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The COVID-19 pandemic experience has highlighted the importance of developing general control 
principles to inform future pandemic preparedness based on the tension between the different control 
options, ranging from elimination to mitigation, and related costs. Similarly, during the COVID-
19 pandemic, social distancing has been confirmed to be the critical response tool until vaccines 
become available. Open-loop optimal control of a transmission model for COVID-19 in one of its 
most aggressive outbreaks is used to identify the best social distancing policies aimed at balancing 
the direct epidemiological costs of a threatening epidemic with its indirect (i.e., societal level) costs 
arising from enduring control measures. In particular, we analyse how optimal social distancing 
varies according to three key policy factors, namely, the degree of prioritization of indirect costs, the 
adherence to control measures, and the timeliness of intervention. As the prioritization of indirect 
costs increases, (i) the corresponding optimal distancing policy suddenly switches from elimination 
to suppression and, finally, to mitigation; (ii) the “effective” mitigation region—where hospitals’ 
overwhelming is prevented—is dramatically narrow and shows multiple control waves; and (iii) a 
delicate balance emerges, whereby low adherence and lack of timeliness inevitably force ineffective 
mitigation as the only accessible policy option. The present results show the importance of open-
loop optimal control, which is traditionally absent in public health preparedness, for studying the 
suppression–mitigation trade-off and supplying robust preparedness guidelines.

The response to the COVID-19 pandemic, described as “a massive global failure at multiple scales” by the Lan-
cet Commission on Future  Preparedness1, has highlighted the vulnerability of modern public health systems 
to pandemic events. Notably, although the COVID-19 pandemic was more dramatic than expected in previous 
pandemic preparedness plans—mostly focused on  influenza2—it cannot be taken to be ’the worst of the worst‘. 
This scenario could be represented by a highly transmissible pathogen with (i) short generation and doubling 
times (as was the case for COVID-19), (ii) high mortality rates in the young and adults and (iii) ability to mutate 
rapidly. However, complicated control scenarios might also occur for less transmissible pathogens whose risk is 
perceived as low in large segments of the population, causing low adherence in wide population groups. Facing 
such diverse scenarios will require a jump in preparedness science to fully embrace new dimensions such as 
holism and sustainability in societal protection and solidarity within and between  countries1.

In relation to future preparedness, the COVID-19 experience highlighted the tension between the duration 
of control measures and societal feedback, as was already apparent during the generalized lockdowns adopted 
to control the first wave of the epidemic in early 2020. This has increased the need to better understand the 
trade-off between the direct health impact of epidemics (e.g., hospitalizations, deaths and overwhelming public 
health resources) and their indirect effects, i.e., the societal, economic, health and relational damage resulting 
from control  measures3,4.
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Regarding the measures used for balancing this trade-off, different control options have emerged since the 
first COVID-19 wave. Early seminal work mainly distinguished between mitigation and  suppression5. The for-
mer strategy aims to delay (but not necessarily reverse) the spread of the epidemic to reduce pressure on the 
healthcare system while protecting the most vulnerable ones and eventually generating herd immunity. Instead, 
the latter aims to reverse epidemic spread and reduce case numbers to low levels without stopping community 
transmission. In this case, measure relaxation implies a case rebound calling for a boosting of restrictions, in the 
form of intermittent control. However, a number of studies have proven that elimination i.e., ending community 
transmission, is  feasible6,7 through appropriate actions and is economically  rewarding7. During the COVID-19 
pandemic, governments’ positions on the issue were far from clear-cut, ranging from elimination, adopted by 
China, New Zealand and Australia, to suppression strategies adopted by many European countries, to the miti-
gation option initially invoked by the UK and US governments to pursue herd immunity and maintained for a 
long time by  Sweden8. Even now, there does not seem to be full consensus about the optimal action.

Relatedly, we agree with the underrated observation that despite the large amount of epidemic modelling 
efforts available already before the COVID-19 pandemic, we still lack clear principles for robustly comparing 
different control strategies from a preparedness  viewpoint9. This is of paramount importance given the difficulties 
in implementing optimal real-time modelling/intervention under the emergency/urgency conditions that prevail 
once an outbreak of an unknown pathogen is ongoing. In relation to this, open-loop optimal control represents an 
ideal tool for setting up the best preparedness baseline plans for future  epidemics9,10. After describing the problem 
via a mathematical model of the epidemic, which includes possible policy actions over a certain control horizon, 
one sets an appropriate cost function combining both the direct costs of the epidemic and those of the control 
actions and seeks the optimal time trajectories that minimize costs. In the case of preparedness, the control action 
must be open-loop given that no direct measures are available on the actual epidemic course. Nevertheless, the 
control parameters can be varied to create different scenarios and predict the best actions to take.

Pre-COVID-19 applications involving optimal control of communicable infections have typically 
 considered11–16 specific interventions (e.g., vaccination) against a given infection as an isolated process within an 
otherwise unaffected community. This reductionist approach has the drawback that it disregards critical societal 
phenomena, such as public health resource saturation. There have been few exceptions to  this17,18. Reductionism 
reflects a widespread attitude in the public health systems of modern industrialized countries, largely due to 
the nonthreatening nature of communicable diseases in such  settings19. The devastating impact of COVID-19 
has revived optimal control studies, e.g., by considering the optimal allocation of multiple interventions, their 
prioritization, the protection of finite public health resources (e.g., hospitals) and ultimately addressing the afore-
mentioned trade-off between direct and indirect costs. In this regard, an impetus was provided by economists 
who first included overall economic loss due to generalized  lockdowns20,21.

With a special focus on control actions, the COVID-19 experience has further confirmed that until effec-
tive vaccines become available, social distancing remains the key control measure when the epidemic proves 
uncontrollable, leaving a secondary role to other  interventions3,5,22–24. Numerous contributions have addressed 
the issue of optimal COVID-19 control through social  distancing9,10,20,21,25–40. These analyses varied by (i) the 
type of epidemic model, ranging from simple (e.g., SIR) to detailed ones; (ii) the form of the cost function, from 
the generic implicit “u(t) cost” to explicit ones, including socioeconomic evaluations (e.g., number of working 
hours lost due to lockdowns); (iii) the type of trade-off representation, i.e., single- vs multiobjective; and (iv) the 
type of control problem, i.e., open vs closed-loop.

Given the critical role played by social distancing, we aim to contribute to the emerging debate on future 
preparedness by thoroughly investigating how the temporal shape of optimal social distancing depends on three 
main policy factors, namely (i) the prioritization attributed to indirect epidemic costs, taken as a free parameter 
varying between 0 (full prioritization of direct costs) and 1 (full prioritization of indirect costs); (ii) the adher-
ence of the population to the proposed control measures; and (iii) the timeliness with which control actions are 
enacted following early alerts. Consistent with the aim of seeking “control principles”, we present an exhaustive 
analysis of the dependence of optimal social distancing on these three key factors.

The problem is formulated as a finite horizon, single objective problem where the cost functional combines the 
direct epidemiological costs of the epidemic with its indirect costs, inspired by influential economic  efforts20,21. 
For transmission, an ordinary differential equation (ODE) model for the first wave of COVID-19 in one of its 
most aggressive settings, namely, Italy—the second country worldwide shot by the pandemic tsunami—was 
 chosen41. The model includes all those features that can make an emerging virus difficult to  control42,43, namely, 
presymptomatic and asymptomatic transmission, differential severity, and finite hospital capacity in a context 
of high transmission and short doubling times. Hospital saturation is addressed by introducing a new class of 
untreated people suffering higher mortality than hospitalized individuals.

The results provide a detailed characterization of how optimal social distancing trajectories depend on dif-
ferent combinations of cost prioritizations, adherence and timeliness as well as insights into their implications 
for pandemic control options.

Results
We report the shape of the optimal social distancing action L(t) , representing the fraction of the population tar-
geted for mandatory restrictions at any time during the control horizon T (set to 1 year) that optimally balances 
direct and indirect costs. We also report the corresponding key epidemiological outputs, such as infection inci-
dence and people needing hospitalization. In particular, we analyse the pattern of optimal distancing L(t) across 
the entire admissible region for the three aforementioned critical factors, i.e., (i) the prioritization attributed to 
indirect costs, represented by a single parameter � : for � = 1 ( � = 0 ), the government fully prioritizes indirect 
(direct) costs; (ii) the adherence to restrictions ( θ ): for θ = 1 , adherence is maximal, i.e., all targeted people 
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adhere to social distancing, while lower values imply lower adherence; and (iii) the timeliness of intervention, 
i.e., the number of days of free epidemic growth before optimal control is enacted.

To adequately classify and compare optimal social distancing trajectories in terms of possible control options, 
namely, mitigation, suppression, and  elimination5,44, we preliminarily need suitable definitions of these concepts 
from a modelling viewpoint i.e., based on key epidemiological parameters such as reproduction numbers. We 
recall a few useful definitions: (i) basic reproduction number (BRN, or  R0), the number of secondary cases caused 
by a typical infective individual in a fully susceptible population in the absence of intervention measures; (ii) 
control (basic) reproduction number (CRN, or  R0,C), the number of secondary cases caused by a typical infective 
in a wholly susceptible population in the presence of control measures of overall efficacy C; and (iii) effective 
reproduction number (ERN,  RE(t) or  Reff), the number of secondary cases caused by a typical infective at the 
current levels of susceptibility and adopted measures. Borrowing from recent work investigating the dichotomy 
suppression-mitigation for different cost  combinations39, we term mitigation a strategy in which the CRN is 
never deliberately brought below threshold, epidemic spread is not reversed, and the ERN goes below the unit 
threshold only by eventual acquisition of immunity, thereby bringing the epidemic to an end. Instead, suppres-
sion aims to halt transmission, bringing the CRN (and the ERN) below the threshold. Clearly, as the restrictions 
involved cannot be prolonged indefinitely due to indirect costs, the epidemic will rebound when measures cease. 
Both such patterns will endogenously emerge from our analyses. The case of elimination is more subtle because 
this strategy cannot be investigated by the standard optimal control approach based on an ODE transmission 
system. Nonetheless, the optimal solution in the relevant parametric region (i.e., at high levels of prioritization 
on direct costs and adherence) shows—in the initial part of the horizon—a consistent pattern characterized by 
intense and timely social distancing until incidence is brought to such negligible levels that an appropriate sto-
chastic model would almost always lead to elimination. Therefore, although elimination appears to be a sound 
consequence of our model within a specific cost range, beyond the aforementioned levels, the predictions of 
the deterministic model become invalid. In this case, phenomena predicted by the deterministic model, such 
as long-term epidemic rebounds, are just artefacts. With this warning, we retained the wording “elimination” to 
identify the corresponding regions in the graphic outputs. Additionally, compared to the cited  work39, which did 
not consider public health constraints, the inclusion of a fixed hospital capacity can cause the optimal solution 
to maintain reproduction at (or very close to) the threshold level for a long interval of time to maintain constant 
hospital occupancy, as detailed in the Supplementary Materials (SM).

Effect of prioritization on indirect costs
Figure 1 shows the emerging sequence of windows of optimal social distancing for different levels of � (Fig. 1a) 
and an adherence of 70% ( θ = 0.7 ) under the ideal situation where timeliness is maximal, i.e., the alert system 
allows early detection of the epidemic and intervention is undelayed:

(i) A high degree of prioritization of direct costs (0 ≤ � ≤ �1,�1
∼= 0.37) leads to elimination according to the 

above definition. The optimal control L(t) has a timely bang-bang shape i.e., it soon rises to its maximum, 
stays constant for a while and finally decreases quickly until it vanishes. In all these situations, there is a 
time when social distancing brings incidence to very low levels, making subsequent predictions invalid. 
In particular, at full prioritization of direct costs (� = 0) , the control function L(t) sets to its maximum 
( Lmax ) for the entire horizon, which is not surprising given that in this case, the trade-off between costs 
disappears;

(ii) Intermediate prioritization of direct costs ( �1 < � ≤ �2,�2
∼= 0.46 ) yields true suppression. Notably, the 

transition from elimination to suppression occurs almost suddenly in the parameter space, what we call a 
“razor-blade” effect. The optimal social distancing is gradually delayed for different � values (compared to 
case (i)) but maintains a bang-bang shape of almost constant duration. In this window, hospitals’ capacity is 
never overwhelmed (Fig. 1c). Specifically, there is a subregion (�1 < � < 0.42) where suppression is strong, 
i.e., the epidemic spread is reversed before hospital capacity is saturated. For larger values, suppression 
becomes weak i.e., there is a period during which hospitals operate at full capacity (although never over-
whelmed) because the incidence stays essentially constant (Fig. 1b). The ERN (Fig. 1d), initially reduced 
by available contact tracing to a level of approximately 2.0, falls below the unit threshold and remains low 
for a large part of the horizon before eventually rebounding due to lifting measures with increasing indirect 
costs.

(iii) Beyond � = �2 , a transition from suppression to mitigation occurs. In particular, there is a narrow window 
(approximately 0.46 < � ≤ �3,�3

∼= 0.49 ), where the epidemic is mitigated through a long-lasting period 
in which hospitals are saturated but almost never overwhelmed. We term this scenario “effective mitigation” 
because a substantial amount of immunity is created. Surprisingly, in this scenario the optimal action is 
characterized by a low-intensity ( L(t) ≪ Lmax ), short duration, initial wave of intervention followed by 
a relaxation phase and by a harsher intervention wave at a later stage. This 2-wave shape of the optimal 
policy is due to the hospitals’ occupancy constraints, and indeed, it does not occur when no constraint is 
considered (see the SM for details).

(iv) Increasing prioritization of indirect costs (approximately �3 ≤ � ≤ �4,�4
∼= 0.61) substantially delays 

interventions, making mitigation increasingly ineffective, or palliative, causing faster and larger epidemics, 
overwhelming hospitals, and building-up a wide population of untreated individuals, represented by the 
portion of the H curve exceeding the capacity boundary (Fig. 1c). In this case, optimal social distancing 
maintains the 2-wave form, though with a reverse shape: the first wave becomes more intense (to counter-
balance the delayed action).
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(v) A large prioritization of indirect costs yields first to the disappearance of the multiple wave pattern 
( �4 ≤ � ≤ �5,�5

∼= 0.80 ), with a dramatic decline in the timeliness and severity of social distancing, 
and subsequently ( � > �5) to the ’do nothing’  policy5, with rapid achievement of herd immunity.

Notably, the windows of the patterns reported in Fig. 1 are qualitatively robust to changes in initial condi-
tions and other parameters.

The corresponding pattern of the unweighted cost components (i.e., true indirect costs vs. true direct costs 
vs. their unweighted sum) for different values of � (Fig. 2a), which reflects the trade-off between the direct and 
indirect costs of the epidemic net of the decision maker’s preferences, provides an alternative view of previous 
findings. First, the optimal solution for � = 0 i.e., maximum control for the entire horizon yields enormous 
indirect costs without providing any clear advantage in terms of epidemic control compared to nearby elimina-
tion policies. Indeed, the latter allows a sudden, dramatic, drop in indirect costs that decline slowly thereafter 

Figure 1.  Temporal trends of (a) optimal social distancing L(t) , (b) the corresponding incidence of new 
infections �S(1− θL)2 , (c) people needing hospitalization (compartment H), and (d) effective reproduction 
number for different values of prioritization of indirect costs � . The shaded plane in the H graph represents the 
maximum hospital capacity. The maximal fraction of people targetable for social distancing is set to Lmax = 0.7 , 
and the population adherence to social distancing (θ) is set to 70%. All the other parameters and initial 
conditions are reported in the Methods section. As � switches from � = 0 (full prioritization on direct costs) to 
� = 1 (full prioritization on indirect costs), optimal social distancing undertakes the entire set of switches from 
elimination to “do nothing” (a).
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due to the strongly similar shapes of the optimal control actions. Furthermore, at the razor blade, marking the 
rapid transition from elimination to suppression ( � = 0.38 ), direct (indirect) costs begin to rise (fall) quickly. 
The regime changes in the cost components for � > 0.38 , where direct (indirect) costs initially increase (decline) 
faster, slow down and then accelerate again, reflect various phase changes observed in Fig. 1 i.e., the switch 
between suppression and effective mitigation � ∼= 0.46) and subsequently to palliative mitigation ( � ∼= 0.49) . In 
the palliative mitigation region, the further discontinuity in the cost speed ( � = 0.61) marks the disappearance 
of the 2-wave regime and the return to single-wave optimal control. Finally, the last acceleration in costs leads to 
the disappearance of any mitigation intervention i.e., the “do nothing” scenario ( � ∼= 0.80) . The corresponding 
weighted components (Fig. 2b), which additionally reflect the weighting by the decision maker’s preferences, 
amplify the aforementioned behaviour.

Adherence ( θ)
Given the level of prioritization on indirect costs (�) , the fraction of the population adhering to the proposed 
measures (θ) becomes critical. For example, at intermediate � levels ( � = 0.42 ), the optimal action is always 
delayed (Fig. 3a). In this case, only very high adherence (θ > θ1 ∼= 0.80 ) can promote elimination. Decreas-
ing levels of adherence generate a sequence of scenarios similar to those reported in Fig. 1: (i) for θ2 < θ < θ1 
( θ2 ∼= 0.73 ) suppression occurs in the strong form previously defined while for θ3 < θ < θ2 ( θ3 ∼= 0.70 ) weak sup-
pression appears, again with multiple optimal control waves; (ii) at lower adherences ( θ4 < θ < θ3 , θ4 ∼= 0.66 ), the 
optimal mitigation action becomes increasingly ineffective, allowing large epidemics and hospitals overwhelming, 
yielding in turn a blow-up of untreated individuals (Fig. 3b) and a mortality wave of increasing height and dura-
tion (Fig. 3c). Further details for alternative � values (Supplementary Materials) robustly confirm these patterns.

Joint effects of cost prioritization and adherence
A more complete overview of the dependency of optimal social distancing on parameters (�, θ) is reported 
in Fig. 4, using the cumulative cost and deaths at the end of the horizon as metrics. The flat “low deaths” zone 
(blue) at low prioritization of indirect costs and high adherence levels corresponds to the region where the 
optimal action is either elimination or suppression. However, when the context worsens i.e., either adherence 
or prioritization to indirect costs are lower, the optimal action sets into the region of palliative mitigation and 
eventually into the “do-nothing” zone. When adherence is low, not even a very strong prioritization of direct 
costs can make suppression as the optimal solution. Examining the total unweighted costs (Fig. 4a) in the same 
spirit as Fig. 2a reveals a wide region where elimination/suppression coexists with relatively low total costs. 
Correspondingly, the average of the two previous metrics (Fig. 4c) shows a wide region (the blue region) where 
a sufficiently high level of adherence prioritizes health protection, making elimination/suppression the far bet-
ter societal solution, yielding the lowest number of infection-related deaths and a relatively short duration of 
restrictions (as shown in Fig. 3a).

Timeliness: effects of intervention delays
By timeliness we denote the ability of public policy to intervene as early as possible during a pandemic  emergency5. 
The results presented in the preceding subsections address the ideal scenario of maximal timeliness, wherein 
there is no alert delay (e.g., due to a lack of knowledge about the initial epidemic course) or an intervention lag 
by public authorities.

Figure 2.  (a) true unweighted epidemic costs  Che = direct health cost of the epidemic,  Cec = indirect (economic) 
costs,  Che +  Cec = total (unweighted) costs as functions of parameter � reflecting prioritization for indirect costs. 
(b) the corresponding weighted costs (1−�)  Che, �  Cec, C=(1−�)  Che+ �  Cec, also drawn as functions of �.
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In real situations, substantial delays are almost inevitable for infections (as was the case for COVID-19) 
characterized by latent and silent transmission and confirmatory testing. Other things being equal (e.g., in the 
absence of uncoordinated behavioural responses at the individual level that compensate for the inaction of public 
policy), intervention delays will result in an initial phase of uncontrolled epidemic growth until a certain time 
t = ts when the optimal distancing policy is implemented. The implications are as follows. First, if the underly-
ing parametric configuration ( �, θ ) forces the optimal policy in the mitigation region in the undelayed case 
(i.e., suppression is not an available option), then the optimal control is not affected and remains as such until 
the end of the horizon. This result is consistent with Bellman’s optimality principle, which states that subsets of 
optimal actions (and their corresponding trajectories) are also optimal for the underlying subproblem whose 
initial conditions belong to the optimal  path45. Therefore, we do not report results for this case. On the other 
hand, if—in the absence of intervention delays—the underlying parametric constellation ( �, θ ) sets the optimal 
policy in the suppression (or elimination) region, the problem must be reset. Figure 5 reports the optimal social 
distancing (a) and the corresponding trajectory of people requiring hospitalization H (b), for different values of 
the intervention delay ts under a combination of a high prioritization of direct costs (� = 0.08) and large adher-
ence ( θ = 0.70 ). In the absence of intervention delays, such values promote elimination (Fig. 1). For nonlarge 
delays ts ( ts ≤ 70 days) , the optimal distancing schedule is temporally shifted compared to the unlagged case, and 
either elimination is maintained or modified into suppression. However, for longer delays ( ts > 70 days ), a rapid 
transition from suppression to palliative mitigation occurs (Fig. 5b). In other words, due to the narrowness of the 
window of effective mitigation, the temporal range of intervention delays compatible with effective mitigation is 
also dramatically narrow, meaning that large delays leave ineffective mitigation as the only available policy option.

Discussion
Pandemic preparedness plans developed worldwide since the early 2000s, were based primarily on data from the 
1918 Spanish flu and secondarily from the mild 2009 H1N1 pandemic. However, the first wave of COVID-19, 
exhibited greater transmissibility and shorter doubling times than did the Spanish flu  virus2. Additionally, no 
logical argument can rule out the possibility that a future pandemic could even be more severe than COVID-19. 
Furthermore, even less transmissible pathogens can be difficult to control if adherence to measures is low, for 

Figure 3.  Effects of population adherence to interventions ( θ ) on optimal social distancing for � = 0.42 . (a) 
temporal trends of optimal social distancing L(t) as a function of θ ; (b) corresponding temporal trends of people 
requiring hospitalization (H(t)) as a function of θ ; (c) temporal trends of the overall death rate αTOT (t) as a 
function of θ.
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Figure 4.  Various aggregated metrics of epidemic costs as functions of prioritization of indirect costs ( � ) and 
adherence to the proposed measures (θ) . (a) total unweighted costs; (b) cumulative COVID-19-related deaths at 
the end of the horizon D(T); (c) average of the two previous normalized metrics. Normalization in the bottom 
panel is used to avoid the disproportionate influence of either component that arises in some of the parametric 
regions considered.

Figure 5.  Effects of different intervention delays ( ts, in days ) under a regime of strong prioritization of direct 
costs ( � = 0.08) and high adherence ( θ = 0.70 ). (a) temporal trends of optimal social distancing L(t); (b) 
number of people requiring hospitalization H(t).
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example, when risks are perceived as low in large segments of the population. Therefore, improving our under-
standing of the most effective interventions for balancing the direct effects of a threatening outbreak with its indi-
rect effects, i.e., the disruption of social, economic and relational ties, is a critical priority for future preparedness.

Based on the  observation9 that the epidemiological community still lacks generally agreed upon principles for 
comparing different intervention options from a preparedness standpoint, this article used open-loop optimal 
control to contribute to the general understanding of the forms and implications of optimal social distancing. 
After the onset of the COVID-19 pandemic, optimal control techniques have been extensively used to assess 
the effectiveness of different types of undertaken measures, particularly social distancing, accounting for several 
economic or societal  considerations9,20,21,25–40. This work aims to contribute to this vein by especially focusing 
on social distancing actions that optimally balance the trade-off between direct and indirect costs, in the spirit 
of developing principles useful for future preparedness.

In particular, we searched for the optimal social distancing trajectories that minimize a generic combina-
tion of direct and indirect costs and assessed the dependence of the optimal action on three key policy factors, 
namely, (i) the degree of prioritization of indirect costs, (ii) population adherence to control measures, and (iii) 
the timeliness of intervention. This makes our objectives complementary to a recent contribution also focusing 
on cost  prioritization39, which instead analyses the effects of transmission, including how optimal social distanc-
ing changes for less transmissible pathogens, and horizon length though in a simple SIR model without public 
health constraints and adherence.

Our main results provide insight into the interplay between cost considerations and intervention parameters 
in shaping optimal social distancing and the suppression-mitigation trade-off. First, when the prioritization of 
direct costs is very high and adherence is adequate, the optimal action is harsh and can be naively interpreted as 
elimination. Indeed, after the incidence has been brought to very low levels, the deterministic model is no longer 
adequate. Second, as the prioritization of indirect costs increases, the corresponding optimal action shows a 
rapid phase transition from elimination to suppression. Such rapid transitions have also been identified in recent 
 research39. Third, as the prioritization of indirect costs further increases, the optimal action shows a rapid “phase” 
transition from suppression to mitigation. Notably, the parametric region in which mitigation is effective (i.e., 
preventing hospitals’ overwhelming) is very narrow even at the hospital size scale in Western countries. After 
this region of effective mitigation, further increasing prioritization of indirect costs makes mitigation ineffective, 
with increasing numbers of people that cannot be cured due to hospital burdens. This is a crucial element for 
determining which strategy should be implemented. Additionally, in the “effective mitigation” region, the opti-
mal social distancing policy shows multiple waves. This results from the attempt to balance direct and indirect 
costs under the finiteness of public health resources in the presence of epidemic inertia. In particular, the second 
wave of restrictions is harsher than the first wave. This result is interesting in terms of the public communication 
required to maintain high adherence in a population just exiting from a first wave of restrictions. Finally, we 
highlight the delicate balance between prioritizing indirect costs and both adherence and timeliness: given the 
narrowness of the effective mitigation region, high prioritization of indirect costs and low adherence unavoidably 
tend to leave ineffective mitigation as the only option. This is in turn worsened by intervention delays.

As an additional remark, unlike adherence and timeliness which have direct control meanings, the prior-
itization of indirect costs ( � ) is more subtle. Indeed, during an actual epidemic, the prioritization of one type 
of cost or the other will likely change over time due to ongoing events, e.g., because a successful control phase 
will modify public opinions possibly calling for a relaxation of measures. From this perspective, � regulates, 
given “low-level” parameters such as adherence and timeliness, the entire relationship between suppression and 
mitigation, particularly informing about their criticalities.

Overall, the proposed results are, to the best of our knowledge, the first to fully assess the joint role of these 
critical control factors. In particular, they add substantial insight to previous  work39 that focused on the effects 
of prioritizing indirect cost and horizon duration; however, they relied on a simple SIR framework without 
public health constraints.

Clearly, in addition to the proposed strengths, the present work has limitations that might call for a number 
of improvements. For the “open-loop” approach, it is important to appreciate that this approach focuses on pre-
planned learning on control measures (i.e., preparedness) and not on their implementation during an ongoing 
epidemic. In the latter case, other approaches involving real-time adaptive controls (e.g., closed/feedback loop) 
would be  required27,34. For the choice of a finite horizon problem, this hypothesis was adopted in the vast majority 
of contributions on the optimal control of COVID-19 in its early  epoch9,10,20,21,25–40. This assumption can be justi-
fied by assuming that a vaccine will be available after some time and that social distancing ends once the vaccine 
is available. Notably, seminal works by economists who considered an infinite time  horizon20,21 (motivated by 
the randomness of vaccine arrival time) eventually worked with finite horizons. Some works complementary to 
the present one investigated the sensitivity of the finite-horizon optimal solution with respect to the length of 
the horizon as a step toward infinite-horizon  problems39,40.

On the transmission model side, we focused on a specific model drawn from the first COVID-19 epoch. Given 
the documented massive age-space heterogeneity of COVID-19 (transmission, evolution to symptoms, risk of 
serious consequences, etc.) including chronological age-structure and spatial heterogeneity could be important 
 improvements21,35. Furthermore, in practice, timely interventions with high levels of adherence are typically dif-
ficult to achieve, because individuals demand “high perceived risks” to provide a substantial policy-enhancing 
behavioural response. In other words, early and effective government responses will hardly favour rapid and 
high adherence by individuals. Since both timeliness and adherence are control parameters strongly influenced 
by individual behaviour, we can consider the current model a “pre-behavioural” model deserving to be amended 
by including endogenous agents’ responses to both epidemic trends and their control measures. Therefore, 
behavioural epidemiology approaches based on coupled infection-behaviour models must be  considered25,46–50. 
Moreover, the adopted model is deterministic, meaning that its predictions are invalidated when the infection 
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incidence becomes low, as typically occurs in the earlier phases of an  epidemic51 or nearby its  end52, or even 
when considering finite public health  resources43. All these situations require the use of a stochastic modelling 
approach. The inability of the standard optimal control model to handle elimination strategies (which occurs 
in our model at very high prioritization of direct costs) is a typical example. Further, several NPIs can be jointly 
optimally  controlled20,21,25,31,34. Additionally, the concept of indirect costs of a pandemic is complex from a 
measurement viewpoint. Essentially, every social, economic, health or relational activity that has been penalized 
by the restrictions adopted to mitigate the direct health effects of the pandemic represents an “indirect cost”, 
building an endless list inflating the cost functional of potentially redundant information. For this reason, the 
current approach, borrowed from early economic  efforts20, can be considered conservative and useful, but the 
issue of relevantly defining indirect costs is still quite unresolved. Recent work has attempted to include in the 
optimization the costs of economic losses resulting from sector-specific social  distancing37. Finally, the present 
model disregarded the issue of uncertainty in the structure of the transmission model and its parameters, which 
is clearly one pervading all questions underlying preparedness activities. We did not consider this here because 
our focus was on seeking social distancing principles depending on the cost structure.

All the aforementioned elements should be the object of future work. More generally, we believe that future 
preparedness activities should include optimal control reasoning, which is currently dramatically underused 
compared to other areas of mathematical modelling, on the list of public health tools. This will require going 
beyond works such as the present one, with the aim of developing a catalogue of optimal results based on different 
combinations of interventions under different settings, pandemic scenarios and associated costs. Nonetheless, 
we would like to point out that the elements included here (costs prioritization-effectiveness-timeliness) must 
remain the building blocks of such more refined formulations.

To conclude, the previous results offered clear-cut insight into the shapes of optimal social distancing and its 
dependence on costs and key intervention parameters. This learning is fundamental for preparedness activities 
and related emergency staff. This would, in turn, call for public investment in information and awareness among 
the people deputed to future responses (e.g., public health officers), public policy decision makers and the general 
population (e.g., for training towards such events).

Methods
Transmission model
The adopted transmission model extends an established model for the first COVID-19 wave in  Italy41 by including 
social distancing and the finiteness of hospital resources (Fig. 6). The model includes the following compartments: 
susceptible ( S ), exposed ( E ), presymptomatic ( P ), symptomatic infected ( I ), asymptomatic (or mild) infected 
( A ), quarantined with minor symptoms ( Q ), symptomatic recovered ( R1 ), asymptomatic recovered ( R2 ), dead 
( D ), and people requiring hospitalization ( H ). When the hospital capacity ( Hmax ) is reached, an untreated ( U  ) 
class, which includes all individuals who cannot be hospitalized due to the saturation of healthcare facilities (and 
who die at a higher rate than those hospitalized), increases as H increases with H and  Hmax. The corresponding 
ODEs are as follows:

(2.1a)Ṡ = −�S(1− θL)2

(2.1b)Ė = �S(1− θL)2 − δEE

(2.1c)Ṗ = δEE − δPP

(2.1d)İ = σδPP − (ηI + γI + αI )I

(2.1e)Ȧ = (1− σ)δPP − (γ A + ηA)A

Figure 6.  Flowchart of the adopted epidemic model and related parameters.
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with the untreated class defined by:

The force of infection of a free epidemic ( � ), which is the rate at which susceptible individuals acquire infec-
tion from infective agents (P, I, A) at their specific rates (β ) in the absence of control measures, is given by:

where the denominator includes the socially active population. Deaths occur among H, U, I individuals. The 
model parameters are described in Table 1. The control variable L(t) (Eqs. (2.1a), (2.1b)) specifies the frac-
tion of the population targeted for isolation by social distancing, whose effects are further modulated by 

(2.1f)Ḣ = (1− ζ )ηI I − (γH + αH )min(H ,Hmax)− αUU

(2.1g)Q̇ = ζηI I + ηAA− γQQ

(2.1h)Ṙ1 = γI I + γHH + γQQ

(2.1i)Ṙ2 = γAA

(2.1j)Ḋ = αI I + αHmin(H ,Hmax)+ αUU

(2.1k)U = max(0,H −Hmax)

(2.2)� =
βPP + βI I + βAA

S + E + P + I + A+ R

Table 1.  Parameters of the optimal control problem. Parameters borrowed from the literature are denoted as 
“Lit”, while free simulation parameters are specified as “Free” in the “Source” column.

Parameter Description Unit Value or range [ ] Source

Epidemiological parameters

 R0 Basic reproduction number (in the absence of any control interventions) – 3.6 Lit41

 βP Pre-symptomatic transmission rate day−1 0.3983 Lit53–55

 βI Symptomatic transmission rate day−1 0.6277 Lit41,56

 βA Asymptomatic transmission rate day−1 0.2828 Lit41.54,56

 δE Latency rate ( 1/δE = mean latency period) day−1 1/3.32 Lit41,57

 δP Post-latency rate day−1 1/1.88 Lit41

 σ Probability to manifest symptoms – 0.25 Lit41,58

 ηI Detection rate of symptomatic people day−1 1/4.05 Lit41

 ηA Detection rate of asymptomatic people day−1 ηI/2 Lit41

 ζ Probability of being hospitalized – 0.40 Lit41,58

 γA Recovery rate of asymptomatic day−1 1/7 Lit41,59

 γH Recovery rate of hospitalized people day−1 1/14 Lit41

 γI Recovery rate of symptomatic day−1 1/14 Lit41

 γQ Recovery rate of quarantinedindividuals day−1 1/14 Lit41

 αI death rate of symptomatic day−1 1/24 Lit41

 αH Death rate of hospitalized (H) people day−1 1/24 Lit41

 αU Death rate of untreated (U) people day−1
(

1+ f
)

αH , f > 1 Free

 Hmax Maximal capacity of hospitals − 195,000 Italian  NIH60

Social distancing & cost parameters

 θ Adherence (Effectiveness) of social distancing – 0.7 [0–1] Free

 Lmax Upper bound of social distancing – 0.7 Lit20

 � Prioritization to indirect costs – [0, 1] Free

 ts Intervention delay days [0, 150] Free

 ω Average daily wage $ 32,500/365 World Bank 2020

 1/r Numbers of life years lost by those dying of COVID year 20 Lit20,61

 τ Availability of post-infection testing – 1 Lit20

 α1 Average hospitalization cost per patient $ 2275.20 Lit62

 py Fraction of under-65 in deceased population – 0.151 Lit60

 vsl Value of a Statistical Life ( 365ω/r) $ 650,000 Lit20

 T Horizon length days 365 Fixed
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adherence θ(θ ∈ (0, 1)) , i.e., the fraction of targeted individuals actually adhering to  restrictions20,21. Given 
the basic reproduction number R0 of model (2.1)41, the corresponding controlled number (CRN) is given by 
RC(t) = R0(1− θL(t))2 , while the effective reproduction number is given by RE(t) = RC(t)S(t).

The cost functional and the optimal control problem
The optimal control problem seeks the optimal social distancing (or “lockdown policy”) action L(t) that mini-
mizes the cost functional

Given the epidemic system (2.1)-(2.2). In particular, Che and Cec quantify the total “direct” health cost of the 
epidemic and its “indirect” (i.e., societal) cost, respectively. The weight � (0 ≤ � ≤ 1 ) reflects the prioritization 
attributed to indirect costs by the public policy planner.

The adopted structure of costs Cec follows influential economic  approaches20,21. Letting T denote the length of 
the control horizon, the indirect costs Cec reflect the corresponding loss of working days due to social distancing 
over the entire horizon:

where WQ(t) is the size of the population unable to work because of quarantine or serious illness (i.e., 
WQ(t) = Q(t)+H(t) ) and ω is the average daily wage. The term L(t)N(t) represents the population subject to 
restriction measures. We also included the possibility of readmission of confirmed recovered individuals among 
those who received a recovery confirmation ( R1(t) ) owing to the availability of postinfection testing, where τ = 1 
( τ = 0 ) denotes whether a test is available or  not20.

The direct cost of the epidemic ( Che)

is taken as the sum of (i) the integrated number of hospitalized people ( H(t) ), representing total hospitalization 
time, evaluated at the (constant) average daily hospitalization cost α1 due to COVID-1962,63 and (ii) the overall 
cost due to total COVID-19 deaths throughout the entire horizon, D(T) . The latter formulation also follows 
established economic  approaches20,21 and quantifies the cost of a death of a worker by the monetary value of a 
statistical life, which is computed by the product between the worker’s average yearly income ( ω ) and her expec-
tation of residual life ( 1/r)61. The constant py denotes the fraction of the work-age population.

Finally, the overall death rate was computed as the weighted average of the underlying group-specific death 
rates ( αI ,αH ,αU ). Details on the computations of the solution to the OC problem are reported in the SM.

Model parametrization
Table 1 lists all the model parameters with the corresponding baseline values. In particular, the key parameters 
of this study, namely, cost prioritization ( � ), adherence/effectiveness ( θ ) and intervention delay ( ts ), are taken 
as free parameters. The per capita GDP ( ω ) was drawn from prepandemic Italian data. The hospitalization cost 
( α1 ) is computed as a weighted average of hospital costs/day and ICU costs/day. The initial conditions of the state 
system (2.1) are set as the classical epidemic condition, with a few exposed individuals (e.g., 10) in an otherwise 
fully susceptible population. When intervention delays are considered, the optimal control solution is initialized 
after a duration ts of free epidemic growth from such initial conditions.

Data availability
Code and original figures generated for the current study are available at   https:// github. com/ 31351 63/ Proje ct/ 
tree/ main/ Scien tific- Repor ts- 2023- 2024/.
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