viral and autoimmune liver diseases: Role of CD4+ CD25+ Foxp3+ regulatory T 
cells in the immune microenvironment. World J. Gastroenterol. 27, 2994–3009. https:// doi. org/ 10. 3748/ wjg. v27. i22. 2994 (2021).

 46. Hale, M. D., Hayden, J. D. & Grabsch, H. I. Tumour-microenvironment interactions: Role of tumour stroma and proteins produced 
by cancer-associated fibroblasts in chemotherapy response. Cell. Oncol. (Dordrecht) 36, 95–112. https:// doi. org/ 10. 1007/ s13402- 
013- 0127-7 (2013).

 47. Filali-Mouncef, Y. et al. The ménage à trois of autophagy, lipid droplets and liver disease. Autophagy 18, 50–72. https:// doi. org/ 10. 
1080/ 15548 627. 2021. 18956 58 (2022).

 48. Lian, Q. et al. HCCDB: A database of hepatocellular carcinoma expression atlas. Genomics Proteomics Bioinf. 16, 269–275. https:// 
doi. org/ 10. 1016/j. gpb. 2018. 07. 003 (2018).

 49. Liberzon, A. et al. Molecular signatures database (MSigDB) 3.0. Bioinformatics 27, 1739–1740. https:// doi. org/ 10. 1093/ bioin forma 
tics/ btr260 (2011).

 50. Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta 
C(T)) Method. Methods 25, 402–408 (2001).

 51. Schinke, H. et al. A transcriptomic map of EGFR-induced epithelial-to-mesenchymal transition identifies prognostic and thera-
peutic targets for head and neck cancer. Mol. Cancer 21, 178. https:// doi. org/ 10. 1186/ s12943- 022- 01646-1 (2022).

 52. Ng, S. W. et al. A 17-gene stemness score for rapid determination of risk in acute leukaemia. Nature 540, 433–437. https:// doi. org/ 
10. 1038/ natur e20598 (2016).

 53. Yoshihara, K. et al. Inferring tumour purity and stromal and immune cell admixture from expression data. Nat. Commun. 4, 2612. 
https:// doi. org/ 10. 1038/ ncomm s3612 (2013).

 54. Jiang, P. et al. Signatures of T cell dysfunction and exclusion predict cancer immunotherapy response. Nat. Med. 24, 1550–1558. 
https:// doi. org/ 10. 1038/ s41591- 018- 0136-1 (2018).

 55. Peng, J. et al. Single-cell RNA-seq highlights intra-tumoral heterogeneity and malignant progression in pancreatic ductal adeno-
carcinoma. Cell Res. 29, 725–738. https:// doi. org/ 10. 1038/ s41422- 019- 0195-y (2019).

 56. Su, C. et al. Single-Cell RNA sequencing in multiple pathologic types of renal cell carcinoma revealed novel potential tumor-specific 
markers. Front. Oncol. 11, 719564. https:// doi. org/ 10. 3389/ fonc. 2021. 719564 (2021).

 57. Lee, J. J. et al. Elucidation of tumor-stromal heterogeneity and the ligand-receptor interactome by single-cell transcriptomics in 
real-world pancreatic cancer biopsies. Clin. Cancer Res. 27, 5912–5921. https:// doi. org/ 10. 1158/ 1078- 0432. CCR- 20- 3925 (2021).

Author contributions
Conceptualization, supervision, and funding, L.L.; methodology, formal analysis, and draft writing, Q.S. and 
Y.Z.; experiment, Q.S.; visualization, C.X.; data collection, Q.C. and X.Y.; All authors have read and approved 
the final manuscript.

Funding
This work was supported by the Fundamental Research Funds for the Central Universities (No. 2022ZFJH003).

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https:// doi. org/ 
10. 1038/ s41598- 024- 55086-6.

Correspondence and requests for materials should be addressed to L.L.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2024

https://doi.org/10.1002/hep.29904
https://doi.org/10.3748/wjg.v27.i22.2994
https://doi.org/10.1007/s13402-013-0127-7
https://doi.org/10.1007/s13402-013-0127-7
https://doi.org/10.1080/15548627.2021.1895658
https://doi.org/10.1080/15548627.2021.1895658
https://doi.org/10.1016/j.gpb.2018.07.003
https://doi.org/10.1016/j.gpb.2018.07.003
https://doi.org/10.1093/bioinformatics/btr260
https://doi.org/10.1093/bioinformatics/btr260
https://doi.org/10.1186/s12943-022-01646-1
https://doi.org/10.1038/nature20598
https://doi.org/10.1038/nature20598
https://doi.org/10.1038/ncomms3612
https://doi.org/10.1038/s41591-018-0136-1
https://doi.org/10.1038/s41422-019-0195-y
https://doi.org/10.3389/fonc.2021.719564
https://doi.org/10.1158/1078-0432.CCR-20-3925
https://doi.org/10.1038/s41598-024-55086-6
https://doi.org/10.1038/s41598-024-55086-6
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Development of a promising PPAR signaling pathway-related prognostic prediction model for hepatocellular carcinoma
	Results
	Gene expression and mutation analysis of PPAR signaling pathway-related genes in HCC
	Identification of PPAR signaling pathway-related molecular subtypes
	Identification of prognosis-related differentially expressed genes (DEGs) and the construction of a prognostic prediction model
	Association of risk score with somatic mutations and tumour mutation burden (TMB)
	Correlation between risk score and clinicopathological characteristics
	Immune and drug sensitivity analysis under different risk states
	Performance of the predictive model in immunotherapy datasets
	Improvement of the prognostic prediction model combined with clinicopathological features
	Verifying the robustness of the prognostic prediction model through single-cell RNA-sequencing (scRNA-seq) data

	Discussion
	Conclusions
	Materials and methods
	Data sources
	Cell culture and qRT-PCR method
	Identification of molecular subtypes in the training dataset
	DEGs screening and construction and validation of a PPAR signaling pathway-related model
	Somatic mutation analysis
	Immune feature estimation
	Clinical prediction and decision-making
	scRNA-seq data processing
	Statistical analysis

	References


