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Periodicity, Elliott waves, 
and fractals in the NFT market
J. Christopher Westland 

Non-fungible tokens (NFTs) are unique digital assets that exist on a blockchain and have provided new 
revenue streams for creators. This research investigates NFT market inefficiencies to identify claimed 
cyclic behavior and cryptocurrency influences on NFT prices. The research found that while linear 
models are not useful in modeling NFT price series, models that extract periodic behavior can provide 
explanations and predictions of price behavior. The investigation of autocycles in cryptocurrency 
and NFT markets did not support the existence of Elliott Wave behavior in any of these blockchain 
enabled assets. Rather NFT price behavior is strongly tied to the underlying asset and its community 
of fans. These fans commit to periodic bouts of idiosyncratic trading which cools for a while, and 
then restarts. The research found no evidence supporting whole market effects across the full price 
series of individual NFTs. The research strongly supports prior findings that the offsetting movements 
significantly influence NFT prices and trading volume in Bitcoin and Ether. The research found NFT 
markets exhibit characteristics resembling a social media platform rather than more traditional asset 
markets like stock exchanges. It found that traditional linear econometric models cannot predict 
or explain NFT price series, only that NFT price and volume were weakly correlated. Fractal models 
consistent with Elliott wave theory do explain some of NFT price behavior, but are not consistent 
or stable over time. This research confirmed prior research findings that Bitcoin and Ether price 
movements are correlated with general NFT price and volume series in periods of between 24 and 
48 h, with significant numbers of trades into and out of cryptocurrencies at 2 and 8 h.

Non-fungible tokens (NFTs) are unique blockchain assets that offer new revenue streams for creators at the 
expense of a potentially large environmental footprint, and potential risks from poor security and market regula-
tion. NFTs’ distributed ledger allows for allegedly secure and transparent record-keeping which NFT proponents 
argue are safe, tamper-proof, and cheaply transferable. Recent thefts and hacks have brought additional scrutiny 
to such claims.

“Studies of the nonfungible token (NFT) market have investigated price behavior using a variety of analyti-
cal methods. Positive but sometimes contradictory causal behaviors have been found to influence NFT prices 
 in1–10, while economic models  in6,11–14  and15 suggest there is little correlation between NFTs and real world asset 
markets, including those for physical painting, sculpture and objet d’art.

In other asset markets, similar pricing models favor analysis only of the price series, i.e., “technical”  analysis16, 
over causal impact of real world events, i.e., “fundamental”  analysis17. Elliott wave technical analysis is an active 
area of quantitative research in collective trader psychology, that tracks market optimism and pessimism in 
repeating sequences of intensity and duration. Elliott proposed that mood swings create patterns in the price 
movements of markets at every degree of trend or time scale.

Numerous recent studies have concluded that it may be possible to predict prices with Elliott wave techni-
cal analysis in diverse markets,  including18–41  and42. The methodology in these research papers has unfortu-
nately been limited by a dearth of modern quantitative models to completely describe the Elliott waves. Elliott 
 recommended18 Fibonacci series in the 1930s, and they are commonly employed for analysis today. But today we 
also have rich quantitative models that can more completely capture the Elliot wave series such as fractal analysis 
and wavelet models using software tools that have only become available over the past 20 years.

The current research studies the existence of Elliott wave like behavior in NFT markets, where I employ 
wavelet and fractal models to represent Elliott wave models of technical price movements in OpenSea’s NFT 
market. The research looks at Elliott wave like price autocycles, as well as price cycle correlations between NFTs 
and cryptocurrencies which have been suggested in the conclusions of prior studies. Elliott, Mandelbrot and 
Taleb all recognized this, and sought out the extra dimensions of prices through recursive “fractal” theories of 
asset  markets43–47. Furthermore, their models of human behavior are embraced by many whose living depends 
on understanding these models.
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This study builds on the results of recent research in both explaining and predicting nonfungible token (NFT) 
pricing and returns, and addresses some of the open questions applying an approach which has been successful 
in forecasting other financial asset markets. The research is structured to answer six research questions concern-
ing NFT markets:

Do linear econometric models accurately predict the price behavior in NFT markets, e.g., ARIMA
(

p, d, q
)

 time 
series models, or the capital asset pricing  model48? The capital asset pricing  model48 (CAPM) is an old model 
in finance that has had enormous influence over its existence, and which is used to determine a theoretically 
appropriate required rate of return of an asset, to make decisions about adding assets to a well-diversified 
portfolio. The model takes into account the asset’s sensitivity to non-diversifiable risk and the expected return 
of the market and the expected return of a theoretical risk-free asset. (Linear models provide my baseline 
model for NFT price behavior)
Does Elliott wave like price behavior exist in NFT markets?
Do fractal representations of Elliott wave like behavior capture NFT autocyclic price behavior? (Elliott wave 
model tests)
Do wavelet representations of Elliott wave like behavior capture NFT autocyclic price behavior? (Elliott wave 
model tests)
Are there time-varying correlations (i.e., wavelet coherency) between Bitcoin and Ether cryptocurrency 
market price movements and NFT price and volume movements, e.g., as suggested by  Ante49 and others. If 
so, over what time-periods? (Tests of Ante’s findings)
Is NFT price correlated with trading volume (General test of a common asset market correlation).

NFT markets have been found to suffer from significant  inefficiencies50–52. This research investigates this 
inefficient market to identify speculated cyclic behavior and cryptocurrency influences on NFT prices. The 
current research proceeds as follows. Section “Background” of this paper surveys prior research and provides 
background for the research questions. Section “Data and methodology” describes the dataset and methodol-
ogy. Section “Results” presents the result of analysis on all of the research questions. Section “Findings and 
conclusions” summarizes the conclusions of analysis, and section “Future research” suggests future avenues of 
research and how they would be useful both for practitioners, regulators and traders, as well as expanding the 
academic field of digital markets.

Background
The concept of an NFT has been around since the early days of blockchain technology and has recently seen 
significant trading volume in art and collectibles. In 2012, NFTs known as Colored Coins were created, followed in 
2014 by the Counterparty platform and the emergence in 2017 of digital marketplaces for creators, such as Cryp-
toPunk and CryptoKitties. CryptoKitties was covered by CNN, MSNBC, and The New York Times, and inspired 
the creation of the OpenSea trading platform. NFTs were relatively inexpensive until the 2021 announcement and 
sale of Beeple’s “Everydays” NFT which garnered the third-highest auction price ever earned by a living artist. 
NFT sales reached $18 billion by the end of 2021. This represented a significant increase from the previous year, 
when total NFT sales were less than $2 billion.

The rapid expansion of investments into non-fungible tokens (NFTs) over the past five years has motivated 
a substantial body of research into price setting behavior, influences of other markets on NFT prices, and social 
and networking influences on NFT prices. Economic models of NFT markets have been developed and explored 
 in6,11  and12 who found support for the nonfungibility of NFTs. Found low to nonexistent correlation between 
NFTs and  cryptocurrencies13  and14. Yousaf et al.15 explored the correlation of metals trading and NFT returns.

Behavioral, social and information networking influences on market prices have a long history of anecdotal 
support, but rigorous analysis has been elusive due to the subjectivity of data. There is an evolving stream of 
academic research:1 investigated ‘herding’ behaviors in markets such as Cryptokitties and Godsunchained assets, 
finding specific patterns of herding among investors;2 looked at spatial heterogeneity in price setting, supporting 
the idea that NFTs are truly non-fungible;3 studies centrality measures, clustering coefficient, and assortativity in 
NFT markets, showing that these were highly unstable over time and moved by relatively few investors, a result 
suggestive of active market manipulation,  where4  and5 also provide strong arguments for this interpretation;6 
provides evidence that pricing and returns are strongly influenced by pump-and-dump schemes;7 found that 
either economic fundamentals or investor attention can increase the volatility of NFTs significantly;8 explored 
the behavioral time-varying and cross-section properties of NFT market liquidity;9 found no correlation between 
NFTs and the physical art market,  while10 found that the counter-cyclical pricing of NFTs made it a hedge against 
other assets in a portfolio.

Literature reviews appear  in14,53–56 for general literature reviews. With regard to intellectual property 
 protection57. Provides  histories58. Surveys NFTs in healthcare, with suggestions for future  applications59  and60. 
Beyond this, there is a substantial strain of semi-speculative academic literature that questions whether NFTs 
are an asset at all, or merely a mathematical oddity and perhaps the most recent fad in market  profiteering61–68. 
In a related stream, NFT in branding and advertising has been studied  in69.

Ante49 examined cryptocurrency market movements and NFT price and volume, finding that NFT prices 
and trading volume were significantly influenced by external factors such as the price and volume movements of 
Bitcoin and Ether, as well as overall market sentiment. Specific sources of inefficiencies were observed in Pereira 
et al.52. Ante’s research asserted that when Bitcoin and Ether experienced large price and volume movements, 
NFT prices and trading volume also tended to rise or fall. Additionally, the study found that NFT prices were sig-
nificantly higher when the market sentiment was positive, as measured by the Crypto Fear and Greed Index. The 
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study also found evidence of risk management behavior by NFT traders, as they tended to sell NFTs and move 
into Bitcoin or Ether during periods of high volatility or uncertainty in the cryptocurrency markets, suggesting 
that NFT traders might use Bitcoin and Ether as a hedge against market risk. Ante’s49 dataset comprised only 1231 
daily observations (January 1, 2018–May 16, 2021) on the volume of NFT sales in USD, the number of blockchain 
wallets holding or interacting with NFTs on a particular day, and the prices of Ether (ETH) and Bitcoin (BTC) 
in USD. Ante’s study’s daily resolution gave excessive weight to open and close prices set by the market, and was 
limited to a period in which NFTs were less prominent prior to May 2021. Ante’s49 data had a minimum daily 
resolution, whereas efficiencies in markets like OpenSea have made intraday (minute-by-minute) trading more 
important for tracking trends and influences. Nonetheless, NFT markets are highly  inefficient52 and idiosyncratic, 
having more in common with social media than liquid markets. The current research attempts to resolve these 
shortcomings by analyzing a curated database of 6,071,027 min-by-minute NFT transactions through the end 
of 2022, along with contemporaneous Bitcoin and Ether minute-by-minute price and volume datasets.

Price cycle analysis in asset markets relies on several ad hoc technical analysis methods in practice. The most 
popular and prominent of these is Elliott Wave theory, which uses a fractal-like method for predicting the length 
and frequency of ‘bull’ and ‘bear’ market  swings18. Elliott Wave theory studies patterns of changes in investor 
sentiment and psychology, which claims that investor sentiment cycles in predictable, recurring fractal patterns 
(“waves”) in financial  markets43. Elliot Wave theory is influential to this day in finance, most recently popularized 
 in44. Several large financial funds trade on Elliott wave  theory45–47. Fractal dynamics of asset prices create a time 
and frequency resolution dilemma, resulting from the Heisenberg uncertainty principle, and wavelets offer the 
most comprehensive formal mathematical approach for analyzing dynamics in such  domains70–74. Wavelets are 
used in the empirical analysis of fractals datasets to measure local characteristics. In this research I take advantage 
of wavelets methods that allow perusing the local structure of a  fractal75–79. This ability is important because 
asset markets, such as stock and Forex markets exhibit fractal  behavior70–72. It is additionally important that the 
Morlet wavelets applied here are closely related to human perception, hearing and vision, which is consistent 
with Elliott waves having their basis in human  perception80,81. The wide acceptance of fractal and Elliott wave 
models of asset market price movements suggest that fractal and wavelet empirical analyses of NFT markets 
can provide insights into the detailed nature of inefficiencies. Wavelets provide a formal mathematical model 
for analyzing fractal-like price swings in asset markets.

Data and methodology
The current research investigates price and trading volume movements in the NFT market, and possible external 
influences on price and volume from whole market effects and risk management through open market trade 
of Bitcoin and Ether whose Ethereum blockchain accounts for the majority of NFT trades. The research uses a 
curated database of 6,071,027 NFT transactions of 4,337,718 unique NFTs on OpenSea, the world’s largest NFT 
marketplace, between 6:44 pm UTC on November 11, 2017 and midnight on April 28,  202182. OpenSea is an 
online peer-to-peer marketplace that went live in New York on December 20, 2017. Additionally, the research 
collected contemporaneous Bitcoin and Ether price and volume datasets.

Figure 1 displays, on a log-linear graph, the smoothed prices of NFTs over time. Figure 2 displays volume-
price statistics showing that only a few hundred of the 4.3 million NFTs are relevant to the market; indeed, many 
NFTs never trade, and 82% of NFTs see only 1 trade over their lifetime; 99% see less than 5 trades. Only a few 
NFTs are ever of any value, and the market and its importance are idiosyncratic and less important than the 
popular press has conveyed. Figure 3 displays four graphs of NFT price and volume data over time, emphasizing 
in particular periods of high activity. Figure 3’s top two panels show volume and price data for he full time of 
OpenSea’s operation, while the bottom line restricts these to the elevated price period starting around the time 
of Beeple’s Everydays. Figure 4 rank orders the volume of trading for the top 50 NFTs (left) and the top 50,000 
NFTs (right), showing that only a small number of NFTs drive the entire market. Given the high dimensional-
ity of this data, graphic reporting of statistics is most direct, and tables of the same data would be messy and 

Figure 1.  Smoothed average NFT prices for the whole market.



4

Vol:.(1234567890)

Scientific Reports |         (2024) 14:4480  | https://doi.org/10.1038/s41598-024-55011-x

www.nature.com/scientificreports/

voluminous, thus are minimized in the current research. Note that prices and volumes follow trends in Google 
search shown in Fig. 5.

The analyses performed in this research require relatively large datasets of prices to produce reliable results. 
Figure 4 shows that such transaction volumes exist only for the top ranked NFTs. In addition, unlike stock 
exchanges and other liquid markets, NFTs are faddish items, and only a few of these fads actually gain traction. 
Market wide effects are minimal, and individual NFTs demonstrate unique trading behaviors. To address these 
unique aspects of the NFT market, the current research analyzes activity in only the top 10 ranked NFTs, in order 
to have large enough datasets to provide reliable estimates, and as a way to investigate the unique behaviors of 
each individual NFT market. Tables 1 and 2 provide details on the NFTs used in the analysis: table one provides 
a link to the OpenSea webpage that contains details and pictures where applicable, of the 10 most traded NFTs; 
Table 2 displays trading statistics for those 10 NFTs. Prices have generally increased over time.

Figure 2.  Volume vs. mean price for All NFTs.

Figure 3.  Price and volume graphs for NFT dataset (2018–2022 top; 2020–2022 bottom).
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Figure 4.  Rank ordered total volume of trading for first 50 (left) and first 50,000 (right).

Figure 5.  Google trends for NFTs. Google Trends is a website by Google that analyzes the popularity of top 
Google search queries using graphs to compare the search volume of different queries over time.

Table 1.  URLs of the top 10 NFTs ranked by trading volume.

Rank URL of non-fungible token OpenSea description page

1 https:// opens ea. io/ assets/ 0xbb5 ed1ed eb514 9af3a b43ea 9c7a6 963b3 c1374 f7/0

2 https:// opens ea. io/ assets/ 0x5d0 ee539 89332 3f996 5e3ac 2846e a6421 255ae 79/0

3 https:// opens ea. io/ assets/ 0x079 b18d6 556e1 98c98 e5994 90c6c bba23 1ab4d b8/0

4 https:// opens ea. io/ assets/ 0xcd6 5baca cea37 e65ea c019f 37f5c b38ae 62a7f f/0

5 https:// opens ea. io/ assets/ 0xcd6 5baca cea37 e65ea c019f 37f5c b38ae 62a7f f/0

6 https:// opens ea. io/ assets/ 0xcd6 5baca cea37 e65ea c019f 37f5c b38ae 62a7f f/0

7 https:// opens ea. io/ assets/ 0x079 b18d6 556e1 98c98 e5994 90c6c bba23 1ab4d b8/0

8 https:// opens ea. io/ assets/ 0xcd6 5baca cea37 e65ea c019f 37f5c b38ae 62a7f f/0

9 https:// opens ea. io/ assets/ 0xcd6 5baca cea37 e65ea c019f 37f5c b38ae 62a7f f/0

10 https:// opens ea. io/ assets/ 0xcd6 5baca cea37 e65ea c019f 37f5c b38ae 62a7f f/0

https://opensea.io/assets/0xbb5ed1edeb5149af3ab43ea9c7a6963b3c1374f7/0
https://opensea.io/assets/0x5d0ee539893323f9965e3ac2846ea6421255ae79/0
https://opensea.io/assets/0x079b18d6556e198c98e599490c6cbba231ab4db8/0
https://opensea.io/assets/0xcd65bacacea37e65eac019f37f5cb38ae62a7fbf/0
https://opensea.io/assets/0xcd65bacacea37e65eac019f37f5cb38ae62a7fbf/0
https://opensea.io/assets/0xcd65bacacea37e65eac019f37f5cb38ae62a7fbf/0
https://opensea.io/assets/0x079b18d6556e198c98e599490c6cbba231ab4db8/0
https://opensea.io/assets/0xcd65bacacea37e65eac019f37f5cb38ae62a7fbf/0
https://opensea.io/assets/0xcd65bacacea37e65eac019f37f5cb38ae62a7fbf/0
https://opensea.io/assets/0xcd65bacacea37e65eac019f37f5cb38ae62a7fbf/0
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Figure 6 indicates of how NFTs differ, by showing smoothed price series over their trading lives. The panels 
(an all of those of other grid figures) show each of the top 10 NFT price streams in rank order:

Note that the time periods represented in each of the panels are different; the reader should refer to Table 2 to 
calibrate the reading of timelines in the grid panels in Figs. 6, 7, 8, 9, 10, 11 and 12 which all share the sequence 
shown in the grid matrix above.

In the exploratory charts in Fig. 13 there is a single unusual event-specific price spike that seems to roughly 
correspond to the 2019 crash in the cryptocurrency market. In 2018, hackers successfully attacked Japan’s largest 
cryptocurrency market Coincheck, stealing $530 million. Subsequently, Coincheck indefinitely suspend trading. 
In the same year, cryptocurrency markets suffered a wide range of abuses causing investor losses. A negative 
Ernst & Young market study further fueled skepticism of blockchain assets, suggesting that criminal activity 
was stealing $1.5 million per month in ICO proceeds, or $400 million in capital. This fomented a general sell-off 
of cryptocurrencies, with a possible transfer of value into NFT markets. From around $20,000 level, the sell-off 
drove Bitcoin to plunge as low as around $3,000 in December 2018, and had been dubbed the great crypto crash 
of 2018, and this overall negative climate lasted through 2019. In addition, Bitcoin “halving” was thought to play 
a role in this crash. Halving limits Bitcoin supply, pushing up demand and prices as investors enter the market. 
There is typically an uptrend and peak in Bitcoin—and subsequently in other cryptocurrencies—after a halv-
ing event which happens around every 4 years. Since Bitcoin’s inception in 2009, the halving events every four 
years in 2012, 2016 and 2020 result in Bitcoin price hikes months to a year after it happened. This is followed 
by a slump, two years after the halving event. This slump occurred very quickly in 2018 and possibly influenced 
a restructuring of cryptocurrency portfolios by investing more in NFTs. Since the NFT market was relatively 
small in 2018, this could have represented a significant percentage of transaction volume for the NFT market.

Results
Baseline linear time-series models
As a baseline comparison for wavelets and fractal analysis, the research analyzed the price time series for each 
of the 10 most popular NFTs using ARIMA models to assess the method which extracts the greatest amount of 
information. If Elliott Wave or fractal theories of price series are valid, then they should outperform our baseline 
series.

I denote the observed NFT price series by p1, p2, ..., pn . A forecast of pt+h based on all of the data up to time 
t  is denoted by p̂t+h|t . Figure 7 graphically shows ARIMA forecasts of each of the top 10 NFT price streams 
over the span of the dataset and Table 3 shows fit statistics. For each price stream, the auto.arima algorithm in 
R’s forecast package computed the optimal ARIMA

(

p, d, q
)

 model, where p is the order (number of time lags) 
of the autoregressive model, d is the degree of differencing (the number of times the data have had past values 
subtracted), and q is the order of the moving-average model based on the fit statistics in Table 3. In all cases, 
ARIMA forecasting performed only as well as a random forecast, and ARIMA models were determined not to 
provide good models of NFT price behavior.

Fractal behavior in the NFT price series
Elliott Wave theory is claimed to provide a fractal-like method for predicting the length and frequency of ‘bull’ 
and ‘bear’ market swings, perceiving a recursive ‘fractal’ price structure in asset  markets43. Elliott’s work as been 
a factor in related studies of asset price time and frequency  resolution71–74. Until recently, fractal algorithm 
implementations have been unavailable for analyzing large price datasets such as the one used in this research.
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Table 2.  Trade Statistics for the Top 10 NFTs ranked by trading volume.

Rank First trade Last trade Volume Low price High price

1 2018-09-11 11:05:00 2018-12-08 05:33:00 32,122 0 2.663e+26

2 2019-07-11 07:00:00 2019-07-16 23:30:00 12,688 0 3.492e+25

3 2018-07-10 01:16:00 2018-07-17 15:00:00 10,904 0.2343 9.185e+ 19

4 2018-08-07 07:00:00 2018-08-26 06:59:00 8742 0 1.627e+21

5 2017-10-25 19:08:00 2021-04-27 07:00:00 8206 0 1.735e+27

6 2018-02-16 13:44:00 2018-07-10 01:16:00 7521 0 1.077e+27

7 2018-08-26 06:59:00 2018-09-07 05:11:00 7039 0 2.69e+20

8 2018-02-05 07:01:00 2018-02-16 13:44:00 6911 0 3.017e+20

9 2018-09-07 05:11:00 2018-09-11 11:05:00 6115 0 5070

10 2017-06-23 21:05:00 2017-10-25 19:07:00 5862 0 2.243e+21
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The current research analyzes the multifractal spectrum of Hurst exponents H of the price series, a measure of 
long-term memory of time series, using R’s  MFDFA83 package. For self-similar time series (e.g., Elliott waves) H 
is directly related to fractal dimension, D, where 1 < D < 2 , such that D = 2−H . The values of the Hurst expo-
nent vary between 0 and 1, with higher values indicating a smoother trend, less volatility, and less  roughness84. 
A multifractal system is a generalization of a fractal system in which a single exponent (the fractal dimension) 
is not enough to describe its dynamics; instead, a continuous spectrum of exponents (the so-called singularity 
spectrum) is  needed85. Multifractal systems are common in human behavior and elsewhere in nature. They 

Figure 6.  Moving average of top 10 NFT prices during their trading period.
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include the length of coastlines, mountain topography, fully developed turbulence, real-world scenes, heartbeat 
dynamics, human gait and activity, human brain activity, and natural luminosity time series.

In a multifractal system the behavior around any point is described by a local power law 
s
(

q+ a
)

− s
(

q
)

∼ ah(q). The exponent hq = h
(

q
)

 is called the singularity exponent, as it describes the local 
degree of singularity or regularity around the point q . Multifractals tend to be scale invariant yielding power-law 
behaviors, self-similarity, and  multiscaling86. The curves 

[

Dq, hq
]

 (such as shown in Fig. 8) are called singularity 
spectra and fully describes the statistical distributions of the price series.

Figure 7.  Optimized ARIMA Price Forecasts for the Top 10 NFTs.
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Figure 8.  Multifractal Singularity Spectra for the Top 10 NFTs, where behavior around any point is described 
by a local power law s

(

q+ a
)

− s
(

q
)

∼ ah(q) and which fully describes the statistical distributions of the price 
series. The x-axis hq describes the local degree of singularity or regularity around the point q . The y-axis Dq 
displays the fractal dimension at q.

Figure 9.  Price levels over the time period of the dataset used in this research.
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Figure 10.  Wavelets Autocycle Power Graphs for the Top 10 NFTs Between 4 and 512 min.



11

Vol.:(0123456789)

Scientific Reports |         (2024) 14:4480  | https://doi.org/10.1038/s41598-024-55011-x

www.nature.com/scientificreports/

Fi
gu

re
 1

1.
  P

ric
e a

ut
oc

yc
le

s f
or

 et
he

r, 
bi

tc
oi

n 
an

d 
w

ho
le

 N
FT

 m
ar

ke
t r

es
pe

ct
iv

el
y.



12

Vol:.(1234567890)

Scientific Reports |         (2024) 14:4480  | https://doi.org/10.1038/s41598-024-55011-x

www.nature.com/scientificreports/

Were the fractal perspective of Elliott Waves to be correct, we would expect each of the top 10 NFTs to have 
the same singularity spectrum, one that is defined by the Elliott Wave behavior of five upward steps and three 
downward steps at multiple scales. In fact, each of the singularity spectra in Fig. 8 define significantly different 
spectra, and thus different behavior in the markets for the 10 most traded NFTs. Fractal analyses of NFT price 
series do not show consistent, comparable fractal behavior for different NFTs, and thus is not suitable for predic-
tion of future price series based on prior behavior.

Wavelet decomposition as a method of identifying Elliott Wave and Fractal behavior
Wavelets analyze data in a time–frequency domain, rather than just frequency (as with Fourier analysis), or time 
(as with ARIMA), and offer a comprehensive mathematical model in that domain. Wavelets hold the potential for 

Figure 12.  Ether price coherency (correlation) with the Top 10 ranked ranked NFTs.
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extracting specific causal relationships that occur repeatedly over limited time-periods, and which are predictable, 
repeatable and systemic. Thus they appear to be a very promising candidate for rigorously modeling Elliott waves 
in price series, which are claimed to reflect investor group psychology. Wavelets are able to fully model patterns, 
such as those claimed in Elliott wave theory, that appear at multiple scales with neither beginning nor ending. 
The software and computing power available before a decade ago was inadequate for a thorough study of Elliott 
waves, which is likely one reason that so few studies have yet taken this approach. Analysis by the many adherents 
who have invested time and money in understanding Elliott wave patterns has up to this point been implemented 
using either linear models or using Fibonacci sequences, both computationally less intensive approaches. The 
current research analyzed wavelets using R’s WaveletComp87 package, which was able to fully capture the salient 
features of Elliott wave theory. Figure 9 shows the price timeseries for the top 10 NFTs analyzed in this research.

The graph in Fig. 10 analyzes autocycles in the price series of each of the top 10 NFT analyzed in this research. 
We would expect Elliott Waves to present themselves as autocycles (comparable to autocorrelations) on one of the 
power spectra, i.e., the color corresponding to the scale at the right at a particular periodicity on the y-axis. The 
minute-by-minute price series of each of the top 10 NFT was analyzed to compute their power spectra between 
each possible set of two points on the price series, i.e. their autocycles. The important features of intraday trading 
are captured in the chosen periodicity time scale which span from 4 min to about 8 h (512 min). Longer weekly 
cycles were found for all of these NFTs, but these are artifacts that are common for most asset price series. There 
is very little activity before the end of 2019 in any of these NFTs. Where there were significant autocycles in 
pricing (the red “high power” funnels) spanning all periods that would appear randomly in time. These reflect 
times where specific NFTs were being strongly promoted and where there was significant media hype around 
the particular NFT.

Though there were between three and nine brief periods of high volume, highly autocorrelated activity in 
each of the NFT price streams, there were no dates that were consistent across all of the price streams. Individual 
NFTs exhibited their own specific idiosyncratic price autocycles.

The graphs in Fig. 11 show the analysis of general autocyclic power of the Ether, Bitcoin and the whole NFT 
market. These were small and power spectra are uninformative, supporting a common assertion that prices are 
statistically independently distributed over time. The next section looks at interactions between cryptocurrency 
and NFT prices. The current research found that Ether price had little influence on NFT prices, even though 
NFTs on the OpenSea platform were almost always implemented on the Ethereum blockchain.

Figure 13.  NFT trading around the time of the bitcoin slump.

Table 3.  ARIMA fit statistics for the top 10 ranked NFTs.

Optimized ARIMA parameters AIC Sigma-squared Log-likelihood

ARIMA(4,0,2) with non-zero mean 183,380 1.459e+09 − 91,682

ARIMA(1,1,0) 89,375 97,528,953 − 44,686

ARIMA(1,1,1) 65,715 20,602,420 − 32,855

ARIMA(1,1,0) with drift 60,977 25,360,426 − 30,485

ARIMA(1,1,1) 55,134 31,767,567 − 27,564

ARIMA(3,1,3) 47,117 18,630,823 − 23,551

ARIMA(1,1,0) 35,505 40,573,368 − 17,751

ARIMA(1,0,0) with non-zero mean 30,517 43,399,359 − 15,256

ARIMA(0,0,0) with non-zero mean 28,998 632,708,194 − 14,497

ARIMA(1,1,0) with drift 29,599 35,714,201 − 14,797
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I concluded from these analyses that price behavior is strongly tied to the asset and its community of fans/
traders. These traders will exhibit periodic idiosyncratic bouts of trading which cools for a while, and then 
restarts. But wavelet analysis provides no discernible indication of Elliott Wave behavior across the full price 
series of any of these NFTs.

Trading interactions between cryptocurrencies and individual NFTs
Prior  research49 asserted that when Bitcoin and Ether experienced large price and volume movements, NFT 
prices and trading volume also tended to rise or fall. Additionally, NFT prices were significantly higher when the 
market sentiment was positive, as measured by the Crypto Fear and Greed Index. NFT traders displayed hedging 
behavior, as they tended to sell NFTs and move into Bitcoin or Ether during periods of high volatility or uncer-
tainty in the cryptocurrency markets, suggesting that NFT traders might use Bitcoin and Ether as a hedge against 
market risk. If  hedging49 into and out of Ether and Bitcoin exists in NFT markets, then they should show up in 
wavelet analysis. Wavelets offer an alternative to the direct causality of econometrics, by additionally providing 
lead and lag information embedded in the phase difference between the two variables. Wavelets analyze time in 
terms of coherency, start, duration and phase. Phase can be though of in terms of causality plus a time (lead-lag) 
component. No cause and effect relation is instantaneous—even physical systems’ cause effect is limited to the 
speed of light (e.g., gravitational attraction). Phase adds the time component to causality, and essentially extends 
empirical analysis of causality by adding temporal information.

The graphs in Figs. 12 and 14 analyze these cryptocurrency-NFT price series couplings for of each of the 
top 10 NFT analyzed in this research. They generally support prior findings for price cycles of more than one 
trading day (i.e., 8 h) and provide detail on the nature of hedging behavior. Ante’s49 suggests that such coupling 
would be significant, and though this seems to be borne out at longer periodicities, it is nonexistent for periods 
shorter than a day (i.e., 8.5 h or 512 min). A useful analogy for understanding wavelet coherency is music’s “call 
and response.” In call and response, a group chorus (e.g., the market collectively) sings a motif, possibly with 
chordal accompaniment, and a few beats later, a soloist (e.g., an investor/trader) responds in answer. Call and 
response, occurs over multiple pitches (frequencies or periodicities) over multiple beats (varying time periods). 
Each of the powers of 2 represents an ‘octave’ and a resolution of 1

12
 was used on the y-axis. Wavelet coherency of 

a time series in is analogous to the coefficient of correlation ρ in linear statistical models. That “call and response” 
appears at long intervals in Figs. 12 and 14, but not in intraday trading.

The next two sections look at NFT-cryptocurrency coherencies for Bitcoin and Ether. Because most NFTs 
are traded on the Ethereum blockchain, and most trades are in Ether cryptocurrency, I investigated cycles in 
Ether cryptocurrency, and later, coherence between Ether cycles and the top three “art” NFTs. Post-Everydays, 
Ether autocycles appear around 2048, 1024 and 256 min cycles (around 32 h, 17 h and 4 h). In contrast, Bitcoin 
dominates cryptocurrency markets and is somewhat of a de facto numeraire commodity, and thus the same 
analysis was applied to Bitcoin (Fig. 14). Across its full range, cycles appear around 2048 and 1024 min cycles 
(1.5 days and 16 h).

Ether
NFT-Ether coherency is graphed in Fig. 12. Note that in Fig. 12 and also in Fig. 14, the x-axis time values show 
various ranges and are not consistent. These graphs do not all cover the same time period, but for the NFT-
cryptocurrency coherency analysis this was not important, as only the periodicity of the NFT-cryptocurrency 
relationship is being elicited. Figure 12’s cross-wavelet coherency power spectra generally supports Ante’s49 
conclusions, but provides significantly more detail on how these take place in practice. Ethereum was the first 
blockchain to support smart contracts, and because of that, the first to support NFTs. Almost all NFTs are traded 
on the Ethereum blockchain, thus analysis was restricted to the Ethereum blockchain.

Inspection of coherency power spectra between Ether and the top 10 NFTs reveals common patterns in 
trading:

• The black arrows on the diagram indicate the phase ω of the coherency with trading from Ether into the 
NFT (generally right-pointing arrows) and out of the NFT (generally left-pointing arrows) with the degree 
of rotation indicating lead-lag times dependent on the period (y-axis)

• At periods greater than 48 h (2880 min) coherency is low, implying that trade decisions are generally made 
within a daily time frame.

• At periods greater than 24 h (1440 min) and less than 48 h there is significant into and out of Ether and that 
specific NFT, with a latency (the degree of rotation of the phase arrows on the chart) that evolves over time. 
One explanation of this evolving latency is that since specific NFTs are popular during a relatively limited 
period of time where they are heavily traded, that these phase rotations reflect the transfer of an Ether account 
holding into the NFT and then later out of the NFT holdings. Additionally since NFT price increases with 
popularity, more Ether needs to be traded for each transaction. All of the 10 charts show almost a complete 
phase rotation over their trading life, reflecting the trade into, holding and trade out of that NFT.

• OpenSea explains on their website that the average time it takes to process a transaction is around an hour. 
Additional time may be required for the ‘gas’ fees (transaction processing fees on the Ethereum blockchain) 
which are associated with an OpenSea transaction. Thus it is difficult for Ether-NFT portfolio balancing to 
take place in less that two hours.

• NFTs experienced periods of frenzied trading (the red funnels in the charts) between one and about six 
times in their trading existence. Trading activity into and out of Ether occurred within 2 h (~ 128 min) and 
8 h (~ 512 min) period cycles. Phase arrows show a trading from Ether into the NFT (rightward pointing 
arrows) and out of the NFT (rightward pointing arrows).
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• Trading platforms can be seen as a form of social media, with faddish trends directly impacted in prices. 
NFT trading behavior clearly indicates their faddish nature. NFT fads arise suddenly and arbitrarily, are 
quick-spreading and short-lived, quickly reversing themselves. In other social media, general novelty, mass 
marketing, peer pressure, and the desire to trendy drive interest and transactions. Furthermore, the NFT 
market is very thinly traded (see Figs. 1 and 2 on price and volume) with 99% of NFTs being traded less than 
5 times. NFT markets like OpenSea have much more in common with social media platforms like TikTok, 
rather than with a liquid asset market like the New York Stock Exchange. TikTok is a short-form video host-
ing service owned by ByteDance. It hosts user-submitted videos, which can range in duration from 3 s to 10 
min. Cloudflare ranked TikTok the World’s most popular website of 2021, surpassing Google.

Bitcoin
NFT-Bitcoin coherency is graphed in Fig. 14. Note that in Fig. 14, the x-axis time values show various ranges 
and are not consistent. These graphs do not all cover the same time period, but for the NFT-cryptocurrency 

Figure 14.  Bitcoin price coherency (correlation) with the Top 10 ranked ranked NFTs.
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coherency analysis this was not important, as only the periodicity of the NFT-cryptocurrency relationship is 
being elicited. Figure 14 presents the cross-wavelet coherency power spectra, revealing that observations made 
for the Ether-NFT coherency and trading patterns generally apply to Bitcoin-NFT coherency. Linkages between 
two markets are causal, in the mutual information sense of causality, and the direction of the causality is deter-
mined by whether phase analysis indicates a lead or lag relationship (the causal arrow has its arrowhead pointed 
to the lagging variable). The time-lag associated with the causal relationship is determined by the degree that 
the cycles are out of phase.

• In a comparison of Ether-NFT coherency to Bitcoin-NFT coherency, we see trading (red funnels) taking 
place at roughly the same time and periodicity in and out of either Bitcoin or Ether, and at roughly the same 
cross-wavelet power levels (color legend on the right hand side).

• Bitcoin trades seem to be taking place a bit faster (~ 1 h faster) than Ether trades, suggesting that computing 
‘gas’ on the Ethereum blockchain may impose a time lag as suggested earlier.

Phase shifts
Figures 15 and 16 provide phase and power profiles for the two most heavily traded NFTs in the dataset, where 
I had sufficient data to compute these graphs. These graphs provide a more detailed explanation of the small 
directional arrows showing causal direction on the graphs in Figs. 12 and 14. “Phase” measures the relative time 
difference between two sinusoidal timeseries functions. The phase lag is one component of these functions and 
occurs when a system response lags behind a signal. The phase ω information contained in the black arrows on 
analyses of the top 10 NFTs provides information about trading lead-lag times and direction. This is somewhat 
complicated to read from the charts since the period (y-axis) determines the exact timing. For example at a 
periodicity of 256 mins, a phase of ω = π

4
 gives lag = ω

2π
× period or 32 min. Since this information tends to 

be very time specific—it is not invariant across the entire period of trading in a specific NFT—it was felt that 
investigating the top two NFTs would be sufficient to review whatever additional information might be gleaned 
from detailed phase analysis. These figures display phase information for the Ether price stream and the first 
and second most traded NFTs. Each of these two figures shows the power curve (the red dots indicate which 
parts are statistically significant at the 5% level) a phase diagram (colors indicate the lead or lag in time in on 
a scale of [−π ,π] minutes) and a phase lag chart for the period of most active trading for each particular NFT.

Ether − NFTrank1 analysis shows trading in ~ 1024 min periods where NFT price lags Ether price by about 
8 radians ≈ 1400 min (~ 1 day). Otherwise, there appear to be no linked price cycles in the two asset classes. 
Ether − NFTrank1 analysis shows trading in ~ 16, 128 and 512 min periods during the period January through 
August of 2020, during what was called the “crypto winter.” Period 16 showed showed almost no NFT price lags. 
Period 128 showed NFT price lags Ether price by about 5 radians in January 2020, or ≈ 1 h. Period 512 showed 
NFT price lags Market price by about 5 radians in September 2020, or ≈ 2 h, but by only around 10 min in early 
2020. This, again, was a time of intense portfolio reassessment in the Bitcoin market, and that may have had an 
effect.

Ether − NFTrank2 analysis shows trading in ~ 512 min periods where NFT price leads Ether price by a rising 
trend of about 0 radians from 2-19-2021 through about 6 radians on 4-14-2021 (6 radians ≈ 512 min (~ 8 h). 
Otherwise, there appear to be no linked price cycles in the two asset classes.

Interactions between the whole NFT market and individual NFTs
There is a tradition in asset market research of analyzing the influence of overall market sentiment on individual 
asset prices. The Capital Asset Pricing  Model48 (CAPM) represents the most well-know of these approaches, and 
is used in separating risk into market and firm-specific risk (i.e., the so-called α and β ). In the current context I 
looked at the influence of the composite price movements of all NFT assets, versus individual price movements 
in the top traded three NFTs, and call these the NFT whole market effect.

Figures 17 and 18 analyzed price coherency between the most traded and second most traded NFT and the 
whole NFT market. Figure 19 provides power and coherency statistics for the influence of Whole NFT market 
influences on the second most traded NFT (the most traded NFT showed no phase lags at all, and thus the graph 
was noninformative for coherency). In looking at these, I have restricted the power spectrum graph to time 
periods in which there was active trading, and have placed arrows on the graph indicating the phase difference 
of the NFT vs. Market price series on a scale of [−π ,π] . At the far right of the figures is the power curve show-
ing significant coherency power cycles. Figure 19 investigates high volume trading in one part of the second top 
NFT coherency power spectrum graph. The middle graph converts the arrows to a phase lag-lead on a scale of 
[−π ,π] showing how the NFT and the market diverge. This divergence is isolated on the graph at the far right 
which shows the evolution of the lag-lead times for that particular short-term cycle.

This last bit of analysis is not generalizable, rather it represents detailed analysis of particular cases (a case 
study) of a single episode of very active trading. What it does reveal is a steady evolution of the informational lead 
to lag over about of frenzied trading. One can speculate that this in turn represents the diffusion of information, 
perhaps through forums and bulletin boards, of information and marketing for a specific NFT at a specific time. 
This is a rich potential area of investigation for future study.

Findings and conclusions
This research studied the existence of Elliott wave like behavior in NFT markets, using wavelet and fractal 
models to represent Elliott wave models of technical price movements in OpenSea’s NFT market. The research 
investigated linear timeseries models as a benchmark for subsequent study of Elliott wave like price autocycles, 
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as well as price cycle correlations between NFTs and cryptocurrencies which have been suggested in the conclu-
sions of prior studies.

There were nine key findings from this research.

1. Linear ARIMA
(

p, d, q
)

 time series models do not accurately predict price behavior in NFT markets.
2. Traditional linear finance models, e.g., the capital asset pricing  model48 (CAPM), do not accurately predict 

price behavior in NFT markets.
3. Fractal analyses of NFT price series do not show consistent, comparable fractal behavior for different NFTs, 

and thus holds little potential for prediction of future NFT price series.
4. Traders do exhibit periodic idiosyncratic bouts of trading; this abates, and then restarts. But there is no 

indication of Elliott Wave behavior across the full price series of individual NFTs.
5. Ante’s49 conclusions that Bitcoin and Ether cryptocurrency market movements and NFT price and volume 

were supported. I did not test other cryptocurrencies.
6. The influence of cryptocurrency prices and trading was low to nonexistent for periods longer than 48 h.
7. At periods between 24 and 48 h there is significant influence of cryptocurrency prices and trading into and 

out of Ether from and to specific specific NFTs, with a latency that evolves over time. These effects may reflect 
social media and news activities which was not available in the research.

8. There is an increase in trades into and out of NFTs every two and eight hours. These may reflect processing 
times and regulations on OpenSea, but we were not able to verify that assertion.

9. NFT price generally increased with trading volume.

The following conclusions were drawn from this research.
ARIMA provided a benchmark linear model for predicting prices. I applied to each individual NFT dataset 

an optimal ARIMA
(

p, d, q
)

 model, where p is the order (number of time lags) of the autoregressive model, d is 
the degree of differencing (the number of times the data have had past values subtracted), and q is the order. In 
all cases, ARIMA forecasting performed only as well as a random forecast, and ARIMA models were determined 
not to provide good models of NFT price behavior. I conclude that linear models are not useful in modelling NFT 
price series.

For the fractal modeling approach to validating Elliott Wave behavior to be correct, we would expect each 
of the top 10 NFTs to have the same singularity spectrum, one that is defined by the Elliott Wave behavior of 
five upward steps and three downward steps at multiple scales. In fact, each of the singularity spectra exhibit 
dramatically different behavior over the 10 most traded NFTs. Fractal analyses of NFT price series do not show 
consistent, comparable fractal behavior for different NFTs, and thus holds little potential for prediction of future 

Figure 17.  Price coherency (correlation) of the 1st rank NFT with the whole NFT market.

Figure 18.  Price coherency (correlation) of the 2nd rank NFT with the whole NFT market.
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price series based on prior behavior. I concluded that Elliott Wave behavior modeled as a fractal is not useful in 
predicting NFT price series.

Elliott Wave behavior may also be modeled using wavelet autocycles. My investigation of autocycles in the 
Ether, Bitcoin and NFT markets showed that these were not significant factors in the market. Except for showing 
longer term daily and weekly cycles, these autocycle power spectrum charts are just busy messes involving small 
periods of active trading. The NFT market as a whole had a power spectrum that was mostly empty and the 
market only sees flashes of activity. Compared to the autocycles in the individual NFTs, the maximum power of 
an autocycle on any of these three charts is small—one to two orders of magnitude smaller than for individual 
NFTs. My investigation of autocycles does not support the existence of Elliott Wave behavior in NFT markets. I 
also concluded from this that price behavior is strongly tied to the asset and its community of fans/traders. These 
traders will exhibit periodic idiosyncratic bouts of trading which cools for a while, and then restarts. But there is no 
indication of Elliott Wave behavior across the full price series of individual NFTs.

There is a tradition in asset market research of analyzing the influence of overall market sentiment on indi-
vidual asset prices. The Capital Asset Pricing Model represents the most well-know of these approaches, and is 
used in separating risk into market and firm-specific risk ( α and β ). In the current context I looked at the influ-
ence of the composite price movements of all NFT assets, versus individual price movements in the top traded 
three NFTs, calling these the NFT whole market effect. There is no evidence supporting CAPM-type market effects 
across the full price series of individual NFTs.

Ante’s49 research concluded that traders were balancing their portfolios by trading into and out of NFT and 
cryptocurrencies (mainly Ether, since most NFTs are on the Ethereum blockchain). I investigated this at length 
using a variety of methodologies from wavelets analysis. The Ether-NFT for individual NFTs was investigated 
for the top 10 NFTs. At periods greater than 48 h (2880 min) coherency is low, implying that trade decisions are 
generally made within a daily time frame. At periods greater than 24 h (1440 min) and less than 48 h there is 
significant trading into and out of Ether and that specific NFT, with a latency (the degree of rotation of the phase 
arrows on the chart) that evolves over time. One explanation of this evolving latency is that since specific NFTs 
are popular during a relatively limited period of time where they are heavily traded, that these phase rotations 
reflect the transfer of an Ether account holding into the NFT and then later out of the NFT holdings. Addition-
ally since NFT price increases with popularity, more Ether needs to be traded for each transaction. All of the 10 
charts show almost a complete phase rotation over their trading life, reflecting the trade into, holding and trade 
out of that NFT. NFTs experienced periods of frenzied trading (the red funnels in the charts) between one and 
about six times in their trading existence. Trading activity into and out of Ether occurred within 2 h (~ 128 min) 
and 8 h (~ 512 min) period cycles. Phase arrows show a trading from Ether into the NFT (rightward pointing 
arrows) and out of the NFT (rightward pointing arrows). OpenSea’s two hour lower limit on effects is probably 
the result of OpenSea having an average time to process a transaction is around two hours, counting issues with 
‘gas’ that make it difficult for Ether-NFT portfolio balancing to take place in less that two hours. In a comparison 
of Ether-NFT coherency to Bitcoin-NFT coherency, we see trading (red funnels) taking place at roughly the 
same time and periodicity in and out of either Bitcoin or Ether, and at roughly the same cross-wavelet power 
levels (color legend on the right hand side). Bitcoin trades seem to be taking place a bit faster (~ 1 h faster) than 
Ether trades, suggesting that computing ‘gas’ on the Ethereum blockchain may impose a time lag as suggested 
earlier. Activities in the NFT market appear in periods of around 2, 4, 8, 16 and 32 h; and additionally a general 
7 day cycle. These represent periods where the activity in another market is coupled (coherence) to the NFT 
market at a statistically significant level. My analysis of trading coherency strongly supports Ante’s49 conclusions 
on cryptocurrency market movements and NFT price and volume. NFT prices and trading volume are influenced 
over time periods greater than a day by the price and volume movements of Bitcoin and Ether.

Future research
Trading platforms can be considered as a form of social media, as they enable users to interact and share informa-
tion with each other, which can directly impact prices. NFTs, in particular, have exhibited faddish behavior, with 
sudden and arbitrary trends emerging and spreading quickly through social media channels. These trends are 
often short-lived, and prices can reverse themselves just as quickly. The factors that drive interest and transactions 
in NFTs are similar to those found in other social media platforms like TikTok, such as novelty, mass marketing, 
peer pressure, and the desire to be trendy. As a result, NFT markets like OpenSea are much more akin to social 
media platforms like TikTok than to liquid asset markets like the New York Stock Exchange.

Price movements in a market reflect the dissemination of information among traders, who may or may not 
act on that information. The effects we see in this research, the leads and lags in pricing, the cycles, autocycles and 
influences, are indicators of the way that information moves among traders. Autocycles suggest that traders are 
looking at prior price streams through the lens of some model that will yield forecasts. Coherency in NFT-cryp-
tocurrency cycles suggests that traders are drawing information from other markets, or are balancing portfolios.

It is worth noting that the NFT market is still relatively new and thinly traded, with all but a handful of NFTs 
being traded less than five times. This lack of liquidity can make it more difficult to predict price movements and 
can increase the potential for volatility. However, if the market matures and more participants enter, it is possible 
that liquidity may improve and trading patterns may become more predictable.

The current research paper applies wavelet and fractal analysis to the largest dataset of NFT data from the 
OpenSea market yet studied in a research paper. This research adapted existing models of group trading behavior 
that are used in industry, and restated them in terms of mathematically rigorous wavelet and fractal analysis. 
These methodologies are able to extract considerably more information, and can set up statistical tests that were 
not conducted in Ante’s49 and Nadini et al.’s82 research, which provided the context for this research project. 
 Ante49 and Nadini et al.82 relied heavily on descriptive statistics and graphs, as well as linear models to explore a 
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subset of the current OpenSea data, and were to some extent model-agnostic. The current research is specifically 
investigating the validity of an Elliott wave model for NFT markets.

The current research showed the validity of Elliott wave price cycles in the NFT market, but fell short of 
offering accurate prediction models. Future research is needed to more effectively predict market movements, 
both for individual NFTs as well as for market segments and the market as a whole. Such models are need for 
government regulation and for the establishment of successful investment funds.

Prediction models are also important at an individual trader level because they allow traders to fully inject 
all available price information into the market’s price series. Liquidity providers and speculators in particular are 
essential for maintaining fair pricing and volume of trades in a market. Currently NFT markets are highly illiquid, 
where assets may be over or underpriced, without every reaching an equilibrium price that can attract buyers and 
sellers and clear the market. The health and profitability of NFT markets in the future requires a extension of the 
current research to develop prediction models that can inject all the available information into the market prices.

Data availability
All of the datasets that I have used in this paper are available for download at my GitHub site:https:// github. com/ 
westl and/ nft_ perio dicity. If you have any questions concerning the datasets, please forward these questions to me.
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