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Network analysis‑guided drug 
repurposing strategies targeting 
LPAR receptor in the interplay 
of COVID, Alzheimer’s, 
and diabetes
Dicson Sheeja Malar 1,2,5, Kanika Verma 1,2,3,5*, Mani Iyer Prasanth 1,2, Tewin Tencomnao 1,2 & 
James Michael Brimson 1,4*

The COVID‑19 pandemic caused by the SARS‑CoV‑2 virus has greatly affected global health. Emerging 
evidence suggests a complex interplay between Alzheimer’s disease (AD), diabetes (DM), and COVID‑
19. Given COVID‑19’s involvement in the increased risk of other diseases, there is an urgent need to 
identify novel targets and drugs to combat these interconnected health challenges. Lysophosphatidic 
acid receptors (LPARs), belonging to the G protein‑coupled receptor family, have been implicated in 
various pathological conditions, including inflammation. In this regard, the study aimed to investigate 
the involvement of LPARs (specifically LPAR1, 3, 6) in the tri‑directional relationship between AD, 
DM, and COVID‑19 through network analysis, as well as explore the therapeutic potential of selected 
anti‑AD, anti‑DM drugs as LPAR, SPIKE antagonists. We used the Coremine Medical database to 
identify genes related to DM, AD, and COVID‑19. Furthermore, STRING analysis was used to identify 
the interacting partners of LPAR1, LPAR3, and LPAR6. Additionally, a literature search revealed 78 
drugs on the market or in clinical studies that were used for treating either AD or DM. We carried out 
docking analysis of these drugs against the LPAR1, LPAR3, and LPAR6. Furthermore, we modeled the 
LPAR1, LPAR3, and LPAR6 in a complex with the COVID‑19 spike protein and performed a docking 
study of selected drugs with the LPAR‑Spike complex. The analysis revealed 177 common genes 
implicated in AD, DM, and COVID‑19. Protein–protein docking analysis demonstrated that LPAR 
(1,3 & 6) efficiently binds with the viral SPIKE protein, suggesting them as targets for viral infection. 
Furthermore, docking analysis of the anti‑AD and anti‑DM drugs against LPARs, SPIKE protein, and 
the LPARs‑SPIKE complex revealed promising candidates, including lupron, neflamapimod, and 
nilotinib, stating the importance of drug repurposing in the drug discovery process. These drugs 
exhibited the ability to bind and inhibit the LPAR receptor activity and the SPIKE protein and interfere 
with LPAR‑SPIKE protein interaction. Through a combined network and targeted‑based therapeutic 
intervention approach, this study has identified several drugs that could be repurposed for treating 
COVID‑19 due to their expected interference with LPAR(1, 3, and 6) and spike protein complexes. 
In addition, it can also be hypothesized that the co‑administration of these identified drugs during 
COVID‑19 infection may not only help mitigate the impact of the virus but also potentially contribute 
to the prevention or management of post‑COVID complications related to AD and DM.
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The COVID-19 pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has sig-
nificantly impacted global health. Since the outbreak’s start, vast amounts of genomic data regarding the virus 
have been generated concerning the emerging pathogenic mutants from SARS-COV-2  variants1,2. Nevertheless, 
as the virus continues to evolve, there is a growing possibility of viral variants showing drug resistance. There-
fore, there is a significant need to identify and investigate new or repurposed drugs with antiviral activity that 
employ diverse mechanisms of action, further enhancing the effectiveness of combinatorial therapy  approaches3. 
Furthermore, unraveling the intricate interactions between SARS-CoV-2 and the host cell is imperative to help 
develop new approaches to combat SARS-COV-24.

The lysophosphatidic acid receptor (LPAR) belonging to the G protein-coupled receptor family contains seven 
transmembrane domains with three intra- and extracellular  loops5. There are currently six LPARs identified 
and classified into endothelium differentiation gene (EDG) receptors (LPAR1-"3D-LPAR protein model valida-
tion") and non-EDG receptors (LPAR4-6)6. The ubiquitous phospholipid molecule lysophosphatidic acid (LPA) 
activates the receptor and is involved in pulmonary inflammation and fibrosis, making its target (the LPARs) a 
candidate for COVID-19 therapy. LPA activation of the LPARs results in signal transduction involved in varied 
cellular functions, including reorganization of the cytoskeleton, synaptic transmission, cell proliferation, and 
survival through pathways including MAPK, PI3/AKT, Rho, IP3/DAG, and  PLC5,6. Aberrant activation of LPARs 
has been reported in animal models with airway inflammatory diseases and triggering the release of cytokines, 
further exacerbating the pathologic  condition7.

LPARs are present in the brain, and the subtypes’ expression depends on the location, type of neuronal cells, 
and developmental stage. Changes in receptor expression can potentially disrupt the nervous system’s normal 
function, leading to a range of neurological  disorders8. In the brain, LPAR signaling enhances neural stem cell 
(NSC) differentiation into oligodendrocytes, stimulates neurogenesis, and reduces  apoptosis9. The LPARs facili-
tate the migration of oligodendrocytes and play a crucial role in  myelination10,11. The lipid-rich myelin sheath, 
which insulates axons, is required for the proper progression of the action potential progression along nerve 
fibers. Therefore, myelin impairment causes severe neurological dysfunctions, seen in multiple neurodegenera-
tive diseases, including Alzheimer’s disease (AD)12–14. LPAR1 is involved in regulating emotional behaviors, and 
the dysregulation of this pathway could lead to depression and cognitive  impairments15–18. Microarray analysis 
in AD individuals has revealed that the expression of circ-LPAR1 is significantly elevated compared to the 
control subjects. Thus making LPAR1 one of the markers for AD  risk19. Knockdown of the LPAR1 is beneficial 
against neuroinflammation, oxidative stress, and apoptosis, all of which are essential pathological aspects of 
 AD20,21. Aberrant expression of LPA/LPAR1,6 is involved in the degradation of tight junction (TJ) proteins and 
the enhancement of blood–brain barrier (BBB) permeability through the ROCK pathway, which is one of the 
pathological hallmarks of  AD22–24.

In a similar fashion to AD, abnormal activation of LPAR also plays a role in diabetes (DM) pathology. 
Intraperitoneal administration of LPA in high-fat diet-fed mice showed impaired glucose tolerance, while pre-
treatment with Ki16425 (LPAR1,"3D-LPAR protein model validation" antagonist) ameliorated the effect and 
improved glucose  homeostasis25. Furthermore, a study by Fayyaz et al.26 showed that LPA interferes with insulin 
signaling through LPAR3 in rat hepatocytes, indicating the role of LPA/LPAR in diabetic conditions. Additionally, 
the inhibitors of LPAR1 (AM095, BMS002, and Ki16425) were reported to ameliorate diabetic nephropathy in 
diabetic mice through the modulation of TLR4/NF-κB, AKT, and TGF-β27–29.

In response to viral infections, the expression of LPAR1 has been reported to be upregulated. The binding of 
LPA to LPAR1 represses interferon I/III production upon vesicular stomatitis virus and herpes simplex virus and 
prevents virus clearance. At the same time, pre-treatment with the LPAR inhibitors, Ki16425 or BMS-986020, 
restored the interferon-I/III  production30. The Orf virus protein, ORFV113, modulated p38 signaling through 
interaction with LPAR1 and promotes early viral  replication31. A study by  Nallur32, through proteomic analysis, 
showed that the SARS-CoV-2 envelope (E) protein interacts and co-localizes with LPAR1, indicating the possible 
involvement of the receptor in viral entry and replication.

Mounting evidence shows a bidirectional relationship between AD- DM, AD-COVID-19, and DM -COVID-
1933–35. In addition, the morbidity and mortality of COVID-19 is increased in AD and DM  patients36–39. Moreover, 
individual studies show an increased risk of developing DM in healthy individuals and new onset AD in older 
people, post-COVID-19  infection40,41. Considering the involvement of COVID-19 in the potential risk of other 
diseases, such as AD and DM, there is an urgent need to identify new targets and drugs.

It is not realistic to expect the creation of de novo drugs for diseases like COVID-19 within the short time-
frame caused by a rapidly spreading virus. Consequently, the approach of drug repurposing gained prominence 
during the pandemic as a viable strategy for addressing COVID-19. This involved the utilization of existing drugs 
that were already approved for safety in other  contexts42. By repurposing drugs known to treat co-morbid condi-
tions, efforts were made to mitigate the severity of COVID-19 as well as the post-covid complications. Notewor-
thy examples of drugs subjected to clinical trials during the pandemic include hydroxychloroquine, ivermectin, 
and fluvoxamine, yielding varying results regarding  effectiveness43,44. This innovative approach of repurposing 
existing drugs offered a more practical route to combat the challenges posed by the rapidly spreading virus.

Considering the interconnected relationships among LPARs, COVID-19, AD, and DM, the objective of the 
present study was to demonstrate a comprehensive protein–protein interaction (PPI) network analysis centered 
around LPAR1, "3D-LPAR protein model validation", and 6, unveiling the intricate web of interactions with 
proteins associated with the diseases. Additionally, leveraging this network information, a strategic drug repur-
posing approach was made by exploring existing drugs on the market or in clinical trials targeting AD and DM 
against LPARs, SPIKE, and LPAR-SPIKE complex to discern potential therapeutic candidates with the capacity 
to modulate the protein complexes. This integrated approach, from genetic overlap and network analysis to drug 
repurposing strategies, provides a holistic framework for unraveling the interconnected molecular landscape 
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of AD, DM, and COVID-19, offering potential avenues for combined network and targeted-based therapeutic 
interventions.

Materials and methods
Disease‑disease associations analysis
Disease-disease association is a network-based scoring approach that efficiently identifies the interrelationships 
between complex diseases in large-scale studies. This method offers insight into systems biology and medicine for 
identifying and comprehending these intricate disease  relationships45. Therefore, the Coremine Medical database 
was used in this study to retrieve the tri-directional relationship between the investigated diseases (http:// www. 
corem ine. com/ medic al). Coremine Medical employs sophisticated text-mining algorithms to identify relevant 
articles about genes associated with specific diseases. Genes frequently appearing together in the literature are 
considered to have potential connections or shared involvement in particular diseases. Coremine Medical meas-
ures disease-disease connections based on the p-value, with lower p-values indicating stronger  associations46.

Firstly, to investigate gene intersections among AD, DM, and COVID-19, search queries, including "Alzhei-
mer’s disease," "COVID-19," and "non-insulin-dependent/insulin-dependent diabetes mellitus," were executed 
to retrieve gene lists for each disease from Coremine Medical. A significance threshold of p < 0.05 was applied 
to filter genes, ensuring statistical relevance. To provide a clearer understanding of shared genetic factors among 
the investigated diseases, gene intersection was constructed for the three diseases by selecting genes meeting the 
threshold (p < 0.05) using the web-based tool Venny 2.1 (https:// bioin fogp. cnb. csic. es/ tools/ venny/)47.

To predict the interaction networks, a set of genes associated with AD, both Type I/II DM and COVID-19, 
was retrieved from the Coremine Medical database using the search term "(AD ∩ diabetes (both Type I and Type 
II) ∩ COVID-19)". A significance threshold of p < 0.0005 was applied to filter the genes, resulting in a selection 
of 72 genes. Subsequently, these 72 genes were utilized to predict an interaction network using GeneMANIA 
(http:// www. genem ania. org/), a bioinformatics tool providing insights into the potential functional relationships 
among the identified genes associated with the three  diseases48.

Finally, the LPAR1, LPAR3, and LPAR6 interacting partners were predicted using STRING analysis (https:// 
versi on- 12-0. string- db. org/), which integrates diverse data sources to predict protein–protein  interactions49. 
The STRING database was queried with the specific proteins LPAR1, LPAR3, and LPAR6 to predict potential 
interacting partners with species limited to Homo sapiens, a confidence threshold set to the highest level (0.900), 
and maximum number of interactors set as 50 and 10 for 1st and 2nd shell respectively.

Homology modelling of LPAR1/3/6 proteins
Homology modeling is the most accurate computational method for predicting protein structure based on amino 
acid sequence. Due to its ease of use, it consists of a few simple steps and is frequently used. There are several 
servers and tools available for homology modeling, each has advantages and disadvantages over the other. Since 
proteins function as receptors in drug interactions, they are essential for drug discovery. This emphasizes the 
value of using homology modeling to determine the 3D structure of  proteins50. This study used Phyre2 and Mod-
Web for homology modeling. LPAR1/3/6 protein sequences were retrieved from the UniProt database (UniProt 
ID: Q92633, Q9UBY5, and P43657) and used to build the 3D receptor models. The complete sequence of each 
protein was placed into the homology modeling servers, Phyre2 and  ModWeb51,52.

Further, these models were considered for validation. The generated models were compared according to their 
Ramachandran plot percentages, and the model with the highest Ramachandran score was taken for further use. 
The plots were calculated using the Saves v6.0 online  server53–55.

Preparation of SPIKE protein
Protein preparation, which involves optimizing the protein structure for precise docking simulations, is an 
essential step in the molecular docking process. Water molecules and the ligands were eliminated to simplify the 
protein structure further. To achieve an optimized and refined protein structure for successful docking studies, 
it is necessary to assign force field parameters that guarantee the protein behaves appropriately during docking 
 simulations56,57. Hence, the 3D crystal structure of spike protein (S-protein) receptor binding domain (RBD) 
with resolution 2.20 Å was obtained from Protein Data Bank (PDB ID: 2GHV). The Discovery Studio applica-
tion removed the crystal structure’s water molecules and other ligands. Subsequently, the protein structures 
were subjected to energy minimization using the GROMOS96 forcefield of the SwissPDB Viewer tool before 
conducting computational  analysis58.

Protein–protein docking study
Protein–protein docking is a computational approach that uses different protein structures to predict the struc-
ture of protein complexes. This approach helps model complex protein structures and is essential for understand-
ing the physical and chemical forces regulating macromolecular  interactions59. Thus, in the present analysis, we 
have employed HDOCK and HawkDock Servers, two complementary computational tools, to investigate the 
interactions between the SPIKE protein and LPAR1/3/6 receptors. Initially, the HDOCK Server was employed 
for the docking study as previously  described60. HDOCK incorporates template-based and ab initio docking 
methods, utilizing information from homologous structures to enhance prediction accuracy. HawkDock, an 
algorithm integrating shape complementarity, electrostatics, and desolvation energy calculations, validated and 
refined the predicted  interactions61.

The generated complex structures were then ranked based on their binding energy scores to identify the most 
favorable protein binding orientations. Subsequently, the top-ranked docked complex model obtained from 
the docking was downloaded and utilized further for evaluating bonded and non-bonded amino acid residue 

http://www.coremine.com/medical
http://www.coremine.com/medical
https://bioinfogp.cnb.csic.es/tools/venny/
http://www.genemania.org/
https://version-12-0.string-db.org/
https://version-12-0.string-db.org/
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interactions between SPIKE and LPAR1,"3D-LPAR protein model validation",6 using  PDBSUM57, which visual-
izes the chain-wise protein–protein interactions and determines the type of interaction.

Ligand identification
Ligands selected for docking are subjected to a selection process considering various factors such as chemical 
diversity, biological activity, and drug development  potential57. Therefore, 78 molecules tested/marketed clini-
cally for AD and DM were collected from the recent  literature62,63. Each molecule’s 3D coordinate structures (in 
spatial data file (SDF) format) were downloaded from the PubChem database and further subjected to docking 
studies against the target protein.

Protein–ligand docking analysis
Molecular Docking has grown in significance as a drug discovery strategy. By simulating the atomic-level interac-
tion between a small molecule (ligand) and a protein using the molecular docking approach, we can clarify basic 
biochemical processes and describe the behavior of small molecules in target proteins’ binding sites. The two 
fundamental steps in the docking process are predicting the ligand conformation and its orientation and position 
within these sites (pose) and evaluating the binding  affinity64,65. Therefore, the 78 compounds retained from the 
literature survey were docked against the modeled 3D structures of the protein LPAR1/3/6 by utilizing the Dock-
Thor online server to evaluate the predicted binding affinity. This program offers a grid-centered method that 
computes several ligand–protein docking models using flexible and rigid receptor-based algorithms. DockThor 
rates the performance of the potential substances using the MMFF94S molecular force field to forecast  poses66. 
Blind docking for each ligand was performed against the whole surface of the protein as it helps to calculate the 
most favorable protein–ligand complex pose. Therefore, the blind docking was considered the input to gener-
ate the grid in DockThor. The center of the grid box for LPAR1/3/6 with the co-ordinates in blind docking was 
automatically set as x = − 0.7695, y = − 20.5815, z = 38.2585; x = − 1.538, y = − 19.596, z = 37.8885 and x = − 2.3735, 
y = 18.268, z = − 39.252 respectively by visualizing the coverage region of the protein. The dimensions of the grid 
box were set to 40 × 40 × 40 for ligand binding in the docking analysis.

These compounds were then ranked following the ratings assigned to their levels of binding affinity. Fur-
thermore, the screened top-ranked compounds (top 20) docked against LPAR1/3/6 were compiled, and 33 were 
subjected to docking against the SPIKE protein to estimate the binding efficiency. The grid box was generated for 
the SPIKE protein with coordinates as x = 5.8505, y = − 17.689, and z = 32.358 by covering the protein region. Sub-
sequently, molecular interactions of LPAR1/3/6 and SPIKE proteins with the compounds screened with higher 
binding affinity were compared with the reference molecules (Ki16425 and Xanthenylacetic acid). Finally, the top 
three compounds obtained against LPARs and SPIKE proteins were compiled, and a total of eight compounds 
were screened and analyzed for their binding efficiency to the LPAR1, "3D-LPAR protein model validation", 
6-SPIKE protein complexes and their ability to interfere with the protein complex formation.

Results
Establishing the tri‑directional relationship between AD, DM and COVID‑19
The Coremine Medical database identified 8100, 3344, and 4627 genes involved in AD, DM, and COVID-19. 
Upon further refinement (p < 0.05), 1652, 1035, and 800 genes were shortlisted, and gene intersection and com-
mon genes shared between the three diseases were analyzed by Venn analysis (Fig. 1). The results indicate a close 
tri-directional relationship between the diseases, as they share 177 common genes (6.5% of the genes studied).

Protein–protein interaction (PPI) network
The findings were further refined to construct the interaction network by applying a significance threshold of 
p < 0.0005, identifying 72 genes that exhibited significant associations across the three diseases. The common 
genes were imported into the GeneMania database to generate physical interactions, co-expression, and co-
localization network patterns (Fig. 2). The data indicates that the co-expression is 67.71%, physical interactions 
are 27.63%, and co-localization is 4.66% among the common genes. In addition, GeneMANIA predicted that 
the interacting neighbors of the analyzed genes were involved in carbohydrate homeostasis, protein/peptide 
secretion regulation, and positive regulation of the small molecule metabolic process.

Further, the network of predicted associations for LPAR1,"3D-LPAR protein model validation", 6 was con-
structed with the STRING database (Fig. 3). The predicted network showed F2, ACE, REN, and SERPIND1 as 
some of the interacting partners with LPARs and serving as a crucial connecting node between the receptor and 
the studied diseases (AD, DM, and COVID-19).

3D‑LPAR protein model validation
For quality control, the modeled structures of LPAR1/3/6 protein generated by Phyre 2 and ModWeb were evalu-
ated using Saves v6.0. The values of the Ramachandran plot as percentage and residue coverage from each tool 
are displayed in Table 1. The ModWeb (modeler)-generated model gave 92.6%, 92.9%, and 93.7% of residues 
in the favored region for LPAR1, LPAR3, and LPAR6, respectively. Also, the angles psi and phi were primarily 
presented in favored and permitted plot regions, indicating a reliable model. Hence, all further screening of 
ligands was conducted using ModWeb-generated LPAR models (Fig. 4).

Predicting the interaction between LPARs and SPIKE protein through docking
This study utilized the HDOCK and HawkDock servers to perform molecular docking and detect the binding 
energy between the RBD domain of SPIKE protein and the LPAR receptors 1/3/6 to find the most favorable 
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protein–protein complex model position. The results are shown in Table 2. Initially, HDOCK was employed to 
identify the best position of the docked protein complex. LPAR protein was docked as a ligand with the RBD 
domain of the SPIKE receptor. This was utilized to inform the constraints for subsequent protein docking per-
formed by HawkDock. Overall, the results from both docking servers showed efficient binding scores for all the 
top docked complexes from both programs.

Furthermore, forming protein–protein complexes is essential for many of a protein’s biological functions. 
Therefore, this study investigated how the SPIKE protein interacts with LPAR1/3/6. The top complex model 
analyzed using PDBSUM for interactions is displayed in Fig. 5. Each complex model displayed bonded and non-
bonded interactions with residue pairs interacting from each protein. The SPIKE-LPAR1 complex maintained 
one salt bridge with residues Glu171 and Arg130, three hydrogen bonds between Glu171 and Arg130, Gln264 
and Arg23, Asn13 and His126. In addition, there were 115 non-bonded interactions (Fig. 5a). However, SPIKE-
LPAR3 maintained one salt bridge and one hydrogen bond with residues Lys237 and Asp73, Leu205, and Gln82, 
respectively, plus there were 183 non-bonded interactions (Fig. 5b). Meanwhile, SPIKE-LPAR6 interacted with 
each other via two salt bridges (His146 and Asp73, Asp74 and Lys71) and three hydrogen bonds (Ser147 and 
Asp73, Asp74 and Tyr172 and Gly73 and Tyr12) along with 125 non-bonded interactions (Fig. 5c).

Repurposing of anti‑AD and anti‑diabetic drugs against LPAR
Molecular docking analysis was carried out using DockThor to understand better the mechanism of action of the 
retained ligands against LPAR1/3/6 protein at the atomic level. The 78 screened drug molecules and reference 
compounds were blindly docked against the target receptor LAPR1/3/6 using the DockThor server to predict 
their binding potential and inhibitory action against each LPAR protein. A more negative binding score predicts 
a stronger ligand–protein interaction and, thus, a more stable ligand–protein complex. Our analysis indicates 
that the top 22, 44, and 55 potential candidates with the most negative energies compared to the reference 
compounds for LPAR1, LPAR3, and LPAR6, respectively, indicating their strong interaction with the protein 
(Supplementary Table 1). The binding energies of the top five compounds against LPAR1, "3D-LPAR protein 
model validation", 6 are in Table 3.

In addition, the interaction of the top three hits against LPAR1,"3D-LPAR protein model validation",6, along 
with reference compounds, are represented in Figs. 6, 7, and 8, respectively. The amino acid residues interacting 
with the receptors through hydrogen bonds and hydrophobic interactions are in Table 4. The data suggests that 
some compounds, including lupron, bromocriptine, and nilotinib, shared the same interacting residues with the 
LPARs as the respective reference compounds. By targeting LPARs, the screened drugs exhibit the potential to 
interfere with the mechanisms that drive cytokine storm, ultimately offering a means to temper the hyperactive 
immune response that contributes to the severity of COVID-19 symptoms.

Figure 1.  A tri-directional association between AD, DM, and COVID-19 is displayed based on gene 
intersection. The overlapping sections delineate the shared genes at the intersection of these three pivotal health 
conditions, forming a tripartite nexus in which 6.5% of the genes studied (obtained from Coremine Medical 
database, p < 0.05) were common in all three diseases, which included 177 genes. 
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Pharmacological compounds against SPIKE protein
From the previous results, the top 20 compounds against each LPAR (LPAR 1, "3D-LPAR protein model valida-
tion" & 6) were taken (a total of 33 compounds; Supplementary Table 2) and subjected to docking against the 
SPIKE protein. The binding scores of the top five compounds are presented in Table 5. The energies obtained from 
protein–ligand interaction indicate that 16 potential candidates showed higher binding energy than ritonavir 
(docking energy of − 7.96 kcal/mol). Among these 16, Lupron, Montelukast, and Allopregnanolone scored the 
highest docking scores of − 9.655, − 9.174, and − 8.927 kcal/mol, respectively. The top three docked complexes 
were further studied for protein–ligand interactions using the LigPlot program. The 2D representation of the 
interactions is displayed in Fig. 9. The reference ligand Ritonavir showed three H-bonds and three hydrophobic 
contacts with SPIKE protein residues Lys14, Phe15, Ser17, Ala20, Glu22, and Arg134. In contrast, Lupron formed 
two H-bonds and ten hydrophobic interactions with amino acid residues Lys14, Phe15, Trp21, Glu22, Arg23, 
Lys24, Lys25, Tyr64, Ser67, Arg130, Pro131, Phe132, Glu133, Arg134 of the target protein. However, Montelu-
kast and Allopregnanolone formed only one H-bond. On the other hand, the six and four hydrophobic contacts 
were maintained between the docked complexes, respectively. The interacting residues in docked complex of 
SPIKE-Montelukast were Trp21, Arg23, Pro94, Arg130, Pro131, Phe132, Glu133 and for SPIKE- Allopregna-
nolone were Tyr37, Asn38, Thr40, Phe42, Phe60. Overall, the interaction analysis revealed that Lys14, Phe15, 
Glu22, and Arg134 are the key residues important for the efficient binding of the Lupron and are similar to the 
reference compound.

Interaction of selected ligands against LPAR‑SPIKE complex
Finally, the top three hits obtained from each docking study (against LPAR 1, "3D-LPAR protein model valida-
tion", 6, and SPIKE) (eight compounds in total) were taken and docked against the LPAR-SPIKE complex. From 
the eight analyzed compounds, neflamapimod showed the highest binding energy against the LPAR1-SPIKE 
complex, closely followed by lupron and montelukast. At the same time, Lupron was the top hit against the 

Figure 2.  Interaction network generated using GeneMania with 72 genes (obtained from Coremine Medical 
database, which is involved in all the diseases; p < 0.0005) comprising Co-expression (67.71%), physical 
interactions (27.63%), and co-localization (4.66%) showing the relationships for genes according to the 
functional association networks from the databases.
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LPAR3/6-SPIKE complex, followed by nilotinib, neflamapimod for the LPAR3-SPIKE complex, and Nilotinib 
and Bromocriptine for the LPAR6-SPIKE complex. While analyzing the interacting residues using Discovery 
Studio Visualizer, we observed that neflamapimod and lupron interacted with some of the residues responsible 
for the LPAR-SPIKE complex formation. Neflamapimod interacted with HIS18 (alkyl bonding) and ALA20 
(pi-alkyl) residues of the LPAR1-SPIKE complex. Lupron interacted with ALA245 (alkyl bonding), TYR293 
(hydrogen bonding), and PHE41 (pi-alkyl bonding) against the LPAR3-SPIKE complex, and in the case of the 
LPAR6-SPIKE, lupron interacted with ASN60, TYR123 (-OH bonding) (Fig. 10A–C). The results show that the 
tested compounds could interfere with the LPAR-SPIKE interaction and potentially cause a substantial reduc-
tion in the disease’s severity.

Discussion
Developing new drugs by creating novel chemical entities (NCEs) is a slow process that requires at least seven 
chemical synthesis  steps67. This leads to the slow development of new drugs in all fields of  medicine62. De novo 
development of NCEs for a rapidly spreading disease such as COVID-19 in a short period is not realistic. At the 
outset of the COVID-19 outbreak, there was a scramble to find medicines that could prevent patient detrition 
and hospital admission to ease the strain on healthcare systems  worldwide68. Therefore, the repurposing of drugs 
already on the market, thus already passed the critical phase-1 safety studies, was implemented. Therefore, this 

Figure 3.  PPI network analysis of  LPAR1, LPAR3, and  LPAR6 constructed using the STRING database, 
highlighting the interactions with proteins including F2, ACE, REN, and SERPIND1 implicated in AD, DM, and 
COVID-19.

Table 1.  3D structure validation and comparison of LPAR (1, 3, and 6) protein predicted from Phyre2 and 
ModWeb servers.

S. no Ramachandran % from Phyre2 Ramachandran % from ModWeb

LPAR1 96.4 99.3

LPAR3 96.3 99.6

LPAR6 99.1 99.6
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study investigated the potential repurposing of 78 molecules tested/marketed clinically for AD and DM due to 
the tri-directional relationship between AD, DM, and Covid-19.

Research has highlighted a potential link between COVID-19, AD, and DM, shedding light on the intricate 
interplay among these conditions. Previous studies have identified the increased risk of ICU admission in DM 
patients with COVID-1969,70 and that COVID-19 increases the risk of neurodegenerative  disease71. Furthermore, 
it has long been known that there is an increased risk of AD in DM patients (which is not mitigated by treatment 
of the DM)72,73.

Identifying new protein targets for COVID-19 treatment is necessary to expand therapeutic options, overcome 
drug resistance, enhance treatment efficacy, tailor treatments to specific patient groups, facilitate combination 
therapies, and accelerate drug development. The different sub-types of LPARs, especially 1, 3, and 6, have been 
reported to be involved in AD, DM, and viral infections. Through STRING analysis, we identified that some of 
the interacting partners of the LPARs, including F2, AGT, ACE, REN, and SERPIND1, were also associated with 
AD, DM, and COVID-1974–79, serving as a crucial connecting node between the LPARs and the studied diseases. 
Therefore, it further highlights LPARs as a potent target for disease intervention.

Forming protein–protein complexes is essential for many protein’s biological functions. Previous studies 
have reported that viruses can hijack GPCR signaling networks to evade immunosurveillance and facilitate 
viral  replication31,80. Proteomic analysis has shown that the SARS-CoV-2 envelope (E) protein interacts and co-
localizes with LPAR1, helping with viral  entry32. In this study, we investigated (in silico) how the SPIKE interacts 
with LPAR1/3/6. The results indicate that the SPIKE protein could interact with the LPARs to hijack the host 
immune system and induce viral replication.

The COVID-19 pandemic has posed significant challenges in terms of global health and the global economy. 
Drug repurposing has emerged as a promising strategy as the scientific community tries to find effective COVID-
19 treatments. Repurposing existing drugs saves time and resources and capitalizes on their established safety 
profiles. Recent studies have investigated AD drugs such as donepezil and rivastigmine to mitigate COVID-19 
mortality and cytokine storm,  respectively81,82. Likewise, meta-analysis studies with anti-diabetic drugs were 
also associated with lower mortality rates in individuals affected with COVID-1983.

We have screened the anti-AD and anti-diabetic drugs (either already marketed or in clinical trials) against 
their ability to bind to and inhibit the LPAR receptor activity, the SPIKE protein, and interfere with LPAR-SPIKE 
protein interaction. Identifying SPIKE protein inhibitors is important, as they directly target a key component 
of the virus’s entry and replication  process84. Throughout the screening, it was observed that the anti-AD drugs, 
including Lupron, Nilotinib, Telmisartan, CORT108297, neflamapimod, and bromocriptine, displayed a bet-
ter binding affinity with the LPARs, the SPIKE, and hinder LPARs-SPIKE protein complex than the standard 
compounds. Montelukast has been previously reported to act as a SPIKE protein inhibitor and reduce virus-
induced cytokine  release85. In addition, montelukast and telmisartan have been found to inhibit SARS-CoV-2 
viral replication in Vero  cells86.

Figure 4.  3D protein structure of LPAR using homology modeling approach (ModWeb server). Models were 
generated using amino acid sequence extracted from the UniProt database for (a) LPAR1 (b) LPAR3 and (c) 
LPAR6.

Table 2.  Protein–protein docking scores of LPARs-SPIKE complex evaluated using HDOCK and HawkDock.

S. no Protein HDOCK (kcal/mol) HawkDock (kcal/mol)

1 LPAR1-SPIKE  − 395.98  − 4996.2

2 LPAR3-SPIKE  − 371.28  − 4861.5

3 LPAR6-SPIKE  − 359.97  − 5185.64
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Furthermore, allopregnanolone inhibits pro-inflammatory toll-like receptor (TLR4) activation thereby inhib-
iting cytokine storm during COVID-19  infection87. In silico analysis has also shown that brexpiparazole and 
bromocriptine could act as potential inhibitors of transmembrane serine protease 2 (TMPRSS2) that is involved 
in increasing the infectivity of the  virus88,89. Although there are no reports on the direct involvement of lupron 
in COVID-19, studies propose that androgens can upregulate ACE2, weaken the immune response, and invoke 
inflammation. Lupron can reduce androgen levels. Thus, there are claims that the drug could be potent against 

Figure 5.  Protein–protein interaction interface analysis for different LPARs in complex with SPIKE protein 
as represented in the diagrams extracted from PDBSUM revealing essential binding motifs pivotal for 
understanding the intricacies of protein–protein recognition and the formation of complexes (a) LPAR1-SPIKE 
(b) LPAR3-SPIKE (c) LPAR6-SPIKE (Chain A – LPARs; Chain B – SPIKE). The complex formation was mainly 
due to non-bonded interactions, hydrogen bond and salt bridges.

Table 3.  Docking scores of the top five drugs with LPAR (1, 3, and 6) protein structures using the DockThor 
server.

LPAR1 LPAR3 LPAR6

Drug Score (kcal/mol) Drug Score (kcal/mol) Drug Score (kcal/mol)

Ki16425 (reference compound)  − 8.701 Ki16425 (reference compound)  − 8.186 Xanthenylacetic acid (reference 
compound)  − 8.216

Lupron  − 10.817 Nilotinib  − 10.343 Bromocriptine  − 10.394

Telmisatran  − 9.42 Neflamapimod  − 9.81 Lupron  − 10.392

CORT108297  − 9.275 Telmisartan  − 9.598 Nilotinib  − 10.296

Nilotinib  − 9.243 Montelukast  − 9.401 Brexpiparazole  − 10.249

Bromocriptine  − 9.232 CORT108297  − 9.369 Telmisartan  − 10.105
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Figure 6.  Interactions of top three hits along with reference candidate with the LPAR 1 receptors as represented 
in LigPlot diagram (a) Ki16425 (Reference) − 8.701 kcal/mol (b) Lupron − 10.817 kcal/mol (c) Telmisatran 
− 9.42 kcal/mol (d) CORT108297 − 9.275 kcal/mol.

Figure 7.  Interactions of top three hits along with reference candidate with the LPAR3 receptors as 
represented in LigPlot diagram (a) Ki16425 (Reference) − 8.186 kcal/mol (b) Nilotinib − 10. 343 kcal/mol (c) 
Neflamamipod − 9.81 kcal/mol (d) Telmisartan − 9.598 kcal/mol.

Figure 8.  Interactions of top three hits along with reference candidate with the LPAR 6 receptors as represented 
in LigPlot diagram (a) Xanthenylacetic acid (reference) − 8.216 kcal/mol (b) Bromocriptine − 10.394 kcal/mol (c) 
Lupron − 10.392 kcal/mol (d) − 10.296 kcal/mol Nilotinib.
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Table 4.  Intermolecular interactions study of drugs in complex with LPAR1, LPAR3, and LPAR6.

Protein-drug complex Hydrogen bonds Hydrophobic interactions Interacting residues

LPAR1-Ki16425 – 8 Val200, Tyr203, Ala204, Phe207, Val210, Lys236, Val239, Leu242

LPAR1-Lupron 1 12 Val200, Lys236, Val239, Ile240, Gly243, Ile246, Ile247, Thr250, Pro251, Val254, Phe274, Tyr291

LPAR1-Telmisatran – 7 Ile247, Thr250, Pro251, Leu255, Leu258, Asp266, Tyr270, Phe274, Leu277

LPAR1-CORT108297 – 9 Tyr64, Ala67, Asn68, Ala71, Val143, Ile146, Trp150

LPAR3-Ki16425 2 6 Lys237, Thr241, Ala245, Val248, Val286, Ile289, Tyr293, Lys294

LPAR3-Nilotinib – 9 Ile50, Tyr65, Ala68, Ala72, Phe75, Phe76, Trp151, Ile155

LPAR3-Neflamamipod 1 10 Tyr12, Leu84, Arg103, Leu107, Leu177, Trp250, Gly253, Leu257, Lys273, Phe276, Leu277

LPAR3-Telmisartan – 8 Pro252, Val256, Leu259, Gly268, Val269, Gln270, Val272, Trp275, Phe276

LPAR6- Xanthenylacetic acid 1 6 Tyr85, Ala139, Gln143, Glu158, Ile172, Val173, Ile176

LPAR6-Bromocriptine – 12 Cys97, Val124, Val128, Thr131, Val132, Gly135, Ile176, Val179, Gly180, Ile183, Leu187

LPAR6-Lupron 1 14 Cys97, Leu104, Tyr108, Lys111, Leu115, Ile123, Val124, Gly127, Thr131, Ile183, Pro184, Ile186, 
Leu187, Thr190, Met194

LPAR6-Nilotinib – 10 Tyr85, Tyr89, Thr131, Gly135, Ala139, Gln143, Glu158, Ile176, Val179, Gly180

Table 5.  Binding scores of top 5 compounds against SPIKE protein.

Compound Binding score (kcal/mol)

Ritonavir (reference compound) – 7.966

Lupron  − 9.655

Montelukast  − 9.174

Allopregnanolone  − 8.927

Brexpiprazole  − 8.865

Bromocriptine  − 8.857

Figure 9.  2D structure of top three hits and reference drug with the SPIKE receptors as represented in LigPlot 
diagram depicting the molecular interactions between the SPIKE protein and the investigational drugs (a) 
Ritonavir (reference compound) − 7.966 kcal/mol with three H-bonds and three hydrophobic contacts with 
SPIKE protein residues Lys14, Phe15, Ser17, Ala20, Glu22, Arg134 (b) Lupron -9.655 kcal/mol with two 
H-bonds and ten hydrophobic interactions with amino acid residues Lys14, Phe15, Trp21, Glu22, Arg23, 
Lys24, Lys25, Tyr64, Ser67, Arg130, Pro131, Phe132, Glu133, Arg134 (c) Montelukast − 9.174 kcal/mol with 
interactions at Trp21, Arg23, Pro94, Arg130, Pro131, Phe132, Glu133 (d) Allopregnanolone -8.927 kcal/mol 
with interactions at Tyr37, Asn38, Thr40, Phe42, Phe60.
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COVID-1938,39. Identifying these drugs as the top hits in the current study indicates their potential against viral 
infection. Based on our observations, we hypothesize that the analyzed drugs, especially neflamapimod and 
lupron, can disrupt the interaction between the SPIKE protein and hLPARs, potentially lowering the infectiv-
ity of SARS-CoV-2. In addition, by targeting LPARs, the screened drugs exhibit the potential to interfere with 
the mechanisms driving the cytokine storm, ultimately offering a means to temper the hyperactive immune 
response that contributes to the severity of COVID-19 symptoms. This could reduce the excessive immune cell 
recruitment and activation, as well as a decreased release of harmful pro-inflammatory cytokines. Considering 
the involvement of LPARs in both diabetic and AD conditions, it is also hypothesized that the co-administration 
of these drugs during COVID-19 infection may not only aid in mitigating the impact of the virus but also 
potentially contribute to the prevention or management of post-COVID complications related to DM and AD. 
Further investigation is required to validate this hypothesis and assess the therapeutic potential of these drugs 
in combating both acute and long-term effects of COVID-19.

Conclusion
In conclusion, our investigation has comprehensively explored the intricate molecular interplay involving LPARs, 
COVID-19, AD, and DM. We have elucidated a sophisticated network of interactions with proteins implicated in 
these diseases by employing an in-depth analysis of protein–protein interactions (PPI) centered around LPAR1, 
"3D-LPAR protein model validation", and 6. Leveraging this network information, our strategic approach to 
drug repurposing has targeted existing drugs in clinical trials or on the market against AD and DM, specifically 
emphasizing LPARs, SPIKE, and the LPAR-SPIKE complex. This integrated methodology, encompassing genetic 
overlap, network analysis, and drug repurposing strategies, establishes a holistic framework for unraveling the 
complex molecular landscape of AD, DM, and COVID-19. Our findings contribute valuable insights into the 
tri-directional relationship and present promising avenues for combined network and targeted-based therapeutic 
interventions, thereby advancing the treatment of these intricate health conditions. Moreover, these findings 
provide evidence for the beginning of pre-clinical and clinical investigations of the top-ranked compounds, 
including neflamapimod and lupron, focusing on their therapeutic potential in treating SARS-CoV-2 infection 
and addressing post-COVID-19 complications, particularly related to AD and DM.

Figure 10.  Amino acid interaction study of the top hit against LPAR(1, 3, 6)-SPIKE complex aiding in 
understanding the specificity of the investigational drug in disrupting the complexes. (a) Neflamapimod-
LPAR1-SPIKE (b) Lupron-LPAR3-SPIKE (c) Lupron-LPAR6-SPIKE (Chain A – LPARs; Chain B – SPIKE). 
Neflamapimod and lupron interacts with some of the residues responsible for the LPAR-SPIKE complex 
formation through hydrogen, alkyl and pi-alkyl bonding.
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Data availability
The datasets generated during and/or analyzed during the current study are available from the databases below 
at the respective web link: UniProt Database: The protein sequences for LPAR1 (Q92633—https:// www. unipr 
ot. org/ unipr otkb/ Q92633/ entry), LPAR3 (Q9UBY5—https:// www. unipr ot. org/ unipr otkb/ Q9UBY5/ entry) and 
LPAR6 (P43657—https:// www. unipr ot. org/ unipr otkb/ P43657/ entry) were retrieved from UniProt database. 
Protein Data Bank: The SPIKE protein (2GHV) PDB structure was downloaded from PDB database https:// 
www. rcsb. org/ struc ture/ 2GHV. Pubchem Database: The drugs in this study can be found at https:// pubch em. 
ncbi. nlm. nih. gov. Data (genes) retrieved from Coremine medical database (http:// www. corem ine. com/ medic 
al) with the search terms "Alzheimer’s disease", "COVID-19" and "non-insulin-dependent/insulin-dependent 
diabetes mellitus" individually. A significance threshold of p < 0.05 was employed to filter genes and the result-
ing genes were taken for gene intersection analysis. Genes retrieved from Coremine medical database with the 
search term "(AD ∩ diabetes (both Type I and Type II) ∩ COVID-19)". A significance threshold of p < 0.0005 was 
employed to filter genes (72 genes), which were used for predicting an interaction network with GeneMANIA 
(http:// www. genem ania. org/). The lists of genes identified for analysis in this study are available from the cor-
responding author (JMB) at reasonable request.
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