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NSCSO: a novel multi‑objective 
non‑dominated sorting chicken 
swarm optimization algorithm
Huajuan Huang 1, Baofeng Zheng 2, Xiuxi Wei 1*, Yongquan Zhou 1,3 & Yuedong Zhang 2

Addressing the challenge of efficiently solving multi-objective optimization problems (MOP) and 
attaining satisfactory optimal solutions has always posed a formidable task. In this paper, based 
on the chicken swarm optimization algorithm, proposes the non-dominated sorting chicken swarm 
optimization (NSCSO) algorithm. The proposed approach involves assigning ranks to individuals in 
the chicken swarm through fast non-dominance sorting and utilizing the crowding distance strategy 
to sort particles within the same rank. The MOP is tackled based on these two strategies, with the 
integration of an elite opposition-based learning strategy to facilitate the exploration of optimal 
solution directions by individual roosters. NSCSO and 6 other excellent algorithms were tested in 15 
different benchmark functions for experiments. By comprehensive comparison of the test function 
results and Friedman test results, the results obtained by using the NSCSO algorithm to solve the 
MOP problem have better performance. Compares the NSCSO algorithm with other multi-objective 
optimization algorithms in six different engineering design problems. The results show that NSCSO 
not only performs well in multi-objective function tests, but also obtains realistic solutions in multi-
objective engineering example problems.

Keywords  Multi-objective optimization, Meta-heuristic, Chicken swarm optimization algorithm, Fast non-
dominated sorting, Multi-objective engineering design problems

Optimization challenges permeate various aspects of daily life, often manifesting as intricate multi-objective 
optimization problems (MOP). Effectively addressing these large-scale MOPs to attain satisfactory optimal 
solutions remains a formidable task. Unlike single-objective problems, MOPs defy evaluation through a singular 
criterion, demanding the comparison of multiple objectives. Complicating matters, these objectives frequently 
lack coordination and may even be mutually exclusive, making it impossible to simultaneously optimize all 
objectives optimally1. Consequently, the pursuit of a Pareto optimal solution emerges as the ultimate goal for 
MOPs2, aiming to strike a balance among diverse optimization objectives.

Historically, early attempts at MOP solutions employed the direct search method3. While this approach 
doesn’t directly tackle MOPs, it transforms the problem into several single-objective instances using various 
techniques, subsequently solving them sequentially. Despite its ability to yield relatively stable results, the direct 
search method is confined to convex MOPs. For nonconvex MOPs, it falls short in ensuring the acquisition of a 
uniformly distributed solution, let alone a superior Pareto optimal solution. Consequently, group search meth-
ods gained prominence, with many evolving from meta-heuristic algorithms4. These strategies represent a shift 
towards addressing the complexities of MOPs by leveraging collective search mechanisms, steering away from 
the limitations associated with traditional direct search approaches.

When the meta-heuristic algorithm solves complex optimization problems, it can accumulate experience 
after each iteration and finally arrive at a set of optimal solutions through continuous iteration. Meta-heuristics 
can be divided into various types, including biology-based, physics-based, mathematics-based, chemistry-based, 
music-based, sport-based, social-based, light-based, and water-based5. The sperm swarm optimization (SSO) 
is biological-based6; the archimedes optimization algorithm (AOA) is physics-based7; the league championship 
algorithm (LCA) is sport-based8; the harmony search (HS) is based on music9; the optics inspired optimization 
(OIO) is based on light10. Due to their low computational cost, these algorithms have been applied in real life, 
such as in sports11, medicine12, modeling13, etc. Most of these meta-heuristic algorithms and their application 
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scenarios are single-objective problems. To address the MOP problem, it is necessary to extend the current set 
of meta-heuristic algorithms.

The multi-objective algorithm in the population search approach can randomly assign positions in the search 
space, perform autonomous learning and updating, and finally output a solution set with uniform distribution 
and small error value. Researchers can choose suitable solutions according to their own needs. Schaffer sum-
marized the characteristics of prior, posterior, and interactive methods, tested the feasibility of these methods, 
and proposed the vector evaluation genetic algorithm (VEGA)14, which made pioneering work for the popula-
tion search method. Goldberg proposed the non-dominated sorting and the Niche Technique to solve the MOP 
problem, which is of great significance to subsequent research15. A large number of multi-objective optimization 
algorithms have subsequently emerged, such as the multi-objective sperm fertilization procedure (MOSFP)16. 
The performance and stability of multi-objective optimization algorithms are constantly optimized, and such 
algorithms have been used in the direction of practical applications in industry, biology, economics et al. Among 
them, Ndao et al. applied multi-objective design optimization to electronic cooling technology and performed 
a comprehensive analysis and comparison17. For the high size of the internal permanent magnet synchronous 
motor (IPMSM) and the huge computational cost of finite element analysis18, Sun designed a new multi-objec-
tive optimization strategy that provides a solution with better performance and reduced computational cost19. 
Wind energy is a harmless and renewable clean energy source, and Liu et al. summarized many multi-objective 
optimization frameworks applied to wind energy prediction techniques20. In these studies, the multi-objective 
optimization algorithm provides researchers with better decision solutions, which is sufficient to show that this 
approach has many advantages in solving real-life MOP. Since Wolpert and Macready proposed the NFL theo-
rem and proved that although a portion of MOP can be solved with the currently available technology21, there 
is still a portion of MOP that cannot be solved at the moment, and therefore new algorithms need to continue 
to be developed.

The chicken swarm optimization (CSO) algorithm, introduced by Meng et al.22, is a biologically-inspired 
meta-heuristic that mimics the hierarchical order, foraging, and learning behaviors observed in chickens. In 
the realm of solving single-objective problems, CSO has demonstrated notable strengths, including rapid con-
vergence, high accuracy, and robustness. Despite these advantages, applying CSO directly to multi-objective 
problems (MOP) has proven challenging, underscoring the significance of exploring this research direction. 
Dinghui et al. conducted comprehensive testing of the CSO algorithm, employing techniques such as Markov 
chain analysis to establish its exceptional convergence performance23. This empirical validation ultimately 
confirmed the algorithm’s global convergence. Leveraging these findings, there is a compelling motivation to 
extend the applicability of CSO to MOP without deviating from its core principles. The objective is to ensure 
convergence while enhancing the algorithm’s capability to furnish optimal solutions aligned with true values 
for multi-objective scenarios.

In pursuit of this objective, the present study proposes the non-dominated sorting chicken swarm optimiza-
tion (NSCSO) Algorithm. This extension builds upon the foundations of CSO while introducing modifications 
tailored to address the intricacies of solving multi-objective problems. The overarching goal is to broaden the 
scope of CSO applications, empowering the algorithm to deliver precise and reliable data in diverse multi-
objective settings. Such advancements aim to facilitate decision-making processes for stakeholders by providing 
them with a repertoire of accurate solutions to choose from.

The main contributions of this paper are the following four points:

•	 Assign ranks to individuals in the chicken swarm using fast non-dominance sorting.
•	 In order to sort different particles in the same rank, the concept of crowding distance is introduced.
•	 Use the elite opposition-based learning strategy to make it easier for individual roosters to explore the direc-

tion of the optimal solution.
•	 It evaluated the performance of NSCSO with fifteen multi-objective benchmark functions and six engineering 

design strengths.

The main framework of this paper is described next. In “Literature review” section, the basic definition of 
multi-objective optimization and the current state of research are described. “Chicken swarm optimization 
algorithm” section introduces the concept of the basic CSO algorithm in terms of the main ideas and so on. An 
introduction to the NSCSO algorithm is placed in “The multi-objective non-dominated sorting chicken swarm 
optimization algorithm” section. “Experimental results and analysis” section then discusses the algorithm with 
experiments and results. In order to better illustrate the advantages of this algorithm in solving practical prob-
lems, in “Engineering design problems” section, the NSCSO algorithm is used to solve six engineering cases. 
Finally, “Conclusions” section summarizes our work and provides plans and suggestions for future work.

Literature review
Multi‑objective optimization
Generally, the number of objective functions is two or more, and a problem with multiple decision variables is 
called a multi-objective optimization problem (MOP). The definition that is widely adopted in this domain is 
as follows24:

(1)Minimize : y = F(x) = (f1(x), f2(x), . . . , fm(x)),

(2)Subject to : gi(x) ≤ 0, i = 1, 2, . . . , q,
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where m , n correspond to the number of objective functions and decision variables, respectively; is called the 
decision vector, xi(i = 1, 2, . . . , n) is the decision variable, the decision space is X , with n dimensions; y is 
the objective vector, Y  is the n-dimensional objective space; q , p are the number of inequality constraints and 
equation constraints, respectively; gi(x) is the ith in-equality x constraint; hj(x) is the jth equality constraint.

It can be known from the above formula that there are multiple different objective functions in MOP. In most 
cases of MOP, the interests of each objective may affect each other, and the improvement of one party may cause 
performance degradation of other parties. Therefore, for MOP, the Pareto optimal solution set is the optimal 
solution that is ultimately desired, and this set contains many solutions, even an infinite number of solutions. 
Therefore, it is necessary to choose the part of Pareto optimal solutions to use according to our actual needs25. 
The following will define the concepts such as Pareto:

Definition 1  (Pareto Dominance) Suppose x1, x2 ∈ Xf  , x1 Pareto dominance x2(denoted as x1 ≺ x2 ), if and only 
if the Eq. (6) holds:

where x1 is better than x2 when at least one of the fitness values fi(x1) of x1 is better than the fitness value fi(x2) 
of x2 . This is called Pareto dominance, and is denoted using x1 ≺ x2.

Definition 2  (Pareto Optimality) The specific conditions for satisfying the Pareto optimal solution are as follows:

where the Pareto optimal solution also becomes a non-inferior solution or an efficient solution. In the decision 
space Xf  , if the number of times the decision vector x is dominated by other decision vectors is 0, it is the Pareto 
optimal solution.

Definition 3  (Pareto Optimality Set) The Pareto optimal solution set, which contains all Pareto optimal solutions 
obtained by Definition 2. Is called the Pareto set (PS), where:

Definition 4  (Pareto Optimality Front) Pareto Frontier (PF). The result obtained by projecting the Pareto optimal 
solution into the target search space is PF, namely:

Related work
The main method to solve MOP is to use the multi-objective optimization algorithm (MOA), which can 
automatically search for the optimal value in the target space through multiple iterations and determine the 
direction of the next movement through experience, and is a powerful tool to solve MOP. The multi-objective 
evolutionary algorithm (MOEA) and the multi-objective swarm intelligence algorithm belong to MOA26.

MOEA includes many kinds, the multi-objective genetic algorithm (MOGA) was proposed by Murata and 
Ishibuchi27. In the selection process, the algorithm randomly assigns multiple objective function weights, and 
the elite individuals are selected from the Pareto optimal solution, and then passed to the next generation. Non-
dominated sorting based genetic algorithm (NSGA)28, was proposed by Srinivas and Kalyanmoy, NSGA uses 
the genetic algorithm and non-dominated sorting strategy to find Pareto optimal solution, but it requires a lot 
of computational costs to solve MOP. Then Deb et al. improved NSGA and proposed the NSGA-II algorithm29. 
With the continuous research on MOEA, the concept of external archives was proposed. This method can retain 
the obtained non-dominated solutions. Through continuous iteration, solutions with good performance are 
added to the archives, and solutions with poor performance are deleted from the archives. To further enhance 
the ability of particles in MOEA to learn excellent individuals and improve the performance of the algorithm, an 
elite strategy is studied, which ensures that MOEA learns the global optimal solution better. Zitzler and Thiele 
proposed the strength Pareto evolutionary algorithm (SPEA)30, which uses external archives to retain all obtained 
non-dominated solutions to evaluate individual fitness according to Pareto dominance relations. Subsequently, 
Zitzler et al. improved SPEA and proposed the SPEA2 algorithm31. Combining the nearest neighbor density 
estimation technology and a new external archive filing strategy, it ensures that the boundary solution is not lost 
and improves the precision of the algorithm. The decomposition-based multi-objective evolutionary algorithm 
(MOEA/D) was proposed by Zhang and Li32, which is capable of converting MOP into scalar subproblems and 
performing simultaneous optimization of these subproblems, thus reducing the computational complexity.

Since most of the problems in MOP are NP-hard problems, while swarm intelligent optimization algo-
rithms have great advantages for solving NP-hard problems, Therefore, many scholars began to study the use 

(3)hj(x) = 0, j = 1, 2, . . . , p,

(4)x = (x1, x2, . . . , xn) ∈ X ⊂ Rn,

(5)y = (y1, y2, . . . ym) ∈ Y ⊂ Rm,

(6)
∀i = 1, 2, · · · ,m : fi(x1) ≤ fi(x2)∧

∃i = 1, 2, · · · ,m : fi(x1) < fi(x2),

(7)¬∃x ∈ Xf : x ≺ x∗,

(8)PS = {x∗} = {x ∈ Xf |¬∃x
′ ∈ Xf : x

′ ≺ x∗}.

(9)PF = {F(x)|x ∈ PS}.
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of multi-objective swarm intelligence optimization algorithm to solve MOP, among which the most classical 
algorithms include multi-objective particle swarm optimization algorithm (MOPSO)33, multi-objective simu-
lated annealing algorithm (MOSA)34, multi-objective ant colony optimization algorithm (MOACO)35, and so 
on. Meanwhile, based on these original algorithms, other swarm intelligence optimization algorithms have been 
developed by researchers with their corresponding multi-objective versions. Mirjalili et al. proposed the multi-
objective ant-lion optimization algorithm (MOALO)36, which maintains the main search mechanism of the 
basic ant-lion optimization algorithm. The Pareto optimal solution obtained so far is stored through an external 
archive. The individual ant lions are selected using the roulette strategy, and the selected ant lion guides the ants 
in their exploration. Most of the ideas of multi-objective population intelligence optimization algorithms retain 
the characteristics of single-objective algorithms, and obtain the Pareto optimal solution through external files 
or non-dominated sorting.

There are also many versions of algorithms developed to solve large-scale MOP problems. Liu et al. clustered 
decision variables into two categories and then used dimensionality reduction methods to represent variables 
that affect evolutionary convergence in low dimensions. They proposed an evolutionary algorithm for large-
scale multi-objective decision problems based on clustering and dimensionality reduction, which achieved 
good performance37. Cao et al. proposed and discussed multi-objective large-scale distributed parallel particle 
swarm optimization algorithms for these multi-objective large-scale optimization problems, and looked 
forward to future research directions38. Li et al. used a fast cross-correlation identification algorithm to divide 
decision variables into different groups and then used a new coevolutionary algorithm to solve multi-objective 
optimization problems. Experimental results on large-scale problems showed that the algorithm was effective39. 
Allah et al. proposed a multi-objective orthogonal opposition-based crow search algorithm (M2O-CSA), and 
simulation results confirmed the effectiveness of the proposed M2O-CSA algorithm40.

After the description above, MOA has been developed a lot now, and some algorithms have shown better 
performance in real-life examples41. However, the NFL law shows that the field still needs to develop new 
algorithms for problem-solving, and although there are already many ways to solve MOP, there are still some 
MOP that no method can solve yet.

Chicken swarm optimization algorithm
Biological paradigm
Chicken swarm optimization (CSO) Algorithm was proposed by Meng et al.42. Usually, in a chicken swarm, 
there are several categories of roosters, hens, and chicks, and each chicken has its own corresponding identity, 
according to which it forages and learns from its own two parents.

The CSO algorithm is mainly designed by observing the hierarchical order, foraging behavior, and learning 
behavior of chickens as the core of the model design and location update design. Among them, the most 
important ideas of the CSO algorithm are as follows.

Defining order
Set each individual as a chicken in the flock, each individual has its own corresponding role, namely rooster, 
hen, and chick.

Each subgroup is led by one and only one rooster, who has the highest status and is the best adopted of the 
subgroup. Chicks are the vulnerable group in the population, so their fitness value is the worst. The remaining 
individuals are hens. Mother chicks are selected by random selection among the hens and assigned chicks to 
them.

After each G iteration, the hierarchy of each individual in the swarm will be reset according to its fitness, and 
the dominance and mother–child relationships will also be updated.

Foraging order
The rooster has the highest status in the subgroup and will lead his subgroup in foraging, while the hen follows 
the rooster in the subgroup in foraging or goes to plunder the food of other chickens, provided that the target 
food is good for itself. Chicks are the weakest of the breed and can only follow their mothers in foraging.

Mathematical models
It is defined that the whole chicken swarm consists of N individuals, then the number of roosters, hens, moth-
ers, and chicks can be denoted as NR,NH ,NM ,NC . Then xti,j denotes the position of the ith chicken in the jth 
dimension of the tth iteration in the D-dimensional space, and M represents the maximum number of iterations 
(i ∈ (1, 2, . . . ,N), j ∈ (1, 2, . . . ,D), t ∈ (1, 2, . . . ,M)).

The rooster is the individual with the best fitness in the subgroup, and it can decide the foraging direction 
by itself. According to the above expression method, Then the update formula of this part is shown in Eqs. (10) 
and (11):

(10)xt+1
i,j = xti,j × [1+ N(0, σ 2)],

(11)σ 2 =







1, fi ≤ fk
exp(

fk−fi
|fi |−ε

), fi > fk
k ∈ [1,NR], k �= 1

,
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where, N(0, σ 2) is the normal distribution, 0 is the mean, and σ 2 is the variance; k is the index of another rooster 
randomly selected in the population, the fitness of rooster i and rooster k are denoted by fi and fk ; ε is the smallest 
number in the computer, and its role is to prevent errors when the denominator is 0.

The hens can only follow the roosters in the subgroup to forage, and the hens can also rob other individuals 
of better-quality food than themselves. The position update formula of the hen is shown in Eqs. (12)–(14).

where R1 and R2 satisfy the condition of R1,R2 ∈ [0, 1] and are two random numbers; r1 is a rooster in the hen’s 
subgroup; r2 is a randomly selected chicken, which can be either a rooster or a hen, but its fitness is better than 
hen i , while it can’t be chicken r1 and i , ε is the smallest number in the computer.

Chicks can only move with their mother chickens, and they are a vulnerable group in the population. The 
position update formula of the chick is shown in Eq. (15).

Among them, m is the chicken mother of a chick i  , and FL represents its adjustment parameter to follow 
the chicken mother, which is usually a random number between [0, 2][0, 2] . Algorithm 1 is pseudocode for the 
standard CSO algorithm.

Algorithm 1.   CSO algorithm.

The multi‑objective non‑dominated sorting chicken swarm optimization algorithm
Researched and developed the non-dominated sorting chicken swarm optimization (NSCSO) algorithm. On the 
premise of not changing the chicken swarm optimization (CSO) algorithm framework introduced in “Chicken 
swarm optimization algorithm” section, the NSCSO algorithm adds a fast non-dominated sorting strategy and 
a crowding degree strategy. There are two purposes for utilizing these two strategies: Firstly, to be able to find 
non-dominated solutions by dividing all particles into non-dominated ranks. The second is because the different 
hierarchies in CSO are established by differentiating individual fitness. In a multi-objective optimization prob-
lem (MOP), the goodness of a solution cannot be judged by the fitness of an objective alone, so the individual 
is ranked by the non-dominated sequence and the crowding degree together, to determine which group the 
individual belongs to.

(12)xt+1
i,j = xti,j + S1R1(x

t
r1,j

− xti,j)+ S2R2(x
t
r2,j

− xti,j),

(13)S1 = exp

(

fi − fr1
abs(fi)+ ε

)

,

(14)S2 = exp(fr2 − fi),

(15)xt+1
i,j = xti,j + FL(xtm,j − xti,j).
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Algorithm 2.   Fast non-dominated ranking.

Fast non‑dominated sorting
Fast non-dominant sorting sets two parameters for all search particles, the number of dominations ni and the 
dominating set Si . The main operation process is described below:

Step 1	� Calculate ni and Si of all particles. For example, if the particles i  , j satisfy i ≺ j , the ni particle i  is 
incremented by 1, and the index of the particle i is put into the Sj set of the particle j.

Step 2	� Put the particles with ni = 0 into F1 , the Pareto optimal solution set is F1 because of ni = 0.
Step 3	� Visit the Si of all particles in F1 , and decrement the ni of its members by one.
Step 4	� Put the particles with ni = 0 into the corresponding Frank at this time, and visit the dominating set Si in 

the corresponding Frank , decrement the ni of the members by 1, and repeat Step 4 until Frank is empty.

Figure 1 shows the correspondence of Frank , where First Rank is the Pareto optimal solution, and the particles 
in this Rank are dominated is 0; The particles in Second Rank are dominated by at least one particle in First Rank. 
Other ranks are analogous. Algorithm 2 shows the pseudocode for fast non-dominated sorting.

Crowding distance strategy
According to the above-mentioned fast non-dominated sorting method, the particles can be accurately classified 
into multiple ranks with different levels. Among them, F1 is the Pareto optimal solution, and the particle quality 
in this rank is the best. With the increase of rank in Frank , the quality of the particles in the corresponding rank 
becomes worse. Although fast non-dominated sorting can be used to sort particles according to their mass, there 
is a high probability that multiple particles will appear at the same level of Frank . The quality of these particles 
can no longer be distinguished, so the NSCSO cannot smoothly assign the role to each particle. This problem 
is solved with the introduction of the crowding degree strategy. The strategy sets a predefined distance for the 
particles in different Ranks, calculates the distance of each nearest particle within the preset distance, and then 
performs a normalization process as its crowding degree. In this way, particles of the same rank can be further 
sorted according to the degree of congestion. The calculation formula of crowding degree is shown in Eq. (16).

where Di denotes the crowding degree of the ith particle in a certain Frank ; njob is the number of objective 
functions of the problem; f i+1

j  and f i−1
j  are the fitness values of the (i + 1)th and the (i − 1)th particle in the jth 

(16)Di =

njob
∑

j=1

abs(f i+1
j − f i−1

j )

abs(f max
j − f min

j )
,



7

Vol.:(0123456789)

Scientific Reports |         (2024) 14:4310  | https://doi.org/10.1038/s41598-024-54991-0

www.nature.com/scientificreports/

objective function, respectively; f max
j  and f min

j  are the maximum and minimum values of the jth objective func-
tion, respectively. The crowding distance strategy in Fig. 2, d1 is the length of the dotted quadrilateral of particle 
i − 1 and particle i + 1 , d1 is the width 2 of the dotted quadrilateral of particle i − 1 and particle i + 1 , and the 
sum of the length and width is the distance between particle i and its two adjacent individuals in each sub-unit. 
The sum of distance differences on the objective function.

Particle movement
The NSCSO follows the update method of the single-objective CSO algorithm. In order to enable particles to 
perform multiple iterative searches in the multi-target search space, the update method of different populations 
has been modified.

First, in the rooster update of the original CSO algorithm, it is necessary to compare the fitness of the two 
roosters. If rooster k is better than rooster i , the rooster i will move to the position of the rooster k ; otherwise, 
the rooster i will continue to explore other spaces. In the MOP, quality of the particles cannot be judged by the 
particle fitness alone, it is necessary to modify this part to make it suitable for searching in multi-object space.

The main idea is as follows: First compare the Frank levels of rooster i  and rooster k , if rooster i  ’s rank is 
higher than rooster k ( Frank ’s rank is higher than Frank+1 ’s rank), the rooster i  will continue to explore other 

f1

f2

First Rank Second Rank

…………

nth Rank

Figure 1.   Correspondence of Frank. 

f1

f2

i-1

i

i+1d1

d2

Figure 2.   The crowding distance strategy.
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spaces; If the rank of the rooster i is lower than that of the rooster k , then the direction of movement of rooster 
i will point to the position of rooster k ; If the rank of the rooster i and rooster k are the same, then compare the 
crowding degree. If the crowding degree of the rooster i in the same rank is higher than that of the rooster k , 
then the rooster i will continue to explore other spaces; if the crowding degree of the rooster i in the same rank 
is lower than that of the rooster k , then the rooster i will move to the position of the rooster k . As mentioned 
above, NSCSO sorts the particles of the entire population by fast non-dominated ranking and crowding degree 
strategy. The indexes of the particles are sorted by the quality of the particles from good to bad, so the quality of 
the rooster i and the rooster k can be compared directly through the index of each chicken, the better the mass 
of the particle the smaller the index.

In the original CSO algorithm, the value of σ 2 is affected by the fitness of rooster i and rooster k . In the multi-
objective problem, there are multiple fitness values. Without changing the fundamental principle, the calculation 
of σ 2 is performed by taking the mean value of the fitness of each objective function. The revised update method 
is shown in Eqs. (17) and (18).

where fk,n and fi,n represents the fitness function values of rooster k and rooster i in the nth objective function. 
indexi and indexk is the index of rooster i and rooster k ; njob is the number of total objective functions of the 
problem.

In the original CSO algorithm, there are two important parameters in the hen population update method, 
S1 and S2 . They represent two types of hen behaviors: S1 simulates the foraging and learning behavior of the hen 
following the roosters in her population; S2 simulates the competition between the hen and other chickens. These 
two parameters are also calculated utilizing fitness values, and to adapt them to the multi-objective problem, 
NSCSO also takes a mean value approach to their calculation, as shown in Eqs. (19)–(21).

where njob is the number of total objective functions of the problem; fi,n , fr1,n and fr2,n represent the fitness 
function values of hen i , rooster r1 , and chicken r2 in the nth objective function.

Elite opposition‑based learning strategy
The main idea of the opposition-based learning (OBL) is to map the current particle to its opposite position, this 
strategy was proposed by Tizhoosh. Since the CSO algorithm has the rooster population as the supreme leader43, 
leading the entire chicken swarm in the search of space. If the rooster falls into a local optimum, the convergence 
accuracy and speed deteriorate as the other individuals can only learn from the rooster, resulting in all particles 
approaching the local optimum. The introduction of the elite OBL strategy can provide a variable to assist the 
rooster group to move in the opposite direction when the rooster group cannot jump out of the local optimum 
for a long time, thereby guiding other individuals to learn from it and improving individual quality. The specific 
implementation of this strategy is shown in Eq. (22).

where xi is the current position of the rooster i ; x∗i  is the position obtained by the rooster i elite OBL; lb and ub are 
the upper and lower limits of the particle. The NSCSO performs elite OBL on the rooster population after every 
G iterations. And set a random learning probability p ( p ∈ [0, 1] ), each rooster generates a random number p∗ 
( p∗ ∈ [0, 1] ), when p∗ < p , perform elite OBL, otherwise do not learn. Finally, if x∗i ≺ xi , then replace x∗i  with 
xi and add it to subsequent iterations, otherwise, xi will still be used. The pseudocode of the Elite OBL Strategy 
is shown in Algorithm 3.

Control experiments for the NSCSO algorithm using the elite OBL strategy and the algorithm not using this 
strategy will be given in “Experimental results and analysis” section.
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Algorithm 3.   Elite opposition-based learning strategy.

NSCSO algorithm steps
Figure 3 is a flow chart of the NSCSO algorithm, and Algorithm 4 is the pseudocode of the NSCSO.

The specific steps of each iteration of the NSCSO algorithm are as follows:

Step 1	� Initialization: dimension Dim ; population size N  ; each population size NR,NH ,Nm,NC ; order 
redefinition parameter G ; the number of iterations t  ; maximum number of iterations M.

Step 2	� Randomly generate individual positions and calculate individual fitness. Perform fast non-dominated 
sorting and calculate crowding degree.

Step 3	� If t%G == 1 , first perform order allocation and allocate all individuals into roosters, hens, and chicks 
according to the sorting results. Roosters are assigned their dominant hens and chicks, and chicks are 
assigned mother chickens; elite OBL strategy is then performed on the roosters. Otherwise go to Step 
4.

Step 4	� Each updates its position according to its role and calculates its fitness value.
Step 5	� Performs non-dominated sorting on the newly arrived individuals, calculates their crowding degree, 

and updates the individuals.
Step 6	� If t <= M , then return to Step 3; if t > M , output Pareto optimal solution.

Figure 3.   The flowchart of the proposed NSCSO algorithm.
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Algorithm 4.   NSCSO algorithm.

The computation complexity of NSCSO
In terms of time complexity, the time complexity of the initialization phase of NSCSO is O(N × njob) , the time 
complexity of fast non-dominated sorting is O(M × njob× N2) , the time complexity of calculating crowding 
degree is O(M × njob× N × logN) , and the time complexity of redefining order is O(M/G × N) . The time 
complexity required to update the particle position is O(M × Dim× N) , and the time complexity required to 
calculate the objective function is O(M × N × cost(fobj)) , so the total time complexity of the NSCSO algorithm 
is O(N × njob+M × N × (njob× N + njob× logN + 1/G + Dim+ Cost(fobj))), where N is the population 
size, Dim is the population dimension, njob is the number of objective functions, M is the maximum number of 
iterations, G is the order redefinition parameter, and cost(fobj) is the cost of the objective function.

In terms of space complexity, the NSCSO algorithm needs to consider the space complexity of the population 
initialization, that is, the space complexity is O(N × njob).

Experimental results and analysis
In this section, the NSCSO algorithm and six other algorithms are tested using 15 different benchmarking 
functions, and four performance metrics are utilized as evaluation criteria and references, and the results are 
fully discussed at the end.

Experimental environment
The experiments of the proposed NSCSO algorithm were tested in MATLAB R2019b under 64-bit Windows 10 
with a hardware configuration of Intel Core i5-8300H 2.30 GHz processor and 8 GB RAM.

Benchmark function test
For the proposed NSCSO algorithm, test experiments were conducted on 15 different benchmark functions. Five 
test functions were selected from the ZDT44, DTLZ45, and WFG44 test sets respectively for algorithm performance 
testing. Their ZDT1–ZDT4 and ZDT6 are dual-objective tests, and DTLZ2, DTLZ4–DTLZ7, and WFG4–WFG8 
are triple-objective tests.
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Algorithm parameters
This paper compares NSCSO with other six excellent multi-objective optimization algorithms, which are: 
LMEA46, WOF47, multi-objective slime mould algorithm (MOSMA)48, DGEA49, multi-objective artificial 
hummingbird algorithm (MOAHA)50 and multi-objective stochastic paint optimizer (MOSPO)51. In test 
experiments, these algorithms were run independently on the benchmark function 30 times with 1000 iterations 
per iteration. Each algorithm has a population size of 100, the ZDT and DTLZ test set dimensions of 10, and the 
WFG test set dimensions of 12. The parameter settings of all algorithms are shown in Table 1.

Performance metrics
In this paper, the algorithm is tested from multiple angles using different performance metrics. The specific usage 
of these performance indicators is as follows.

Generational distance (GD) has a simple design and good practicability and is suitable for comparison 
between multiple algorithms52. GD indicates the distance between the Pareto optimal solution derived by the 
algorithm and the true value, and its formula is shown in Eq. (23).

where di denotes the Euclidean distance between the ith solution in the target space and the nearest solution in 
the true value; N is the solution obtained by the algorithm.

Inverse generational distance (IGD) tests the comprehensive performance of the algorithm52. IGD uses the 
average distance from the solution point in the true value to the solution point found by the algorithm. The 
smaller the IGD, the better the convergence and diversity of the solution obtained by the algorithm. IGD is the 
inverse mapping of GD. The calculation formula is shown in Eq. (24).

where PT is the true value of Pareto, and di represents the Euclidean distance between PT and the nearest solution 
point of N.

Spatial metrics (SP) can be applied to multi-objective optimization problems with more than two 
dimensions53. SP evaluates the uniformity of the distribution of the solution obtained by the algorithm in the 
target space. The smaller the SP, the more uniform the distribution of the solution. Its calculation formula is 
shown in Eqs. (25) and (26).
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√
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√
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n
∑
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Table 1.   Parameters of algorithms.

Algorithm Parameters

LMEA46
nSel: 5
nPer: 50
nCor: 5

WOF47

Gamma: 4, Groups: 2
Psi: 3
T1: 1000, T2: 500
Delta: 0.5

MOSMA48 Number of iterations: t  , The maximum number of iterations: T , a = arctan h(1− (t/T))  b = 1− (t/T)

Flow speed control parameters: vb = [−a, a], vc = [−b, b]

DGEA49 Refno: 10

MOAHA50
Flight factor: r = [0, 1]
Boot factor: a = N(0, 1)
Territorial factor: b = N(0, 1)

MOSPO51

Grids number per each dimension: nGrid = 10

Grid inflation: α = 0.1

Archive member selection pressure: γ = 2

Leader selection pressure parameter: β = 4

NSCSO

Order redefinition parameter: G = 10

population size: N = 100

Number of roosts: NR = 0.15× N
Number of hens: NH = 0.7 ∗ N
Number of chicks: NC = 0.15 ∗ N
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where n is the number of solutions obtained by the algorithm; njob is the number of objective functions; di denotes 
the Euclidean distance between the ith solution and its nearest solution point; d is the average of di.

Maximum spread (MS), MS is used to measure the degree of coverage of the resulting solution to the true 
value54. It is calculated as shown in Eq. (27).

where njob is the number of objective functions; d(ai , bi) denotes the Euclidean distance between the maximum 
value ai and the minimum value bi of the resulting solution in the ith objective.

Performance evaluation
Table 2 presents the performance metrics of the NSCSO algorithm using the reverse elite learning strategy and 
the algorithm without this strategy in ZDT1. Where NSCSO-noEOBL represents an algorithm that does not use 
this strategy. It can be seen that after using this strategy, the stability and accuracy of the NSCSO algorithm have 
been improved, which proves the feasibility and effectiveness of introducing this strategy.

Tables 3, 4, 5 and 6 respectively count the mean and standard deviation of the results obtained by running 
30 times, 1000 times each iteration, in different test functions for seven algorithms. Figures 4, 5, 6, 7, 8, 9, 10, 
11, 12, 13, 14, 15, 16 and 17 show the Pareto frontier (PF) distributions obtained by algorithms such as NSCSO 
in the ZDT6 and DTLZ5 test problems. Figures 18, 19, 20, 21, 22, 23, 24, 25, 26 and 27 show the distribution of 
real PF and PF obtained by NSCSO for different test functions.

The GD values obtained by algorithms such as NSCSO are counted in Table 3, and the optimal value obtained 
in all results has been bolded. By comparing the data in Table 3, it can be known that in the ZDT test problem, the 
NSCSO algorithm obtains the minimum value in most of the test functions. In the ZDT1 benchmark function, 
the mean GD of WOF is better than NSCSO, but the difference between the two is very small. In ZDT3 and ZDT4, 
the results obtained by the MOSMA algorithm have better standard deviation values, but the difference between 
their mean values and those obtained by the NSCSO algorithm is relatively large, and the standard deviation 
values obtained by the NSCSO algorithm are within the acceptable range. ZDT4 is a highly multimodal function, 
and the WOF and MOSOP algorithms did not obtain the correct Pareto optimal solution in this algorithm, while 
the NSCSO algorithm was able to obtain the Pareto optimal solution with excellent convergence, and its GD 
value was much better than other algorithms. In the DTLZ testing problem, the NSCSO algorithm performed 
slightly worse than LMEA in the DTLZ5 test. In other problems, NSCSO obtained better Pareto optimal solutions 
than other algorithms, with the smallest standard deviation and greater stability. MOSMA and MOAHA were 
unable to stably obtain ideal Pareto optimal solutions in the testing of ZDT6. The solution difficulty of the WFG 
test set is higher than the other two test sets, but the NSCSO algorithm can still obtain more accurate Pareto 
optimal solutions in different test functions, it shows that the NSCSO algorithm can perform well in different test 
problems. The smaller the GD value, the better the convergence of the corresponding algorithm, and the more 
accurate the solution set obtained. Comparing the GD values obtained by different algorithms in Table 3, it can 
be seen that the GD value obtained by the NSCSO algorithm is small, which proves that it can find an excellent 
Pareto optimal solution when solving MOP, and has excellent convergence.

The IGD values obtained by algorithms such as NSCSO are counted in Table 4. In the ZDT test, the NSCSO 
algorithm performed slightly worse than the MOAHA algorithm in the ZDT3 test, ranking second. In other 
ZDT tests, the NSCSO algorithm achieved the best results among the seven algorithms in most of the tests. In 
the DTLZ testing problem, the mean of the NSCSO algorithm is also the smallest among all algorithms, and its 
standard deviation can reach E−03. Although the standard deviation does not rank first in some tests, it is still 
relatively small compared to the first place. In the WFG test function, the NSCSO algorithm also performs very 
well. In the testing of WFG5, only the NSCSO algorithm achieved 10–02, while the best of other algorithms only 
reached 10–01. While there are many similarities in the way IGD and GD are calculated, the GD index is more 
inclined to measure the convergence. IGD is a relatively comprehensive performance measure, which can not 
only detect the convergence of the obtained solution but also evaluate its diversity and extensiveness. Therefore, 
it can be concluded from the data in Table 4 that the NSCSO algorithm not only has excellent convergence but 
also the Pareto optimal solution obtained by it has excellent diversity and distribution.
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√
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Table 2.   Strategy controlled trials on ZDT1. Significant values are in bold.

Method GD IGD SP MS

NSCSO
Mean 6.03 × 10–05 4.93 × 10–03 6.95 × 10–03 3.97 × 10–01

Std 3.48 × 10–05 2.58 × 10–04 4.98 × 10–04 3.87 × 10–02

NSCSO-noEOBL
Mean 1.31 × 10–06 6.926 × 10–04 8.95 × 10–03 7.97 × 10–01

Std 5.86 × 10–05 8.45 × 10–04 5.50 × 10–04 4.45 × 10–02
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The SP values obtained by algorithms such as NSCSO are counted in Table 5. In the ZDT testing problem, 
the NSCSO algorithm performed well and obtained better results than other algorithms. Although in ZDT3, 
the standard deviation was slightly inferior to LMEA, the SP obtained by the LMEA algorithm was far inferior 
to the NSCSO algorithm. In the DTLZ testing problem, except for DTLZ6, the NSCSO algorithm achieved first 
place, and its DTLZ6 results were also quite satisfactory. In the WFG test function, the NSCSO algorithm still 
obtained the best SP value. Since the SP metric mainly evaluates the distribution of the solutions obtained by the 
algorithm, the comparison of the SP indicates that the Pareto optimal solutions obtained by the NSCSO algorithm 
are more uniformly distributed in the multi-objective space compared with the other algorithms.

Table 6 records the MS results obtained by algorithms such as NSCSO. From the data in the table, it can 
be seen that in the ZDT test set, the mean of the NSCSO algorithm can obtain the best value among the seven 
algorithms in both the ZDT and DTLZ test sets. And although its standard deviation does not reach the first 
place in some functions, the difference is also very small. In the WFG test set, only the mean of WFG5 was worse 
than LMEA, ranking second. At the same time, the standard deviation of the WOF algorithm is better than that 
of the NSCSO algorithm, but in terms of mean, NSCSO obtains much better results than the WOF algorithm. 
MS value and SP value are both measures of the distributivity of the obtained solution set, and the MS value is 
mainly used to measure the coverage of the obtained solution to the true Pareto solution. According to the above 
description, the NSCSO algorithm can obtain a smaller MS value than other algorithms, so the Pareto optimal 
solution obtained by the NSCSO algorithm can cover the real Pareto optimal solution more widely than other 
algorithms, and can achieve satisfactory results.

Figures 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 and 17 show the distributions of the PF and the real PF obtained 
by different algorithms in the ZDT6 and DTLZ5 benchmark functions. In Figs. 4, 5, 6, 7, 8, 9 and 10, the PF 
obtained by the WOF algorithm, the DGEA algorithm, the MOAHA algorithm and the NSCSO algorithm can 
cover the true PF without outliers with too large a gap, while the other algorithms can also achieve coverage of 
the true PF, but with too many outliers, uneven distribution and not wide coverage. In the DTLZ5 test problems 
in Figs. 11, 12, 13, 14, 15, 16 and 17, the PF obtained by the LMEA, the MOAHA and the NSCSO algorithms can 

Table 3.   The GD values obtained by all algorithms. Significant values are in bold.

Problem LMEA WOF MOSMA DGEA MOAHA MOSPO NSCSO

Bi-objective test function

 ZDT1
Mean 6.63 × 10–05 4.51 × 10–05 2.48 × 10–04 4.93 × 10–05 2.07 × 10–04 6.38 × 10–04 6.03 × 10–05

Std 4.35 × 10–05 4.48 × 10–05 3.53 × 10–05 1.74 × 10–04 3.57 × 10–05 2.29 × 10–04 3.48 × 10–05

 ZDT2
Mean 9.47 × 10–05 9.45 × 10–05 3.12 × 10–04 9.45 × 10–05 1.43 × 10–04 5.14 × 10–04 9.29 × 10–05

Std 6.25 × 10–06 5.70 × 10–06 2.94 × 10–05 5.17 × 10–06 2.18 × 10–05 2.35 × 10–04 4.72 × 10–06

 ZDT3
Mean 1.98 × 10–04 2.12 × 10–04 2.21 × 10–04 5.78 × 10–03 1.93 × 10–04 4.26 × 10–04 1.77 × 10–04

Std 1.38 × 10–05 1.67 × 10–04 1.26 × 10–05 2.56 × 10–05 1.51 × 10–05 1.19 × 10–04 1.44 × 10–05

 ZDT4
Mean 1.68 × 10–04 – 1.81 × 10–04 5.14 × 10–05 1.63 × 10–04 – 5.00 × 10–05

Std 3.57 × 10–04 – 3.61 × 10–05 1.83 × 10–04 4.93 × 10–05 – 5.32 × 10–05

 ZDT6
Mean 1.15 × 10–03 1.22 × 10–03 6.02 × 10–02 1.11 × 10–03 3.72 × 10–02 9.29 × 10–02 3.18 × 10–03

Std 1.86 × 10–03 5.18 × 10–04 1.61 × 10–02 4.24 × 10–04 3.39 × 10–02 9.21 × 10–02 5.73 × 10–04

Three-objective test function

 DTLZ2
Mean 6.78 × 10–04 7.77 × 10–04 1.94 × 10–01 7.64 × 10–04 1.94 × 10–01 1.43 × 10–02 3.33 × 10–05

Std 1.07 × 10–01 3.18 × 10–03 3.05 × 10–02 3.43 × 10–03 3.05 × 10–02 3.43 × 10–03 2.84 × 10–03

 DTLZ4
Mean 4.88 × 10–03 5.67 × 10–03 2.04 × 10–01 5.67 × 10–03 2.04 × 10–01 8.73 × 10–03 6.73 × 10–05

Std 8.15 × 10–04 5.87 × 10–04 3.71 × 10–02 1.05 × 10–03 3.71 × 10–02 3.85 × 10–03 2.70 × 10–04

 DTLZ5
Mean 9.16 × 10–05 4.71 × 10–04 1.74 × 10–01 0.26 × 10–01 1.74 × 10–01 3.91 × 10–03 1.07 × 10–04

Std 4.86 × 10–04 5.07 × 10–05 4.06 × 10–02 1.87 × 10–04 4.06 × 10–02 7.06 × 10–03 4.35 × 10–05

 DTLZ6
Mean 4.86 × 10–04 4.31 × 10–04 – 0.53 × 10–01 – 3.46 × 10–02 2.91 × 10–04

Std 8.57 × 10–05 4.16 × 10–05 – 2.87 × 10–04 – 8.08 × 10–02 3.72 × 10–05

 DTLZ7
Mean 1.63 × 10–03 3.07 × 10–03 5.47 × 10–03 1.26 × 10–02 5.47 × 10–03 3.22 × 10–03 4.02 × 10–04

Std 6.86 × 10–04 1.16 × 10–03 9.92 × 10–04 2.57 × 10–04 9.92 × 10–04 1.42 × 10–03 1.27 × 10–04

 WFG4
Mean 2.25 × 10–02 1.65 × 10–02 3.79 × 10–02 2.44 × 10–02 2.56 × 10–02 3.90 × 10–02 1.68 × 10–02

Std 5.38 × 10–03 9.05 × 10–03 3.51 × 10–03 6.87 × 10–03 1.16 × 10–03 1.63 × 10–03 1.08 × 10–03

 WFG5
Mean 7.02 × 10–03 7.57 × 10–03 1.60 × 10–02 7.18 × 10–03 1.85 × 10–02 1.41 × 10–02 6.52 × 10–03

Std 1.57 × 10–04 1.25 × 10–04 4.42 × 10–03 5.99 × 10–04 3.19 × 10–03 9.30 × 10–04 6.92 × 10–05

 WFG6
Mean 5.19 × 10–03 1.02 × 10–02 2.57 × 10–02 9.66 × 10–03 2.48 × 10–02 3.49 × 10–02 9.34 × 10–04

Std 4.83 × 10–03 3.82 × 10–03 3.89 × 10–03 5.41 × 10–03 1.17 × 10–03 1.52 × 10–03 1.39 × 10–03

 WFG7
Mean 2.17 × 10–02 2.06 × 10–02 7.37 × 10–02 2.14 × 10–02 3.46 × 10–02 4.85 × 10–02 1.08 × 10–02

Std 1.99 × 10–03 1.74 × 10–03 4.86 × 10–03 6.03 × 10–03 1.47 × 10–03 1.84 × 10–03 1.46 × 10–03

 WFG8
Mean 6.77 × 10–02 8.41 × 10–02 6.83 × 10–02 8.37 × 10–02 4.44 × 10–02 6.42 × 10–02 3.12 × 10–02

Std 1.53 × 10–03 2.80 × 10–03 4.53 × 10–03 1.04 × 10–03 2.09 × 10–03 2.20 × 10–03 8.83 × 10–04
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achieve complete coverage of the true PF, but the MOAHA algorithm still has a small portion that is not covered, 
while there are also some Pareto solutions that have a certain distance from the true values. Figures 10 and 17 
show the relationship plots of NSCSO. The PF obtained by NSCSO can cover the true Pareto solution completely 
and with uniform distribution. These images strengthen the support for the data in Tables 3, 4, 5 and 6. The PF 
obtained by the NSCSO algorithm are more uniform and have wider coverage. The superior performance of the 
NSCSO algorithm is further proved by the method of visualization.

Figures 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31 and 32 show the plots of the PF obtained by the 
NSCSO algorithm for each benchmark function in the ZDT, DTLZ, and WFG test sets, respectively. By observing 
these figures, it can be found that in different test sets, the PF obtained by the NSCSO algorithm can be evenly 
distributed in the target space, the gap with the true value is also small, and the coverage of the true value is 
uniform, covering wide. Therefore, the NSCSO algorithm can obtain Pareto optimal solutions with excellent 
performance in different experimental environments.

Through the above analysis, the NSCSO algorithm performs well in these tests, and its superior global 
search capability enables to obtain the PF with the widest coverage and uniform distribution in all tests, and the 
algorithm has good convergence. Through the above analysis, it can be proved that the NSCSO algorithm can 
solve the MOP problem well.

Friedman test
Friedman test to detect differences between algorithms. The NSCSO algorithm is made to compare with LMEA, 
WOF, MOSMA, DGEA, MOAHA, and MOSPO respectively. After passing the Friedman test, the p-value 
is output, which represents the impact of the target algorithm on NSCSO. If p < 0.05, it means that the two 
algorithms are different, otherwise it means that the two algorithms have some similarities.

The contents in Table 7 are the p-values obtained by the NSCSO algorithm compared with other algorithms 
through the comprehensive results of 15 test functions. After the Friedman test between the NSCSO algorithm 
and other algorithms, the obtained p-values are all less than 0.05, so the NSCSO algorithm is quite different from 

Table 4.   The IGD values obtained by all algorithms. Significant values are in bold.

Problem LMEA WOF MOSMA DGEA MOAHA MOSPO NSCSO

Bi-objective test function

 ZDT1
Mean 5.33 × 10–03 4.98 × 10–03 8.50 × 10–03 4.98 × 10–03 6.20 × 10–03 1.05 × 10–02 4.93 × 10–03

Std 1.00 × 10–03 4.19 × 10–04 5.46 × 10–04 3.18 × 10–04 4.75 × 10–04 1.28 × 10–03 2.58 × 10–04

 ZDT2
Mean 5.04 × 10–03 5.40 × 10–03 8.62 × 10–03 5.41 × 10–03 5.11 × 10–03 1.09 × 10–02 4.91 × 10–03

Std 6.79 × 10–04 2.10 × 10–03 5.12 × 10–04 7.15 × 10–04 3.77 × 10–04 7.91 × 10–04 2.52 × 10–04

 ZDT3
Mean 5.95 × 10–03 6.21 × 10–03 8.24 × 10–03 1.02 × 10–02 4.44 × 10–03 1.36 × 10–02 5.28 × 10–03

Std 5.74 × 10–04 9.00 × 10–04 3.79 × 10–04 1.81 × 10–03 1.87 × 10–04 1.61 × 10–02 1.75 × 10–04

 ZDT4
Mean 5.00 × 10–03 – 8.28 × 10–03 9.95 × 10–03 4.94 × 10–03 – 4.89 × 10–03

Std 1.94 × 10–03 – 5.03 × 10–04 5.28 × 10–04 7.86 × 10–05 – 2.91 × 10–04

 ZDT6
Mean 4.61 × 10–03 4.13 × 10–03 6.02 × 10–02 4.91 × 10–03 6.64 × 10–03 1.19 × 10–02 3.18 × 10–03

Std 1.58 × 10–03 8.18 × 10–04 1.61 × 10–02 5.78 × 10–04 2.54 × 10–03 3.28 × 10–01 5.73 × 10–04

Three-objective test function

 DTLZ2
Mean 7.36 × 10–02 6.82 × 10–02 4.65 × 10–01 6.80 × 10–02 8.47 × 10–02 1.29 × 10–01 6.49 × 10–02

Std 3.58 × 10–03 2.99 × 10–03 1.25 × 10–03 2.19 × 10–03 4.14 × 10–03 6.72 × 10–03 2.46 × 10–03

 DTLZ4
Mean 6.36 × 10–02 8.62 × 10–02 4.20 × 10–01 8.62 × 10–02 7.79 × 10–02 9.31 × 10–02 6.12 × 10–02

Std 1.82 × 10–02 5.56 × 10–03 2.05 × 10–03 4.60 × 10–03 4.34 × 10–03 6.85 × 10–03 4.17 × 10–03

 DTLZ5
Mean 4.53 × 10–03 1.62 × 10–02 3.47 × 10–01 6.88 × 10–02 7.97 × 10–03 4.41 × 10–02 5.41 × 10–03

Std 1.53 × 10–04 2.46 × 10–04 1.05 × 10–04 9.72 × 10–05 8.00 × 10–04 3.82 × 10–03 2.22 × 10–05

 DTLZ6
Mean 5.48 × 10–03 2.29 × 10–02 – 6.51 × 10–02 7.04 × 10–03 1.16 × 10–02 5.46 × 10–03

Std 8.15 × 10–04 3.51 × 10–04 – 1.00 × 10–03 1.00 × 10–04 1.10 × 10–03 3.72 × 10–04

 DTLZ7
Mean 5.94 × 10–02 7.63 × 10–02 1.67 × 10–01 1.48 × 10–01 8.01 × 10–02 1.03 × 10–01 4.33 × 10–02

Std 1.78 × 10–01 1.85 × 10–02 1.69 × 10–02 4.39 × 10–02 1.73 × 10–02 1.05 × 10–02 5.41 × 10–03

 WFG4
Mean 3.13 × 10–01 5.20 × 10–01 4.76 × 10–01 5.35 × 10–01 3.73 × 10–01 5.11 × 10–01 3.07 × 10–01

Std 3.88 × 10–02 1.70 × 10–02 2.79 × 10–02 8.51 × 10–03 1.49 × 10–02 2.89 × 10–02 9.89 × 10–03

 WFG5
Mean 2.21 × 10–01 2.29 × 10–01 3.27 × 10–01 2.45 × 10–01 2.98 × 10–01 3.54 × 10–01 1.81 × 10–02

Std 4.12 × 10–02 1.32 × 10–02 3.48 × 10–02 3.70 × 10–02 2.04 × 10–02 1.88 × 10–02 8.80 × 10–03

 WFG6
Mean 4.13 × 10–01 3.36 × 10–01 5.27 × 10–01 4.53 × 10–01 4.23 × 10–01 4.91 × 10–01 2.69 × 10–01

Std 1.11 × 10–02 5.27 × 10–03 6.53 × 10–02 2.79 × 10–02 3.29 × 10–02 8.49 × 10–03 8.63 × 10–03

 WFG7
Mean 4.02 × 10–01 5.21 × 10–01 7.01 × 10–01 2.92 × 10–01 4.19 × 10–01 5.27 × 10–01 2.69 × 10–01

Std 1.37 × 10–02 1.51 × 10–02 3.12 × 10–02 1.95 × 10–02 1.95 × 10–02 2.82 × 10–02 9.34 × 10–03

 WFG8
Mean 6.24 × 10–01 1.07 × 10+00 8.73 × 10–01 7.47 × 10–01 4.98 × 10–01 6.73 × 10–01 4.01 × 10–01

Std 1.50 × 10–02 2.18 × 10–02 4.27 × 10–02 9.08 × 10–03 1.32 × 10–02 3.64 × 10–02 8.19 × 10–03
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these algorithms. Therefore, the development of the NSCSO algorithm can provide a new way of thinking for 
our problem-solving. By comprehensive comparison of the test function results and Friedman test results, the 
results obtained by using the NSCSO algorithm to solve the MOP problem have better performance.

Engineering design problems
To further prove the effectiveness and feasibility of the NSCSO algorithm in practical applications, this paper 
compares the NSCSO algorithm with other multi-objective optimization algorithms in six different engineering 
design problems. Each algorithm is run 10 times in different engineering instances with 1000 iterations per 
iteration, the population size is 1000.

Car side impact problem
The car side impact problem generally involves seven variables55, parcel cross member, B-pillar inner panel 
thickness, door beltline reinforcement, B-pillar inner panel reinforcement, door beam, roof longitudinal beam 
and floor side inner panel. This problem is mainly used to optimize the constraint problem for the side impact 
resistance of the vehicle. The specific mathematical model is shown in Supplementary Appendix A. Table 8 
shows the comparison of the SP values for this model, and Fig. 33 shows the Pareto front (PF) obtained by the 
NSCSO algorithm.

As shown in the data in Table 8, the NSCSO algorithm can obtain better PF than other algorithms. In Fig. 33, 
the PF of the NSCSO algorithm is evenly distributed with wide coverage. Therefore, it shows that the NSCSO 
algorithm shows its excellent performance in solving this problem.

Gear train problem
A gear train is a transmission system consisting of a set of gears. The goal of gear train design is to calculate the 
number of teeth for each gear in the gear train56, as shown in Fig. 34. The problem has four decision variables 

Table 5.   The SP values obtained by all algorithms. Significant values are in bold.

Problem LMEA WOF MOSMA DGEA MOAHA MOSPO NSCSO

Bi-objective test function

 ZDT1
Mean 5.28 × 10–01 2.89 × 10–01 1.04 × 10–02 2.89 × 10–01 3.06 × 10–02 1.04 × 10–02 6.95 × 10–03

Std 3.18 × 10–04 1.03 × 10–03 9.44 × 10–04 4.02 × 10–04 2.98 × 10–04 1.26 × 10–03 4.98 × 10–04

 ZDT2
Mean 2.46 × 10–01 1.41 × 10–01 9.92 × 10–03 1.41 × 10–01 9.30 × 10–03 9.01 × 10–02 7.31 × 10–03

Std 7.62 × 10–03 6.08 × 10–04 1.00 × 10–03 4.71 × 10–03 8.80 × 10–04 1.58 × 10–03 5.98 × 10–04

 ZDT3
Mean 3.10 × 10–01 8.49 × 10–01 2.21 × 10–04 5.29 × 10–01 4.06 × 10–03 1.02 × 10–02 1.77 × 10–04

Std 1.18 × 10–05 1.07 × 10–04 1.26 × 10–05 1.61 × 10–04 3.88 × 10–04 1.36 × 10–03 1.44 × 10–05

 ZDT4
Mean 4.64 × 10–01 – 9.91 × 10–03 2.89 × 10–01 3.32 × 10–03 – 1.96 × 10–04

Std 5.81 × 10–05 – 4.69 × 10–04 6.55 × 10–05 1.48 × 10–04 – 4.71 × 10–05

 ZDT6
Mean 2.34 × 10–01 1.03 × 10–01 2.27 × 10–02 1.37 × 10–01 2.47 × 10–02 6.42 × 10–03 5.93 × 10–03

Std 1.38 × 10–03 1.92 × 10–03 2.56 × 10–02 1.96 × 10–03 2.52 × 10–01 2.93 × 10–03 5.83 × 10–04

Three-objective test function

 DTLZ2
Mean 8.47 × 10–02 1.73 × 10–01 2.90 × 10–01 1.73 × 10–01 6.34 × 10–02 7.99 × 10–02 2.65 × 10–03

Std 4.21 × 10–04 1.08 × 10–04 5.73 × 10–02 9.07 × 10–05 5.58 × 10–03 8.38 × 10–03 6.93 × 10–05

 DTLZ4
Mean 1.18 × 10–01 1.77 × 10–01 3.33 × 10–01 1.77 × 10–01 7.41 × 10–02 5.11 × 10–02 1.82 × 10–02

Std 5.07 × 10–03 7.62 × 10–03 1.48 × 10–01 5.74 × 10–03 6.07 × 10–03 1.56 × 10–02 2.17 × 10–03

 DTLZ5
Mean 2.89 × 10–01 8.80 × 10–01 2.73 × 10–01 6.09 × 10–01 8.96 × 10–03 3.20 × 10–02 8.45 × 10–03

Std 1.68 × 10–03 4.92 × 10–04 5.02 × 10–02 5.12 × 10–03 1.17 × 10–03 6.71 × 10–03 8.07 × 10–04

 DTLZ6
Mean 3.09 × 10–01 1.28 × 10+00 – 6.82 × 10–01 3.93 × 10–03 2.27 × 10–02 8.90 × 10–03

Std 7.34 × 10–03 1.90 × 10–03 – 1.08 × 10–03 6.16 × 10–04 4.22 × 10–02 7.69 × 10–04

 DTLZ7
Mean 3.11 × 10–01 5.43 × 10–01 3.41 × 10–02 3.42 × 10–01 7.77 × 10–02 9.09 × 10–02 3.32 × 10–02

Std 4.83 × 10–03 1.49 × 10–02 6.13 × 10–03 2.20 × 10–02 7.21 × 10–03 7.79 × 10–03 2.14 × 10–03

 WFG4
Mean 3.67 × 10–01 2.86 × 10–01 2.91 × 10–01 2.97 × 10–01 2.47 × 10–01 2.39 × 10–01 2.15 × 10–01

Std 6.15 × 10–02 3.73 × 10–02 2.24 × 10–02 1.80 × 10–03 2.17 × 10–02 2.60 × 10–02 1.92 × 10–02

 WFG5
Mean 2.35 × 10–01 2.90 × 10–01 3.27 × 10–01 3.01 × 10–01 1.85 × 10–01 4.40 × 10–02 1.98 × 10–02

Std 1.86 × 10–03 1.58 × 10–03 3.47 × 10–02 1.86 × 10–03 3.12 × 10–03 3.93 × 10–03 1.74 × 10–03

 WFG6
Mean 2.25 × 10–01 2.92 × 10–01 2.72 × 10–01 3.02 × 10–01 2.48 × 10–01 2.78 × 10–01 2.07 × 10–01

Std 5.37 × 10–03 3.28 × 10–03 5.55 × 10–02 1.87 × 10–03 1.95 × 10–02 1.68 × 10–02 1.63 × 10–03

 WFG7
Mean 2.12 × 10–01 2.86 × 10–01 2.61 × 10–01 2.96 × 10–01 2.43 × 10–01 2.38 × 10–01 2.07 × 10–01

Std 1.84 × 10–02 1.64 × 10–02 2.01 × 10–02 1.47 × 10–02 1.64 × 10–02 2.06 × 10–02 1.02 × 10–02

 WFG8
Mean 2.93 × 10–01 2.95 × 10–01 3.97 × 10–01 3.30 × 10–01 2.32 × 10–01 2.54 × 10–01 2.17 × 10–01

Std 4.15 × 10–02 3.15 × 10–02 1.05 × 10–01 3.71 × 10–01 3.86 × 10–02 2.81 × 10–02 2.10 × 10–02
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Table 6.   The MS values obtained by all algorithms. Significant values are in bold.

Problem LMEA WOF MOSMA DGEA MOAHA MOSPO NSCSO

Bi-objective test function

 ZDT1
Mean 1.79 × 10–02 9.99 × 10–02 1.47 × 10+00 9.85 × 10–02 5.39 × 10–01 1.57 × 10+00 3.97 × 10–01

Std 5.03 × 10–02 4.14 × 10–02 5.70 × 10–02 6.44 × 10–02 4.86 × 10–02 1.45 × 10–01 3.87 × 10–02

 ZDT2
Mean 6.46 × 10–01 4.21 × 10–01 1.45 × 10+00 4.21 × 10–01 6.03 × 10–01 1.67 × 10+00 4.14 × 10–01

Std 4.61 × 10–02 4.70 × 10–02 7.96 × 10–02 2.19 × 10–02 2.29 × 10–02 7.51 × 10–02 3.95 × 10–02

 ZDT3
Mean 3.38 × 10–01 4.15 × 10–01 1.25 × 10+00 4.16 × 10–01 5.80 × 10–01 1.66 × 10+00 3.92 × 10–01

Std 1.20 × 10–01 5.50 × 10–02 8.26 × 10–02 4.16 × 10–02 4.79 × 10–02 1.15 × 10–01 4.53 × 10–02

 ZDT4
Mean 7.28 × 10–01 – 1.47 × 10+00 9.84 × 10–01 5.91 × 10–01 – 4.06 × 10–01

Std 3.98 × 10–02 – 6.67 × 10–02 4.78 × 10–02 3.87 × 10–02 – 3.59 × 10–02

 ZDT6
Mean 4.55 × 10–01 4.09 × 10–01 1.26 × 10+00 4.82 × 10–01 9.74 × 10–01 1.56 × 10+00 3.99 × 10–01

Std 4.56 × 10–02 1.50 × 10–01 1.50 × 10–01 1.15 × 10–01 7.15 × 10–01 3.77 × 10–01 4.58 × 10–02

Three-objective test function

 DTLZ2
Mean 6.25 × 10–01 5.77 × 10–02 9.86 × 10–01 5.72 × 10–02 4.27 × 10–01 5.89 × 10–01 6.24 × 10–02

Std 3.27 × 10–02 4.33 × 10–02 1.50 × 10–01 3.86 × 10–02 3.54 × 10–02 5.60 × 10–02 3.22 × 10–02

 DTLZ4
Mean 2.29 × 10–01 5.68 × 10–02 1.24 × 10+00 5.72 × 10–02 6.73 × 10–01 1.41 × 10+00 2.37 × 10–02

Std 1.06 × 10–01 8.29 × 10–02 1.37 × 10–01 1.32 × 10–01 6.71 × 10–02 9.25 × 10–02 4.75 × 10–02

 DTLZ5
Mean 8.30 × 10–01 5.65 × 10–01 1.32 × 10+00 4.57 × 10–01 7.05 × 10–01 1.24 × 10+00 4.07 × 10–01

Std 5.56 × 10–02 5.68 × 10–02 1.10 × 10–01 5.31 × 10–02 6.24 × 10–02 1.14 × 10–01 4.52 × 10–02

 DTLZ6
Mean 8.45 × 10–01 7.43 × 10–01 – 8.60 × 10–01 5.01 × 10–01 1.72 × 10+00 4.45 × 10–01

Std 1.64 × 10–02 1.84 × 10–02 – 9.93 × 10–02 1.26 × 10–02 1.38 × 10–01 1.16 × 10–02

 DTLZ7
Mean 5.91 × 10–01 7.06 × 10–01 1.19 × 10+00 8.13 × 10–01 5.01 × 10–01 7.87 × 10–01 9.08 × 10–02

Std 5.78 × 10–02 1.94 × 10–01 4.07 × 10–02 1.51 × 10–01 4.29 × 10–02 1.09 × 10–01 4.55 × 10–02

 WFG4
Mean 1.26 × 10–01 2.15 × 10–01 5.89 × 10–01 2.75 × 10–01 4.19 × 10–01 5.16 × 10–01 8.07 × 10–02

Std 3.15 × 10–02 2.85 × 10–02 3.53 × 10–02 3.04 × 10–02 2.68 × 10–02 3.32 × 10–02 2.25 × 10–02

 WFG5
Mean 1.67 × 10–01 2.15 × 10–01 5.76 × 10–01 3.74 × 10–01 3.88 × 10–01 5.87 × 10–01 4.15 × 10–01

Std 7.37 × 10–02 8.45 × 10–02 1.69 × 10–02 5.37 × 10–02 2.31 × 10–02 3.64 × 10–02 2.76 × 10–02

 WFG6
Mean 4.48 × 10–01 5.15 × 10–01 7.87 × 10–01 5.74 × 10–01 4.23 × 10–01 5.95 × 10–01 3.82 × 10–01

Std 1.53 × 10–01 3.67 × 10–02 7.57 × 10–02 1.42 × 10–01 3.29 × 10–02 4.62 × 10–02 2.58 × 10–02

 WFG7
Mean 4.61 × 10–01 5.15 × 10–01 5.63 × 10–01 4.74 × 10–01 4.49 × 10–01 4.91 × 10–01 3.76 × 10–01

Std 4.11 × 10–02 1.40 × 10–02 4.28 × 10–02 5.38 × 10–02 3.21 × 10–02 2.20 × 10–01 3.19 × 10–02

 WFG8
Mean 8.32 × 10–01 1.20 × 10+00 7.74 × 10–01 6.81 × 10–01 4.87 × 10–01 4.72 × 10–01 4.21 × 10–01

Std 1.93 × 10–01 8.27 × 10–02 1.19 × 10–01 2.35 × 10–01 3.76 × 10–01 2.68 × 10–01 2.16 × 10–01

Figure 4.   The Pareto front obtained by LMEA on ZDT6.
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and two objective functions. At the same time, the decision variables of this problem are all integers, which 
are designed to follow realistic rules. Table 9 shows the SP values and extreme solutions obtained by different 
algorithms. Figure 35 shows the Pareto fronts obtained by the NSCSO algorithm. Supplementary Appendix B 
is the mathematical model.

Through the data in Table 9, the NSCSO algorithm can obtain a smaller SP value than other algorithms, 
indicating that the distribution of its Pareto solution is the most uniform. Figure 35 also confirms this well. At 
the same time, it can be seen that the optimal extreme Pareto solution in the case of f1 → min is computed by 
the NSCSO algorithm. All algorithms can obtain the ideal solution when f2 → min . Therefore, in this problem, 
the NSCSO algorithm can provide a better solution and provide a new choice for solving engineering problems.

Welded beam design problem
Welded beam design problem pursues the lowest production cost58. Its optimization goals include welding two 
vertical deflections and including manufacturing cost. As shown in Fig. 36, the decision variables for this problem 
are clip length l + L ; rebar thickness b ; rebar height t  ; weld thickness h ; P is the vertical deflection. Figure 37 is 
the PF graph obtained by the NSCSO algorithm for this problem. Table 10 shows the SP values for all algorithms. 
Supplementary Appendix C is the mathematical model.

Figure 5.   The Pareto front obtained by WOF on ZDT6.

Figure 6.   The Pareto front obtained by MOSMA on ZDT6. 
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In this problem, the result obtained by the NSCSO algorithm ranks first, and the SP value is much smaller than 
that of MOSMA, and slightly smaller than that of MOSPO. The numerical gap also shows that the robustness of 
the NSCSO algorithm is far superior to several other algorithms. It can be seen from Fig. 37 that the PF distribu-
tion of the NSCSO algorithm is relatively uniform. Therefore, the NSCSO algorithm can provide more valuable 
reference data to help solve engineering problems through its superior performance and strong searchability.

Cantilever beam design problem
The cantilever beam design has two objective functions with the aim of optimizing its weight reduction 
and reducing the deflection of the cantilever beam under the constraints of maximum stress and maximum 
deflection59. As shown in Fig. 38, the problem is considered with one of its ends fixed and the diameter and 
length of its cross-section as decision variables. Figure 39 is the PF obtained by the NSCSO algorithm in this 
problem. The SP values of different algorithms for this problem are given in Table 11. Supplementary Appendix 
D shows the mathematical model.

The distribution of the Pareto fronts obtained by the NSCSO algorithm in Fig. 39 is very uniform. Also, the 
data in Table 11 shows that the SP value of the NSCSO algorithm is the smallest among all algorithms. It is further 
proved that the solution obtained by the NSCSO algorithm is well distributed and has a good reference value.

Figure 7.   The Pareto front obtained DGEA by on ZDT6.

Figure 8.   The Pareto front obtained by MOAHA on ZDT6. 
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Disk brake design problem
The two optimization objectives of the disc brake design problem are the stopping time and the quality of the 
braking system60. Figure 40 shows the model of this problem with four decision variables, which are the engage-
ment force, the inner and outer radii of the table disc, and the number of friction surfaces. Figure 41 is the PF 
obtained by the NSCSO algorithm for this problem. Table 12 records the SP values and the extreme Pareto fronts 
for each algorithm, respectively. Supplementary Appendix E shows the mathematical model.

In Table 12, the SP obtained by the NSCSO algorithm is much smaller than the SP obtained by MOSMA. The 
extreme values of the smallest f1 , f2 can be obtained, and the extreme solutions of other algorithms are larger than 
those of the NSCSO algorithm. In Fig. 41, the NSCSO algorithm, although unevenly distributed around the range 
of 2–2.8, is already the best and most evenly distributed among all algorithms according to the comparison of 
SP values. Therefore, the PF obtained by the NSCSO algorithm is able to have good scalability, and in a realistic 
situation, it will be able to provide more excellent solutions for decision makers.

Compression spring design problem
The pressure spring design problem is a discrete problem with the objective of reducing its pressure and volume61. 
Figure 42 shows the model for this problem with four decision variables, the average coil diameter (D), the wire 

Figure 9.   The Pareto front obtained by MOSPO on ZDT6.

Figure 10.   The Pareto front obtained by NSCSO on ZDT6.
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diameter (d), and the number of active coils (P). Figure 43 is the PF plot obtained for the optimization of this 
problem using the NSCSO algorithm. Table 13 shows the extreme PF solutions obtained by different algorithms. 
Supplementary Appendix F for the mathematical model.

As can be seen in Table 13, NSCSO is able to obtain extreme solutions that cannot be obtained by other 
algorithms when the constraints are satisfied. Also, the distribution of the PF of the NSCSO algorithm in Fig. 43 
is very uniform. Since the line diameter in this problem is a discrete value and there is a certain Pareto front for 
different discrete values, it can be seen that there are discontinuities or overlaps in Fig. 43. This also indicates 
the correctness of the results.

By testing the above six engineering examples, the PF obtained by the NSCSO algorithm in these cases is more 
evenly distributed and has better performance than other algorithms. Therefore, this also proves that NSCSO not 
only performs superiorly in multi-objective function tests but also obtains realistic solutions in multi-objective 
engineering instance problems, providing new options for solving engineering instance problems and broadening 
the usability of the NSCSO algorithm.

Conclusions
In this study, a novel multi-objective variant of the chicken swarm optimization (CSO) algorithm is proposed, 
referred to as non-dominated sorting chicken swarm optimization (NSCSO). The algorithm employs fast non-
dominated sorting and crowding distance strategies to rank individuals based on their fitness, allocating roles 

Figure 11.   The Pareto front obtained by LMEA on DTLZ5.

Figure 12.   The Pareto front obtained by WOF on DTLZ5.
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while preserving the original CSO algorithm’s hierarchical structure and obtaining Pareto optimal solutions. 
Through an elite reverse learning mechanism, individual chickens are guided towards exploring the optimal 
solution direction, facilitating knowledge transfer to other particles and enhancing the algorithm’s search 
capability. The algorithm is extensively tested on various benchmark datasets and subjected to Friedman tests. 
Ultimately, when compared to LMEA, WOF, MOSMA, DGEA, MOAHA, and MOSPO, the NSCSO algorithm 
consistently yields superior Pareto optimal solution sets. Furthermore, the NSCSO algorithm is applied to address 
six practical engineering problems, demonstrating its effectiveness in solving real-world issues and expanding 
the algorithm’s applicability.

Future work will involve further refinement of the NSCSO algorithm and its application to more intricate 
practical scenarios, such as microgrid allocation problems62, WSN node coverage problems63. Additionally, 
the proposed algorithm’s multi-objective version holds promise as a valuable contribution for future research 
endeavors.

Figure 13.   The Pareto front obtained by MOSMA on DTLZ5.

Figure 14.   The Pareto front obtained by DGEA on DTLZ5.
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Figure 15.   The Pareto front obtained by MOAHA on DTLZ5.

Figure 16.   The Pareto front obtained by MOSPO on DTLZ5. 
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Figure 17.   The Pareto front obtained by NSCSO on DTLZ5.

Figure 18.   The Pareto front obtained by NSCSO on ZDT1.
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Figure 19.   The Pareto front obtained by NSCSO on ZDT2.

Figure 20.   The Pareto front obtained by NSCSO on ZDT3.
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Figure 21.   The Pareto front obtained by NSCSO on ZDT4.

Figure 22.   The Pareto front obtained by NSCSO on ZDT6.
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Figure 23.   The Pareto front obtained by NSCSO on DTLZ2.

Figure 24.   The Pareto front obtained by NSCSO on DTLZ4.
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Figure 25.   The Pareto front obtained by NSCSO on DTLZ5.

Figure 26.   The Pareto front obtained by NSCSO on DTLZ6.
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Figure 27.   The Pareto front obtained by NSCSO on DTLZ7.

Figure 28.   The Pareto front obtained by NSCSO on WFG4.
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Figure 29.   The Pareto front obtained by NSCSO on WFG5.

Figure 30.   The Pareto front obtained by NSCSO on WFG6.
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Figure 31.   The Pareto front obtained by NSCSO on WFG7.

Figure 32.   The Pareto front obtained by NSCSO on WFG8.

Table 7.   Friedman test p-value.

NSCSO vs LMEA NSCSO vs WOF NSCSO vs MOSMA NSCSO vs DGEA NSCSO vs MOAHA NSCSO vs MOSPO

GD 1.075 × 10–04 1.075 × 10–04 1.075 × 10–04 1.075 × 10–04 1.075 × 10–04 1.075 × 10–04

IGD 1.075 × 10–04 1.075 × 10–04 1.075 × 10–04 1.075 × 10–04 4.509 × 10–03 1.075 × 10–04

SP 1.075 × 10–04 1.075 × 10–04 1.075 × 10–04 1.075 × 10–04 1.075 × 10–04 1.075 × 10–04

MS 1.075 × 10–04 1.075 × 10–04 1.075 × 10–04 1.075 × 10–04 7.891 × 10–04 1.075 × 10–04

Table 8.   Comparison of the SP solutions for the car side impact problem. Significant values are in bold.

Algorithm SP

MOSMA 0.1648

MOSPO 0.1156

NSCSO 0.1153
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Figure 33.   Pareto front obtained by NSCSO.

Figure 34.   Gear train problem57.

Table 9.   Comparison of the SP and extreme solutions for the gear train problem. Significant values are in 
bold.

Algorithm SP Objective function

f1 f2

MOSMA 0.2905 – –

  f1 → min – 6.00 × 10–08 39

  f2 → min – 7.32 × 10–01 12

MOSPO 0.1573

  f1 → min – 2.65 × 10–09 40

  f2 → min – 7.32 × 10–01 12

NSCSO 0.1126 – –

  f1 → min – 8.70 × 10–11 32

  f2 → min – 7.32 × 10–01 12
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Figure 35.   Pareto front obtained by NSCSO.
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Figure 36.   Welded beam design problem58.

Figure 37.   Pareto front obtained by NSCSO.
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Table 10.   Comparison of the SP solutions for the welded beam design problem. Significant values are in bold.

Algorithm SP

MOSMA 0.6363

MOSPO 0.2971

NSCSO 0.1348

Figure 38.   Cantilever beam design problem.

Figure 39.   Pareto front obtained by NSCSO.
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Table 11.   Comparison of the SP solutions for the cantilever beam design problem. Significant values are in 
bold.

Algorithm SP

MOSMA 0.0194

MOSPO 0.0964

NSCSO 0.0124

Figure 40.   Disk brake design problem.

Figure 41.   Pareto front obtained by NSCSO.
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Table 12.   Comparison of the SP and extreme solutions for the disk brake design problem. Significant values 
are in bold.

Algorithm SP

Objective 
function

f1 f2

MOSMA 0.2427 – –

  f1 → min – 0.1274 16.6549

  f2 → min – 2.3581 2.4125

NSCSO 0.0725 – –

  f1 → min – 0.1263 16.6549

  f2 → min – 2.7902 2.0729

P P D

d

Figure 42.   Compression spring design problem.

Figure 43.   Pareto front obtained by NSCSO.
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