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Detection of incipient 
rotor unbalance fault 
based on the RIME‑VMD 
and modified‑WKN
Qian Wang 1,2*, Shuo Hu 1 & Xinya Wang 2

Due to the high incidence and inconspicuous initial characteristics of rotor unbalance faults, the 
detection of incipient unbalance faults is becoming a very challenging problem. In this paper, a new 
method of small rotor unbalance fault diagnosis based on RIME‑VMD and modified wavelet kernel 
network (modified‑WKN) is proposed. Firstly, in order to extract the small unbalance fault information 
from the vibration signals with low signal‑to‑noise ratio (SNR) more efficiently, the RIME algorithm is 
used to search for the optimal location of the penalty factor and decomposition layer in the variable 
mode decomposition (VMD). Secondly, the most relevant decomposition components to the small 
unbalance fault information are selected by using Pearson Correlation Coefficients and utilized to 
reconstruct the signal. Finally, the modified‑WKN diagnostic model that is used for multi‑sensor 
data fusion is constructed. The model can acquire features of vibration signals from multiple position 
sensors, which enhances the ability of the modified WKN diagnostic model to deal with incipient fault 
modes. Based on the experimental analysis of rotor unbalance fault datasets with different SNRs, it 
is verified that the detection performance of the proposed method is better than the traditional WKN 
and VMD‑WKN methods. Specifically, the proposed method is more sensitive to the initial unbalance 
faults.

As the core component of rotating machinery, the rotor system has been extensively applied in the aerospace, 
petrochemical, coal, and electricity  industries1,2. The primary faults in the rotor system include rotor unbalance, 
misalignment, rub-impact, and  others3. Among these, rotor unbalance is a significant cause of instability in rotor 
systems. In practical engineering, the early characteristics of rotor unbalance fault signals are relatively weak. 
Additionally, they are always accompanied by noise and other uncertainties, leading to even weaker features. 
Therefore, the rapid and accurate detection of initial rotor unbalance faults is a very challenging diagnostic 
problem and is also a crucial safeguard for the long-term safe and stable operation of rotating machinery systems.

In the past few decades, the diagnosis methods for rotor faults can be divided into two  categories4: one is 
time-frequency fault diagnosis methods, such as the wavelet transform, variational modal decomposition (VMD), 
and  others5–7. The other is knowledge-based fault diagnostic methods, which includes support vector machines, 
expert systems, dynamic learning, and deep  learning8–11. Currently, deep learning-based fault diagnosis methods 
have become a research hotspot, and various advanced learning models (CNN, LSTM, DBN, AE, and others) 
are widely utilized in the field of rotor fault  diagnosis12–17.

Among these deep learning models, CNNs stand out for their exceptional performance in fault  diagnosis18. 
However, the CNN-based models are often considered as black boxes due to the lack of interpretability. With 
the advancement of learning methods, various approaches have been proposed to enhance interpretability. With 
the advancement of learning methods, various approaches have been proposed to enhance interpretability. Zilke 
et al.19 developed a novel scheme for neural network rule extraction based on decision trees to investigate the 
decision-making process. Grezmak et al.20 utilized layer-by-layer correlation propagation as an indicator to elu-
cidate the key features learning process of CNN from time-frequency spectrum images.  Jia21 employed a Neuron 
Activation Maximization algorithm to visualize the kernels of convolutional layers, aiming to comprehend the 
process of feature learning.  Chen22 applied Gradient Class Activation Mapping to generate an attention model 
and explained the model by analyzing attention matters. Li et al.23 introduced an attention mechanism to assist 
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deep neural networks in focusing on critical data segments, and the learned fault diagnosis characteristics can 
be presented in a visualized manner.

It should be noted that the rotor fault diagnosis signals are vibration data, and the above-mentioned meth-
ods are mainly suitable for processing two-dimensional image data. In order to solve this problem, Li et al.24 
proposed an interpretable model known as the Wavelet-Kernel Network (WKN), which is suitable for dealing 
with the vibration fault signals. The wavelet transformation is employed in the first convolutional layer of CNN, 
and the physical significance of wavelet transformation is taken as the interpretability process. However, WKN 
is implemented based on a single sensor signal and cannot fully capture the fault information concealed within 
the noise in the rotor vibration signals.

Inspired by the WKN method, this paper proposes a new rotor unbalance fault diagnosis method based on a 
RIME-VMD and modified-WKN. Firstly, to extract the initial unbalance fault information accurately under the 
condition of complex noises, the VMD decomposition algorithm is employed to decompose the vibration signals. 
In addition, the RIME  algorithm25 is used to search for the optimal combination of penalty factor α and decom-
position layer k of VMD. Secondly, the obtained optimal IMF components are selected by using the Pearson 
Correlation Coefficient (PCC), and the most relevant fault IMF components are used for the signal reconstruc-
tion. Thirdly, a new multi-head convolutional layer of the WKN is constructed to capture rotor unbalance fault 
information comprehensively based on the multiple vibration data from different positions in the rotor system. 
Additionally, this paper adopts multi-scale convolution to extract fault information of various scales in the fused 
features, which enhances the ability to perceive complex patterns. Finally, the diagnostic performance of the 
proposed method is illustrated based on the experimental analysis with varying SNRs. The results demonstrate 
that it is better than the traditional WKN method and the WKN combined with VMD (VMD-WKN) methods. 
Specifically, the proposed method is more sensitive to the initial unbalance faults.

The main contributions of this article are shown as follows: 

1) The most relevant unbalance fault IMF components are obtained according to the parameter-optimized 
VMD method, and the optimal combination of penalty factor α and number of decomposition layers k is 
automatically searched by embedding the RIME algorithm.

2) Different from the WKN in Ref.24, the modified-WKN fault diagnosis model was constructed by fully consid-
ering vibration data from different positions. The rotor unbalance fault information from the rotor vibration 
signals concealed within the noises are fully captured by using the multi-head convolution and multi-scale 
convolution structures. Compared with WKN using single sensor data, the modified-WKN model exhibits 
greater sensitivity to the small initial unbalance fault information.

The remaining sections of this article are structured as follows. "Theoretical basis" section covers the theoretical 
basis, introducing the theoretical foundation of the RIME algorithm and WKN. "Proposed method" section 
introduces the structures of the parameter-optimized VMD and modified-WKN models. "Data acquisition" 
section presents the rotor fault test bench and unbalance datasets. "Experimental results" section covers the 
experiments, and the conclusion presented in "Conclusion" section.

Theoretical basis
RIME optimization algorithm
The Rime  algorithm25 was proposed by Huang in 2023, which is an intelligent search method by simulating the 
growth process of rime in nature. The Rime algorithm can be divided into the following four phases.

In the first stage, the entire rime population R is initialized. The parameter R can be expressed by the fol-
lowing equation:

where Si represents the ith rime agent; xij denotes the jth rime particle within this agent.
The second stage is called the Soft-rime Search mechanism. The mechanism simulates the random diffusion 

and large area coverage of rime particles in a weak wind environment. The updated position of rime particles 
Rnew
ij  in a weak wind environment can be expressed by the following equation:

where R new
ij  is the updated position of the rime particle, R best,j is the jth particle of the best rime agent in the 

population R. A random number h is used to control the center distance between two rime particles, which has 
the value in the range of (0, 1). The parameter Ubij and the parameter Lbij are the top and bottom bounds of the 
escape space, respectively. The movement direction of rime particles is influenced by the random variable r1 , 
where r1 ∈ (0, 1) . Both r1 and cosϕ vary with the iteration count. The ϕ is an angle over time that is affected by 
the current number of iterations t and the maximum number of iterations of the algorithm T. The mathematical 
expression for ϕ is as follows:
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The mathematical model for the environmental factor β is a step function. In the Soft-rime search strategy, β 
is utilized to simulate the impact of the external environment. The mathematical expression for β is given by:

where the parameter [·] indicates rounding; the default setting of the parameter ω is 5, which is used to regulate 
the number of segments of the step function.

Parameter E represents the coefficient of being attached; r2 is a random number. The E controls particle 
position update along with r2 . The range of values for r2 is detailed in the Ref.26. The E can be expressed with the 
following equation:

The third stage is known as the Hard-rime puncture mechanism. It promotes the exchange of information 
between ordinary agents and optimal agents by stimulating the growth of rime in strong wind conditions, thereby 
improving the precision of algorithmic solutions. The replacement equation for the particle position in the strong 
wind condition can be expressed by the following equation:

where r3 is a random number with a range of (-1,1); F normr (Si) is the normalized fitness value.
The fourth stage is called the Positive Greedy Selection Mechanism. If the updated fitness value is superior 

to the previous value, the agent’s fitness value and solution are replaced.

Theoretical basis of WKN
The Wavelet transform is a time-frequency analysis method that includes Continuous Wavelet Transform (CWT) 
and Discrete Wavelet Transform (DWT). Different from the Fourier transform, the basis function of the wavelet 
transform is a wavelet basis with finite length and attenuation. The Continuous Wavelet Convolution((CWConv) 
layer is implemented by utilizing the similarity between CNN convolution operations and CWT operations.

The convolution operation performed by the convolution kernel on the input signal when it passes through 
the convolutional layer of the CNN can be considered as an inner product operation. This process can be rep-
resented by the following equation:

where x represents the current input data; h is denoted as the feature map obtained after convolutional computa-
tion; ⊗ denotes the convolution operator; W stands for the convolutional kernel weight; b represents the bias.

Similarly, the process of CWT can be viewed as the inner product operation between the input signal and 
the wavelet basis functions. The continuous wavelet transform of the signal X(t) can be expressed as follows:

where s is the scale parameter; u is the translation parameter; t  is the time parameter; x(t) is the input signal; 
ψ∗ is the complex conjugate of the wavelet basis function ψu,s . The wavelet basis functions ψu,s can be expressed 
by the following equation:

In summary, the CWConv layer was designed based on the principle of CWT. Subsequently, the first convolu-
tional layer of the CNN was replaced with CWConv to construct the WKN. The CWConv layer was designed 
to introduce interpretability to the model. The convolution operation performed by the CWConv layer on the 
input signal can be expressed by the following equation:

where H represents the feature values output by the CWConv layer; g(x) represents the input signal; ∗ denotes 
the convolution operation.

The core part of the WKN is the selection of the wavelet kernel basis functions in the CWConv layer. In 
Ref. 24, it has been proved that the Laplace wavelet employed in the WKN has the best performance in rotating 
machinery fault diagnosis. The structure of WKN is illustrated in Fig. 1, comprising the input layer, continuous 
wavelet convolutional layer, convolutional layer, fully connected layer, and output layer.
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Proposed method
RIME‑VMD
The VMD is a signal decomposition method with adaptive features. The detailed decomposition composition 
process of VMD can be found in Ref.27. The implementation process of the VMD algorithm can be regarded as 
the solution process of the variational problem. The description of the constrained variational model is as follows:

where ∂t represents the partial derivative with respect to t; δ(t) is the impulse function; uk(t) is the kth mode 
function; ωk is the central frequency of the kth mode; f(t) is the original signal.

In order to solve the optimal solution of Equation (11), the quadratic penalty factor α and the Lagrange opera-
tor equation are introduced to transform the constrained variational problem into an unconstrained variational 
problem. The augmented Lagrangian quantity L can be expressed by the following equation:

where L(·) represents the augmented Lagrangian function; α is the penalty factor; �(t) is the Lagrange multiplier.
The method of alternate multiplication is used in order to obtain the optimal solution of Equation (12). The 

update equation for uk and ωkare as follows:

where n1 represents the iteration number; ûn1+1
k (ω) , f̂ (ω) , ûk(ω) , and �̂(ω) are the Fourier transforms of un1+1

k (t) , 
f(t), uk(t) , and �(t) , respectively.

When processing signals with the VMD algorithm, two key parameters need to be preset, namely, the pen-
alty factor α and the number of decomposition layers K. Moreover, the VMD decomposition results are greatly 
influenced by these two key  parameters28. Therefore, selecting an appropriate combination of parameters is the 
key to processing signals using the VMD algorithm. In practical work, the values of K and α are typically esti-
mated based on experience. However, due to the complexity of real signals, estimating the parameter values only 
empirically will not obtain optimal decomposition results. This will result in the inability to accurately extract 
weak incipient unbalance fault features from low signal-to-noise ratio signals. Therefore, the RIME algorithm 
is used in this paper to search for the optimal values of the parameter combinations K and α . After the optimal 
values of K and α are obtained, the VMD method is then used to process the signal. Finally, the obtained optimal 
IMF components are selected by using the PCC, and the most relevant fault IMF components are used for the 
signal reconstruction.

The magnitude of the envelope entropy EP can reflect the sparsity property of the IMF component. When 
the decomposed IMF component contains more noise, the sparsity of this IMF component is weak, and the 
corresponding EP is larger. On the contrary, if the IMF component contains regular fault shocks, then the IMF 
component has strong sparsity, and the corresponding envelope has smaller entropy. Therefore, in this paper, 
the EP is chosen as the fitness function. The envelope entropy of the signal x(j) can be expressed by the follow-
ing equation:
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Figure 1.  WKN structure.
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where N represents the length of the signal x(j), pj is the normalized form of a(j); a(j) is the envelope signal 
obtained by Hilbert demodulation of the signal x(j).

Algorithm 1.  Pseudo-code of RIME-VMD.

Modified‑WKN
At present, rotating machinery is rapidly developing in the direction of intelligence, large-scale and complexity. 
However, due to the harsh operating environment and noise, it is difficult to fully capture the operating status 
of equipment with data from a single  sensor29–31. Therefore, in this paper, multiple sensors are utilized to collect 
vibration data of the rotor system from different directions (the sensor arrangement will be described in the 
"Data acquisition" section), and the modified-WKN for multi-source data fusion is constructed. The information 
from sensors at different locations is fused through a multi-head CWConv layer. Then, the fault information at 
different scales in multi-source features is captured by multi-scale convolution.

The structure of the modified-WKN proposed in this paper is shown in Fig. 2, which includes a multi-data 
source input layer, a multi-head CWConv layer, a multi-scale convolutional layer, the feature connection layer, 
a fully connected layer, and an output layer. Different from the WKN structure as shown in Fig. 1, the multi-
head wavelet convolution layer is composed of two CWConv layers (with a convolution kernel size of 1× 16 ) 
that use Laplace wavelets. The multi-scale convolution layer is composed of two convolution kernels of different 
sizes. The output features of the multi-head CWConv layer are connected together by Concat and input to the 
multi-scale convolutional layer.

Fault diagnosis method based on RIME‑VMD and modified‑WKN
The fault diagnosis process based on the RIME-VMD and modified-WKN proposed in this article is shown in 
Fig. 3. (1) The vibration data for the different directions of the rotor system is collected by sensors in several 

(15)
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Figure 2.  Modified-WKN structure.
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positions. (2) The collected vibration data of the rotor system in different directions are decomposed by the 
RIME-VMD. Then, the PCC is utilized to select the optimal IMF components which are rich in fault information. 
Finally, the selected optimal IMF components are used for signal reconstruction. (3) The reconstructed dataset 
is divided into the training set, the validation set, and the test set. (4) The model is trained with the training set 
and the validation set. The model is saved after training is completed. (5) The accuracy and generalization ability 
of the model was evaluated with a test set.

Data acquisition
The rotor unbalance experiment was conducted on a rotor system test bench. As shown in Fig. 4, the test bench 
consists of a motor, a motor speed control device, a signal conditioning device, the eddy current sensor, and an 
unbalance device. The eddy current sensors are located in the horizontal (Y direction) and vertical (X direction) 
directions, respectively. In this paper, different weights of counterweight screws are added to the unbalance device 
to simulate four degrees of unbalance faults.

In industrial production, the motors are usually operated at multiple rotational speeds to adapt to differ-
ent work conditions and production scenarios. Therefore, in this paper, the motor speeds are set as 1200 rpm, 
1600 rpm, and 1800 rpm to simulate the real rotor work condition. The sampling frequency was set as 5120 Hz, 

Figure 3.  Diagnosis pipeline based on RIME-VMD and modified-WKN.

Figure 4.  Rotor test bench. 1© Premplifier, 2© Rotor Motor, 3© Eddy current sensor (vertical direction), 4© 
Eddy current sensor (horizontal direction), 5© Rotor Shaft, 6© Counterweight screw, 7© Bearing latex. 8© 1.2 g 
counterweight screw 9© 2.5 g counterweight screw 10© 3.6 g counterweight screw 11© 5.0 g counterweight screw.

Table 1.  Rotor speeds and counterweights.

Rotor speeds Weight 0 g Weight 1.2 g Weight 2.5 g Weight 3.6 g Weight 5.0 g

1200 rpm 100 100 100 100 100

1600 rpm 100 100 100 100 100

1800 rpm 100 100 100 100 100
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and the rotor fault test bench saved data every 2 s. In this paper, four different degrees of unbalance faults are 
preset on the rotor system fault test bench, namely: incipient unbalance (1.2 g counterweight), mild unbalance 
(2.5 g counterweight), moderate unbalance (3.6 g counterweight), and severe unbalance (5.0 g counterweight). In 
addition, the normal state (0 g counterweight) is also included, so there are five operating states in total. A total of 
300 signal samples were collected for each condition, and the length of each signal sample was 10240. Therefore, 
the total number of samples in the rotor unbalance fault dataset is 1500 files, which contain different rotational 
speeds and counterweights, as shown in Table 1. The training set, validation set, and test set were divided as 6:2:2. 
Thus, the training set contains 900 training samples, and the test and validation set each contains 300 samples. 
The incipient unbalance fault in this paper refers to a rotor system that has just experienced an unbalance fault. 
At this stage, the signal characteristics are very similar to those under normal conditions, and these features are 
easily overwhelmed by  noise32,33.

In real industrial production environments, the collected data are often mixed with a large amount of una-
voidable noise. However, the unbalance fault dataset collected on the rotor test bed contains less disturbing 
components, which are not representative of the real industrial environment. In order to make the test results 
realistic, this paper adds different levels of Gaussian noise (0 dB, −2 dB, −4 dB, −6 dB) to the original dataset to 
simulate the real industrial environment. The original vibration data of the incipient unbalance fault associated 
with the 1.2 g counterweight at 1600 rpm is shown in Fig. 5, where Fig. 5a shows the X direction, and Figure  5b 

Figure 5.  The original data collected from the test bench. (a) The original signal in the X direction. (b) The 
original signal in the Y direction. .

Figure 6.  The original data from the test bench with added −6 dB noise. (a) The X direction signal with added 
−6 dB noise. (b) The Y direction signal with added −6 dB noise .
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shows the Y direction. The data with −6 dB noise added is shown in Fig. 6. The Fig. 6a shows the time-waveform 
from the X direction. The Fig. 6b shows the time-waveform from the Y direction.

Experimental results
Results based on the modified‑WKN
In order to verify the superiority of the proposed modified-WKN model, the WKN-X (vertical direction data 
diagnostic model), WKN-Y (horizontal direction data diagnostic model), and modified-WKN were separately 
trained on the dataset with added Gaussian white noise. The WKN (WKN- X, WKN- Y) structure is shown in 
Table 2, and the modified-WKN structure is shown in Table 3.

During the training process, the Adam optimizer was used with a learning rate of 0.001 for all models. The 
average of the five training results was taken as the final result to minimize the effect of randomness. The train-
ing results after 30 epochs are shown in Table 4. The t-distributed stochastic neighborhood embedding (t-SNE) 
of the model classification results is shown in Fig. 7. By observing the data in Table 4, it can be concluded that 
the performance of the modified WKN is excellent in all four datasets with different signal-to-noise ratios. 

Table 2.  WKN structural parameters.

Layer Kernel size Stride Output size

CwConv 1× 16 1× 1 1× 64× 10227

MaxPool1d 1× 2 1× 2 1× 64× 5133

Conv2 1× 3 1× 1 1× 64× 5111

MaxPool1d 1× 2 1× 2 1× 64× 2555

Conv3 1× 5 1× 1 1× 16× 2551

AdaptiveMaxPool1d - - 1× 16× 25

Linear-1 - - 1× 120

Linear-2 - - 1× 84

Linear-3 - - 1× 5

Table 3.  Modified-WKN structural parameters.

Layer Kernel size Stride Output size

CwConv-X 1× 16 1× 1 1× 64× 10227

MaxPool 1× 2 1× 2 1× 64× 5113

CwConv-Y 1× 16 1× 1 1× 64× 10227

MaxPool1d 1× 2 1× 2 1× 64× 5113

Concat - - 1× 128× 5113

Conv3-1 1× 3 1× 1 1× 64× 5111

MaxPool 1× 2 1× 2 1× 64× 2555

Conv3-2 1× 3 1× 1 1× 16× 2553

AdaptiveMaxPool1d – – 1× 16× 25

Conv5-1 1× 5 1× 1 1× 64× 5109

MaxPool 1× 2 1× 2 1× 64× 2554

Conv5-2 1× 5 1× 1 1× 16× 2500

AdaptiveMaxPool1d - - 1× 16× 25

Concat – – 1× 32× 25

Linear-1 – – 1× 120

Linear-2 – – 1× 84

Linear-3 – – 1× 5

Table 4.  The accuracy of WKN and modified-WKN under different noise conditions.

Method 0 dB −2 dB −4 dB −6 dB

WKN-Y 80.56%±1.76% 80.69%±2.39% 79.86%±3.22% 74.14%±3.38%

WKN-X 81.95%±2.31% 80.76%±3.03% 79.86%±2.52% 77.28%±1.41%

Modified-WKN 99.65%±0.60% 99.10%±1.19% 97.92%±1.15% 94.65%±1.11%
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Specifically, the accuracy of modified-WKN is more than 17 percentage points higher than WKN on the -4 dB 
and -6 dB datasets. In addition, the stability of WKN-X and WKN-Y is relatively lower than the modified WKN.

In order to observe the classification ability of the modified-WKN in a more detailed way, 1800 rpm, 1600 rpm 
and 1200 rpm were selected as the test data of the modified-WKN from 300 test sets. Subsequently, the output of 
the model was visualized using t-SNE. The classification results of modified-WKN are shown in Fig. 8. Although 
the modified WKN outperforms the WKN, its accuracy is still unsatisfactory in -4 dB and -6 dB noise environ-
ments. As shown in Fig. 8, the modified-WKN is unable to capture the weak incipient unbalance fault features 

Class 0
Class 1

Class 2

Class 3

Class 4

(a) (b) (c)

Figure 7.  t-SNE visualization of the WKN-X, WKN-Y, and modified-WKN classification results on the 
−6 dB dataset. (a) Test results of the WKN-X on the −6 dB dataset. (b) Test results of the WKN-Y on the 
−6 dB dataset. (c) Test results of modified-WKN on the −6 dB dataset. Class 0: normal state. Class 1: incipient 
unbalance. Class 2: mild unbalance. Class 3: moderate unbalance. Class 4: severe unbalance.

Class 0

Class 1

Class 2

Class 3

Class 4

(a) (b)

(c)

Figure 8.  t-SNE visualization of modified-WKN at 1200 rpm, 1600 rpm, and 1800 rpm on the −6 dB 
dataset. (a) Test results of the 1200 rpm dataset. (b) Test results of the 1600 rpm dataset. (c) Test results of the 
1800 rpm dataset. Class 0: normal state. Class 1: incipient unbalance. Class 2: mild unbalance. Class 3: moderate 
unbalance. Class 4: severe unbalance.
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hidden in the noise, resulting in more misclassifications of Class 0 and Class 1. Therefore, in order to minimize 
the interference of noise on the incipient weak unbalance signal, RIME-VMD and improved WKN based fault 
diagnosis is further investigated in the next subsection.

Results based on the RIME‑VMD and modified‑WKN
In order to verify the effectiveness of the RIME-VMD method, the RIME-VMD method is compared with the 
VMD method and the GWO-VMD method (Gray Wolf Algorithm, GWO) in this paper. The detailed procedure 
of GWO-VMD can be found in the Ref.28. The detailed procedure of this experiment is as follows.

In the RIME-VMD method and the GWO-VMD method, the search range of the decomposition modulus 
number K is set as the range of [3, 10]; the search range of the penalty factor α is set as the range of [100, 2500]; 
the search agent quantity is set as 20. In the VMD method, the values of the number of decomposition layers K 
and the penalty factor α are set according to the signal processing experience. The X direction vibration signal 
depicted in Fig. 6a is used as the analysis sample in this experiment. After several rounds of iterations, the optimal 
parameter combination (K ,α) = (9, 560) is found by the RIME algorithm, which indicates that the number of 
decomposition layers K is 9, and the penalty factor α is 560. The GWO algorithm finds the optimal parameter 

Figure 9.  The results of the incipient unbalanced fault decomposition based on the RIME-VMD method, the 
GWO-VMD method and the VMD method. (a) is the decomposition result of the RIME-VMD method; (b) is 
the decomposition result of the GWO-VMD method; (c) is the decomposition result of the VMD method.



11

Vol.:(0123456789)

Scientific Reports |         (2024) 14:4683  | https://doi.org/10.1038/s41598-024-54984-z

www.nature.com/scientificreports/

combination (K ,α) = (8, 2383) , namely, the number of decomposition layers K is 8, and the penalty factor α is 
2383. The value of the parameter combination (K ,α) is set to (9, 1472) in the VMD method. The decomposition 
results of RIME-VMD, GWO-VMD, and VMD are shown in Fig. 9.

The PCC reflects the degree of correlation between two variables. The higher the value of the PCC, the higher 
the correlation between the two variables. As shown in Table 5, the correlation coefficients were categorized as 
no correlation, weak correlation, moderate correlation, significant correlation and strong  correlation35. In this 
experiment, the threshold for the PCC is established at 0.4. If the calculated correlation coefficient of the IMF 
component is higher than 0.4, the IMF component will be used for signal reconstruction. On the contrary, if the 
IMF component correlation coefficient is lower than 0.4, the IMF component will be discarded for signal noise 
reduction. The correlation coefficients of each IMF component were calculated using PCC, and the calculated 
results are shown in Fig. 10. The IMF components whose correlation coefficients are greater than the PCC 
threshold are selected for reconstructing the signal, and the reconstructed signal is shown in Fig. 11.

The training results for the reconstructed −4 dB and −6 dB datasets are shown in Table 6. Among them, 
WKN-X, WKN-Y, and Modified-WKN are the training results of the reconstructed dataset based on the RIME-
VMD method. GWO-Modified-WKN is the training result of the reconstructed dataset based on the GWO-VMD 
method. VMD-Modified-WKN is the training result of the reconstructed dataset based on the VMD method. 
The diagnostic accuracies of both modified-WKN and WKN were significantly improved after extracting the 
unbalance fault information using the RIME-VMD method. However, it is of concern that the diagnostic perfor-
mance of WKN still lags behind modified-WKN. Specifically, the modified-WKN fault diagnosis model achieves 
99.03% and 99.45% accuracy on the reconstructed −4 dB and −6 dB datasets, respectively. In comparison, the 
accuracy of WKN-X and WKN-Y is 95.28% and 90.07% in the −4 dB dataset and 94.38% and 89.72% in the 
−6 dB dataset, respectively. From the perspective of model stability, the WKN exhibits significant fluctuations 
in diagnostic accuracy, showing poorer stability than the modified-WKN.

In view of extracting unbalance fault information methods, the RIME-VMD, the GWO-VMD, and the VMD 
methods all improve the diagnostic performance of Modified-WKN. However, among them, the diagnostic 
performance of Modified-WKN based on the RIME-VMD method is better. In addition, as shown in Fig. 12, 
GWO-Modified-WKN, VMD-Modified-WKN, and WKN based on single-sensor data (WKN-Y, WKN-X) are 
not able to effectively differentiate between the normal states and the incipient unbalance states.

The physical meaning of WKN is reflected in the output features of the CWCov layer. This means that the 
interpretability of WKN can be expressed through the visualization of the feature maps of the CWConv layer. In 
addition, the degree of energy concentration on the feature map can also be used to observe the impact of noise 
on the model’s feature extraction. Therefore, in this paper, the feature maps of CWConv layers in different health 
states are visualized. The feature visualization on the −6 dB rotor unbalance fault data is shown in Fig. 13. The 
visualization of the features on the reconstructed−6 dB dataset based on the RIME-VMD method is shown in 

Table 5.  Correlation coefficients and correlation.

Correlation coefficient Relativity

|r| � 0.2 No correlation

0.2 < |r| � 0.4 Weak correlation

0.4 < |r| � 0.6 Moderate correlation

0.6 < |r| � 0.8 Significant correlation

0.8 < |r| � 1 Strong correlation

Figure 10.  Pearson correlation coefficient of IMF components.
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Fig. 14. In Figs. 13 and 14, the feature-length is represented by the horizontal axis, and the number of channels 
is represented by the vertical axis. Where (a) shows the normal state, (b) shows the incipient unbalance state, 
(c) shows the mild unbalance state, (d) shows the moderate unbalance state, and (e) shows the severe unbalance 
state. From Fig. 13, it can be observed that the concentration of energy in the feature map is poor. The reason is 
that the presence of noise interference causes a large number of fault features to be overwhelmed by noise. After 
extracting the most relevant fault features using the RIME-VMD method, the energy of the output feature map 
of the CWConv layer is very concentrated.

Conclusion
A new method of small unbalance fault diagnosis based on the RIME-VMD and modified-WKN is proposed 
in this paper. With the main contributions of the proposed method, the most relevent rotor fault information 
is extracted through the RIME-VMD, and the small incipient fault can be effectively detected by implementing 
the multi-head convolution and multi-scale convolution structure. According to the comparision of experiment 
results, it is demonstrated that the proposed method is more sensitive to the small incipient unbalance faults 
under the condition of noise. In the future study, the inner dynamics information of different rotor faults can 

Figure 11.  Reconstructed signal. (a) shows the reconstructed signal based on the one obtained with the 
RIME-VMD method; (b) shows the reconstructed signal based on the GWO-VMD method; (c) shows the 
reconstructed signal based on the VMD method.

Table 6.  Accuracy of WKN and modified-WKN on reconstructed datasets.

Method −4 dB −6 dB

WKN-Y 90.07%±2.02% 89.72%±1.09%

WKN-X 95.28%±1.99% 94.38%±2.02%

Modified-WKN 99.03%±0.76% 99.45%±0.39%

GWO-modified-WKN 98.27%±0.82% 98.08%±0.45%

VMD-modified-WKN 98.78%±0.83% 98.69%±0.98%
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can be ininvestigated combining with the proposed method to further increase the diagnosis performance and 
applicability.

Figure 12.  t-SNE visualization of the WKN the and modified-WKN Classification results on the −6 dB 
reconstructed dataset. (a) Test results of the modified-WKN based on the −6 dB reconstructed dataset. (b) Test 
results of the WKN-X based on the −6 dB reconstructed dataset. (c) Test results of the WKN-Y based on the 
−6 dB reconstructed dataset. (d) Test results of the GWO-Modified-WKN based on the −6 dB reconstructed 
dataset. (e) Test results of the VMD-Modified-WKN based on the −6 dB reconstructed dataset. Class 0: normal 
state. Class 1: incipient unbalance. Class 2: mild unbalance. Class 3: moderate unbalance. Class 4: severe 
unbalance.

Figure 13.  Visualization of the output features of CWConv layer in different states based on the −6 dB dataset.
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