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Understanding the capacity 
of children with congenital 
unilateral below‑elbow deficiency 
to actuate their affected muscles
Marcus A. Battraw 1, Justin Fitzgerald 2,3,4, Michelle A. James 5,6, Anita M. Bagley 5,6, 
Wilsaan M. Joiner 3,7 & Jonathon S. Schofield 1*

In recent years, commercially available dexterous upper limb prostheses for children have begun to 
emerge. These devices derive control signals from surface electromyography (measure of affected 
muscle electrical activity, sEMG) to drive a variety of grasping motions. However, the ability for 
children with congenital upper limb deficiency to actuate their affected muscles to achieve naturalistic 
prosthetic control is not well understood, as compared to adults or children with acquired hand 
loss. To address this gap, we collected sEMG data from 9 congenital one‑handed participants ages 
8–20 years as they envisioned and attempted to perform 10 different movements with their missing 
hands. Seven sEMG electrodes were adhered circumferentially around the participant’s affected and 
unaffected limbs and participants mirrored the attempted missing hand motions with their intact side. 
To analyze the collected sEMG data, we used time and frequency domain analyses. We found that for 
the majority of participants, attempted hand movements produced detectable and consistent muscle 
activity, and the capacity to achieve this was not dissimilar across the affected and unaffected sides. 
These data suggest that children with congenital hand absence retain a degree of control over their 
affected muscles, which has important implications for translating and refining advanced prosthetic 
control technologies for children.

Approximately 1 in 500 live births will present with an upper limb  deficiency1, which is the most common reason 
for limb absence in  children2. Among those born with upper limb deficiencies, children with unilateral congenital 
below-elbow deficiency (UCBED) will most typically present with limb characteristics amenable to prosthesis 
prescription. Although there are a variety of upper limb prostheses available for these children, they are regularly 
abandoned with 35%–45% of prescribed devices not being  used3. In fact, these devices often fall short of meeting 
the wearers’ needs and typically don’t provide sufficient function and/or improve quality of  life4. Encouragingly, 
dexterous prostheses that resemble the form and function of intact hands are becoming widely available for adults 
and more recently for  children5,6. These devices achieve a variety of grasping movements and as a result, hold 
the potential to offer additional functional benefits. However, limited research has been performed to address 
and refine these systems for the unique challenges and demands of children.

With increased prosthetic dexterity comes the need for more sophisticated control systems to manage the 
newly available function. State-of-the-art control systems for adult prostheses use machine learning to predict 
the user’s motor intent from patterns of muscle electrical activity (surface electromyography, sEMG) and map 
these predictions to corresponding prosthetic  movements7–10. Despite promising results in adults with acquired 
amputation, few studies have been performed in those with congenital limb absence. One study recruited N = 4 
adults with congenital limb absence and demonstrated limited success, applying sEMG and machine learning to 
predict 11 hand movements and finding classification accuracies of 52.1% ± 15.0%11. Additionally, in a cohort 
of children (N = 5, < 21 years old) and adults (N = 2) with UCBED, a commercially available control system was 
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used to predict missing limb  movements12. Such systems have been primarily designed for those with acquired 
limb loss and have yet to be refined for individuals with congenital limb differences. Only 2 of the 5 children 
demonstrated a classification accuracy greater than 80% for a limited repertoire of only 3 degrees of  freedom12. 
Of these two publications, one studied and recruited children in a limited setting; however, an adult-specific 
prosthesis control system was employed which is unlikely to be directly applicable to  children13. Collectively, 
these limitations restrict the translation of their findings to a more comprehensive understanding of affected 
muscle activity in children with UCBED.

The translation of advanced sEMG techniques to decode motor intent and control prostheses for children 
with UCBED requires a more thorough understanding of the capabilities of their affected muscles. sEMG char-
acteristics such as root mean squared (RMS), moving average, linear envelope, mean frequency (MNF), and 
median frequency are often used to investigate the biological control an individual has over their limb(s)14–17. 
These characteristics have yet to be investigated in children born with limb absence and therefore the capacity 
for these children to actuate their affected muscles is unknown.

In this work, we investigated muscle activity using surface electromyography of children’s affected and healthy 
unaffected-contralateral muscles while they attempted to perform a variety of hand movements. We evaluated 
measures of within-limb and across-limb consistency, and distinguishability using RMS and MNF measures. 
Our study had three main objectives to identify if children with UCBED could consistently and distinguishably 
actuate their affected muscles, and to examine how this actuation might compare to their unaffected side. First, 
we assessed children’s ability to perform various distinguishable hand movements using split-data represen-
tational dissimilarity analysis, aiming to determine whether there was distinguishable structure in attempted 
movements. Second, we sought to quantify statistically significant differences in the consistency of movements 
by comparing the affected and unaffected limbs. Lastly, we expanded our investigation to determine if a statisti-
cally significant relationship existed in the hand movement structure between the affected and unaffected limbs 
using representational dissimilarity randomization analysis.

Methods
Participants
Nine participants (8 male, 1 female) with UCBED aged 8–20 years old participated in this study (mean = 14 
years; SD = 4.4 years). Research protocols were approved by the Institutional Review Board at the Shriners Chil-
dren’s—Northern California and were performed in accordance with the relevant guidelines and regulations. 
Participants provided written informed assent and/or their legal guardians provided written informed consent. 
Participant details can be found in Table 1. Additionally, participants exhibiting only a unilateral congenital 
upper limb deficiency in the forearm region were included. Children with UCBED otherwise underwent typical 
maturation and development. All potential candidates were clinically screened, and those with atypical develop-
ment aside from UCBED were excluded. Therefore, we treated the data collected from the unaffected limb of 
each participant (described below) as a control for comparison.

Data collection
A 16-Channel Delsys Trigno surface EMG System (Delsys, Natick, USA) was used to capture affected and unaf-
fected forearm muscle activity. The system consisted of wireless Trigno Mini Sensors with an inter-electrode 
spacing of 10 mm and dual on-board differential references. The sEMG signal input was set to a range of ± 11 mV 
and the data were bandpass filtered at 20–450  Hz18,19. A National Instruments USB-6210 data acquisition sys-
tem (National Instruments Corp., Austin, USA) sampled sEMG data at 6000 Hz and stored data in a MATLAB 
(MathWorks, Inc., Natick, USA) file structure for postprocessing and analysis. Additionally, a Logitech C922 
high-definition camera (Logitech International S.A., Lausanne, Switzerland) sampled at 15 frames per second 
was synchronized with the sEMG data.

Table 1.  Demographic information for participants with unilateral congenital below-elbow deficiency. PA 
Passive device, BP body-powered device, Myo myoelectric device. † Activity specific device.

Subject ID Age Sex Affected Limb

Limb Length (cm)
Limb 
Circumference (cm)

Prosthesis UseRight Left Right Left

SHR-A 20 Male Left 13 15 PA

SHR-B 8 Male Right 14 16 20 21.5 PA

SHR-C 11 Male Right 18 21 18 20 None

SHR-D 9 Male Left 21.5 12.5 22.5 18.5 None

SHR-E 18 Male Right 15 28 21 23 BP†

SHR-F 16 Female Left 26.5 11.5 26.5 23.5 PA

SHR-G 19 Male Left 26.5 13 25.5 21.5 Myo & PA

SHR-H 14 Male Left 25 8 26 23 BP

SHR-I 12 Male Right 10 24 21 24 BP
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Experiment
We first performed “conceptual training” with each participant in which we introduced our experimental equip-
ment, described terminology used during testing, provided a simple overview of sEMG, and allowed them to 
familiarize  themselves20. After, we adhered the sEMG electrodes to their skin over the affected and unaffected 
forearm muscles using double-sided adhesive. The participants were asked to contract their affected limb as if 
they were making a fist while we palpated to find where the superficial muscles on their ventral side were most 
firm and we placed the first sEMG electrode there. If participants had a small residual limb length, less than 
about 10 cm, then the first sEMG electrode was placed in the center of their residual limb starting on the ventral 
side. In either case, the remaining sEMG electrodes were placed around the circumference of the participants’ 
forearm muscles following the typical circumferential equidistant  protocol21–23. This procedure was repeated in 
the unaffected limb and electrodes were placed on the most proximal two-thirds of the forearm musculature 
(Fig. 1). As reported in prior work, 7 sEMG electrodes were used on each  side24 (with the exception of SHR-A’s 
affected limb where 4 sEMG electrodes were adhered due to size limitations).

Participants were then informed of which hand movement was to be performed and were allowed to familiar-
ize themselves before proceeding to data collection. A strategic set of 10 hand movements was selected, which 
included commonly used hand grasps in daily  living25, individual digit motions, and wrist movements: index 
flexion (IF), key pinch (KP), pulp pinch (PP), index point (IP), cylindrical wrap (CW), cylindrical wrap wrist 
rotate (CR), tripod pinch (TP), wrist extension (WE), wrist flexion (WF), and wrist rotation (WR) (Fig. 2a). To 
ensure rich data sets for analysis of the muscle activity and due to the potential cognitive demands of attempting 
to move their missing limb, 10 repetitions of each movement were performed. Participants were tasked with 
envisioning and attempting the prompted hand movement with their affected limb while simultaneously mir-
roring this action with their unaffected limb. Participants performed the 10 repetitions across 2 trials where a 
single trial began with the participant in the relaxed phase for 4 s followed by 3 s of contraction as indicated by 
an auditory tone. The relaxation (no tone) and contraction (tone) phases were repeated 5 times each in a single 
trial ([5 relaxations and contractions] * 2 trials = 10 relax and contract repetitions for each hand movement). All 

Figure 1.  Participants with sEMG electrodes donned across unaffected and affected limbs with sex and age in 
years old (y/o) specified.
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participants were provided multiple opportunities for rest to mitigate fatigue. The structure of the experimental 
trials is illustrated in Fig. 2b.

sEMG pre‑processing
A program was written in MATLAB to pre-process (condition) the data collected from the sEMG electrodes by 
first concatenating data across the 10 repetitions for individual movements. Additionally, to remove the effect of 
participant reaction times (i.e., from when they first hear the tone to when they contract their muscles), 15% of 
the data over the relevant time interval (contraction/relaxation) was discarded from both the onset and reces-
sion of the  movement26.

We first performed analysis across sEMG channels, defined as the time-series voltage data produced from 
an individual sEMG electrode. From each channel we assessed RMS and MNF characteristics, features that are 
commonly implemented and are sensitive to capturing the biological phenomenon of muscle excitation during 
hand  movements15,27,28. For a given limb, movement, and sEMG channel the RMS and MNF were calculated with 
Eqs. (1) and (2). Where xi is the i-th of N samples from a single conditioned contraction (3 s) or relaxation (4 s) 
repetition (e.g. N = 6000 Hz * 3 s * 0.7 = 12,600 samples for contraction)29. Additionally, fj and pj are the frequency 
variable and power spectrum, respectively, at a given bin j of M frequency  bins29,30. The frequency range of inter-
est was from 0–1000 Hz, and the bin size was chosen as 0.4 Hz; therefore, the total number of bins was M = 2500.

For a given limb, the RMS and MNF were normalized to their corresponding maximum across all movements, 
on an individual channel basis. All data presented here is therefore a percentage of the maximum characteristic 
per channel.

(1)RMS =

√

∑N
i=1

x2i
N

(2)MNF =

∑M
j=1

fjpj
∑M

j=1
pj

Figure 2.  Overview of the experimental outline. (a) The 10 hand movements used in the experimental 
procedures. (b) An illustration of the experimental paradigm depicting a trial consisting of relaxation and 
contraction phases. There were two trials each consisting of alternating phases of four seconds of relaxation and 
three seconds of contraction for a total of ten contraction and relaxation phases across trials. Participant photo 
shows a cylindrical warp (CW) contraction and relaxation phase. Figure layout adapted  from39.
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Analysis
RMS and MNF characteristics were evaluated in both limbs. This included muscle excitation visualizations, 
investigating within-movement consistency with Kendall’s Coefficient of  Concordance31,32 (see below for more 
details), and performing dissimilarity analysis to understand the distinguishability of hand movements. Fur-
thermore, comparisons of hand movement consistency and the relatedness of movement characteristics across 
limbs with the RDM condition-label randomization  analysis33 were conducted. All analyses were performed on 
an individual participant basis.

Muscle excitation
Visualization
The visualization of muscle excitation across hand movements and limbs was done to observe patterns in muscle 
activity across sEMG channels for RMS and MNF characteristics. The Shapiro–Wilk  Test34 was used to assess 
the normality of the RMS and MNF for each movement on an individual sEMG channel basis. This method was 
chosen due to its common application with limited sample sizes, as was the case in our study. The majority of 
the data were found to not be normally distributed. Therefore, all data were plotted using box and whisker plots 
for each sEMG channel and hand movement which included the relaxation phase.

Movement excitation consistency
To understand the degree to which muscle excitation during individual movements were reproducible, meas-
ures of consistency were evaluated. We quantified the within-movement consistency given the RMS and MNF 
muscle excitation across sEMG channels for participants each time the same movement was performed. Due to 
the nonparametric nature of the RMS and MNF data, the within-movement consistency was determined with 
Kendall’s Coefficient of Concordance,  W31,32. This test produces a value of agreement from the ranked order 
of the 10 repetitions for RMS and MNF characteristics across the number of entities (sEMG channels). There-
fore, Kendall’s W provides a measure of agreement (with 0 indicating no agreement and 1 indicating complete 
agreement) in muscle excitation across sEMG channels (i.e., reproducibility of muscle excitation patterns.) The 
strength of agreement/consistency adapted  from35–37 are defined as: W < 0.20 (poor consistency), 0.20 ≤ W < 0.40 
(minimal consistency), 0.40 ≤ W < 0.60 (weak consistency), 0.60 ≤ W < 0.80 (moderate consistency), and W ≥ 0.80 
(strong consistency).

Across movement dissimilarity
To examine the distinguishability of muscle response when children with UCBED attempted to perform each 
hand movement, the spread (given by the interquartile range (IQR)) and median amplitude of both RMS and 
MNF characteristics were analyzed. In literature, representational geometry is often applied to quantify the 
distinguishability in measures of physiological activity (e.g., sEMG, EEG, fMRI)33,38–40 when participants are 
presented with different stimuli. Here, we applied and adapted the techniques outlined  in33,38–40 to assess the 
distinguishability of muscle excitation (sEMG channels). In this context, we treated the hand movements as the 
stimuli. Additionally, we illustrated this distinguishability through a qualitative visual representation.

To perform these analyses, a split-data representational dissimilarity matrix (sdRDM) was produced and 
analyzed. The data generated from performing a hand movement multiple times was first split into two equal 
data sets containing even and odd repetitions. Then the median and IQR of the RMS and MNF were obtained 
for each data set on a per-channel basis. Each entry of the sdRDM represented the rank-correlation distance 
between two data sets for every pair of hand movements across the sEMG channels. This distance was calculated 
from Kendall’s Tau-b ( τb ) rank correlation coefficient, to account for ties, and is defined as (1 − τb ). Kendall’s 
correlation coefficient was used to accommodate the fact that our data sets were not normally distributed when 
checked with the Shapiro–Wilk  Test34. Here the “objects” of Kendall’s correlation coefficient test were defined as 
the median or IQR of the RMS or MNF for each sEMG channel (depending on which measure was being tested), 
and the two “variables” were any two pairs of hand movements. Additionally, a representational dissimilarity 
matrix (RDM) was produced as described above, without splitting the data into two datasets, and multidimen-
sional scaling (MDS) was applied for visualization as adapted  from41. A depiction of the dissimilarity dataflow 
as described above is given in Fig. 3.

To determine a distinguishable structure of hand movements across the characteristics, the non-parametric 
RDM-level condition-label randomization test for exemplar discriminability index (EDI) was performed on the 
 sdRDMs40 (hereby referred to as the sdRDM analysis). The EDI was defined as the average between-exemplar 
dissimilarity estimate (the sdRDM off-diagonals) minus the average within-exemplar dissimilarity estimate 
(the sdRDM diagonal): EDI = mean(between-exemplar dissimilarity) − mean(within-exemplar dissimilarity), 
as adapted  from40. A larger EDI was an indication that the hand movements may be more discriminable, and 
alternatively, smaller EDI values suggested hand movements are less discriminable. The sdRDM analysis con-
sisted of simulating the null distribution by performing an exhaustive permutation of the rows of the sdRDM 
and calculating the EDI for every permutation. Therefore, we define the null hypothesis  H0 as there being no 
structure to the data and pairwise distances of hand movements being equal (i.e., the intra-movement and inter-
movement dissimilarities can be shuffled without change to the sdRDM structure). The EDI of the unshuffled 
sdRDM was then calculated and used to estimate the p-value by a proportion, i.e., by taking the EDIs in the null 
distribution that were greater than the unshuffled EDI. A significance level of α = 0.05 was used. A p-value less 
than this threshold would indicate that there is significant structure in the data and that pairwise distances of 
hand movements are not equal. This would suggest that as participants performed missing hand movements the 
muscle excitation derived from these motions were distinguishable from one another.
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To qualitatively visualize the distinguishability across hand movements, the RDM constructed from both 
data sets (i.e., unsplit data) was used and multidimensional scaling (MDS) was applied (Fig. 3). MDS is a dimen-
sionality reduction technique with the objective of reflecting the dissimilarity between items by projecting their 
distances in a lower dimensional  space38. Nonmetric MDS was applied to the dissimilarity matrices (RDMs) 
through the MATLAB function mdscale with the squared stress criterion (sstress)39. The statset parameter for the 
maximum number of iterations (MaxIter) was increased to allow for convergence of the MDS solution.

Differences across limbs
Consistency across limbs
To further understand if the consistency of the children’s affected muscle excitation was similar to that of their 
unaffected limb, across-limb comparisons were made. The previously-discussed within-movement consistency 
(across all hand movements), was used to determine overall consistency for each limb. Therefore, all movement 
consistencies for the affected limb were compared to all movement consistencies for the unaffected limb of a given 
participant. First, we assessed the normality for measures of consistency across the 10 movements for each limb 
with the Shapiro–Wilk  Test34. Then, due to the non-parametric nature of the data, a Wilcoxon Signed Rank test 
with an α = 0.05 was used for comparisons. The null hypothesis,  H0, was defined such that the difference between 
the median movement consistency across the two limbs is zero. In this way, we were able to determine if there 
were any statistical differences in the participants’ ability to attempt repeatable missing hand movements with 
their affected limb compared to their unaffected limb.

Figure 3.  Dataflow to produce the split-data representation dissimilarity matrix (sdRDM) and RDM which are 
used to understand and visualize distinguishability. Participants attempted various hand movements, and muscle 
excitation was recorded through sEMG. Data for the sdRDM were split into two data sets containing even and 
odd trials, and measures of amplitude and spread were calculated from each. Then the sdRDM and RDM were 
produced with 1 minus the correlation between hand movements for split and unsplit data, respectively. As the 
dissimilarity increases the color gets darker and as it decreases the color gets lighter. The RDM was produced 
from unsplit data and used for multidimensional scaling (MDS) visualization and distinguishability across limbs 
(described further below).
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Relatedness across limbs
In order to understand if attempted hand movements were related across the affected and unaffected limbs, 
measures of the RMS and MNF characteristics were evaluated with the non-parametric RDM label randomization 
analysis adapted  from33. The affected limb RDM was selected, and 50,000 random permutations of both the rows 
and columns were performed. At each permutation, the RDM of the affected limb and the unaffected limb were 
compared with Kendall’s Tau-a ( τa ) correlation, provided in the representational similarity analysis  toolbox42, 
thereby allowing for simulation of the null distribution. The null hypothesis,  H0, is defined as two RDMs being 
unrelated. We calculated the correlation between two RDMs, which were subject to no label permutations, and 
found an estimate for the p-value through the proportion of correlations in the null distribution greater than the 
non-permuted  correlation33. A significance level of α = 0.05 was selected and if the estimated p-value was less 
than the significance level then there was favor for the alternative hypothesis  H1 that there is relatedness between 
the two RDMs. This suggests that the muscle excitation produced when participants performed missing hand 
movements is statistically related to that of their unaffected limb.

Results
Muscle excitation
Visualization
To visualize sEMG patterns across channels, the median RMS and MNF muscle excitation across limbs and hand 
movements were calculated as participants attempted to perform each motion (Figs. 4, 5, and Supplementary 
Figs. S1–S18 online). For the RMS characteristic, the unaffected limb exhibited visual signs of normal muscle 
function. That is, as participants performed various movements, only a subset of sEMG channels recorded mus-
cle excitation. This subset varied based on the attempted movement, indicating coordinated patterns of muscle 
excitation were being enacted, which is considered normal in unaffected healthy  limbs43. For example, during 

Figure 4.  The box and whisker plots provide a visualization of the RMS muscle excitation patterns and relaxed 
states seen for the various hand movements across the unaffected and affected limbs for participant SHR-C.
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wrist extension and flexion, the extensor carpi radialis longus and flexor carpi radialis muscles are activated 
separately for each wrist  movement43. A similar phenomenon can be seen in Fig. 4 as exemplified by participant 
SHR-C and throughout participant data sets (Supplementary Figs. S1–S18 online). Different patterns of sEMG 
activity were observed for the RMS characteristic across attempted hand movements of participants’ affected 
limbs, thereby providing a visual indication of the extent to which children with UCBED could actuate their 
affected muscles. Interestingly, although not in all cases, when the participants were asked to attempt a hand 
movement with their affected limb the majority of sEMG channels recorded muscle excitation above the relaxed 
state (see Fig. 4 and the RMS Supplementary Figures online). Additionally, it is important to note that for some 
participants the affected limb RMS characteristic across the sEMG channels demonstrated relatively large degrees 
of variability, e.g., participant SHR-B produced a large RMS spread across sEMG channels for most hand move-
ments (see Supplementary Fig. S3 online). In contrast, participant SHR-D had very few visual patterns of RMS 
muscle excitation with similar spread across movements. Therefore, we observed varied visual sEMG patterns 
of RMS muscle excitation across hand movements and participants. This visual inspection was crucial prior to 
performing statistical evaluations, particularly for identifying patterns within the sEMG voltage data. It played 
a key role in guiding the subsequent statistical analyses conducted in the proceeding sections.

For the MNF characteristic, patterns were illustrated in frequency-based muscle excitation for the unaf-
fected and affected limbs among participants across sEMG channels. The MNF muscle excitation for both limbs 
showed parallels to their RMS counterparts. While the unaffected excitation differed across sEMG channels 
from movement to movement, the majority of the affected excitation was above the relaxed state, as illustrated 
by participant SHR-C in Fig. 5 and the MNF Supplementary Figures online. Although there were variations in 
the degree of visual patterns for the RMS characteristics across movements, the MNF characteristics revealed 
additional patterns for most participants across both limbs (see MNF Supplementary Figures online). This 
indicates that separately and together RMS and MNF characteristics may provide sufficient information to dif-
ferentiate between hand movements.

Figure 5.  The box and whisker plots provide a visualization of the MNF muscle excitation patterns and relaxed 
states seen for the various hand movements across the unaffected and affected limbs for participant SHR-C.
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Movement excitation consistency
Within-movement consistency was calculated from Kendall’s Coefficient of Concordance, W, to quantify par-
ticipants’ ability to consistently perform patterns of RMS and MNF muscle excitation for each limb over the 
multiple trials of hand movements. Here consistencies ranged from W < 0.20, 0.20 ≤ W < 0.40, 0.40 ≤ W < 0.60, 
0.60 ≤ W < 0.80, and W ≥ 0.80 with poor, minimal, weak, moderate, and strong consistency, respectively. The defi-
nition of consistency in this work was adapted  from35–37 and represents a novel measure not previously applied 
in this context. These values were utilized to demonstrate consistency and assess the affected limb in reference 
to the healthy, unaffected limb as a control. In general, for the unaffected limb, measures of consistency ranged 
from moderate to strong (0.60 ≤ W ≤ 0.99), providing a baseline for healthy, typical, repetitive muscle actua-
tion; few participants had poor to weak consistency (0.16 ≤ W ≤ 0.59). Specifically, for the RMS consistency, all 
participants except for SHR-B had at least 9 hand movements with moderate to strong consistency i.e., a W of 
greater than 0.60. Interestingly, SHR-B had the top two lowest RMS consistencies in the unaffected limb for the 
movement-type cylindrical wrap with wrist rotated (CR) and cylindrical wrap (CW), with values of W = 0.25 
and W = 0.27, respectively. SHR-B only had 4 out of 10 hand movements with moderate to strong consistencies. 
Similarly, participant SHR-I had the third lowest consistency of W = 0.30 for wrist flexion (WF). Alternatively, for 
the MNF unaffected limb within-movement consistency, all participants except SHR-B had moderate to strong 
consistency values for at least 5 hand movements while SHR-B had only 2. The top three lowest consistencies 
were present in participants SHR-F (W = 0.16 for wrist extension (WE)), SHR-A (W = 0.21 for pulp pinch (PP)), 
and SHR-B (W = 0.24 for wrist rotation (WR)) in the poor to minimal consistency range. All hand movement 
consistency values for the unaffected limb can be seen in the first column of Fig. 6.

When attempting to move their missing limb, participants were able to produce repeatable patterns of affected 
muscle excitation, although there was variability across participants. Repeatable patterns are an important facet 
for robust control of prostheses given that 6–9 common hand movements can account for nearly 80% of activi-
ties in daily  living25,44, indicating the efficacy of prosthesis use in this population. When evaluating the RMS 

Figure 6.  Within-movement consistency for median RMS and MNF data across repetitions obtained from 
Kendall’s Coefficient of Concordance, W. As the color gets darker this indicates a decrease in within-movement 
consistency, and the lighter the color an increase in consistency. The ranges of consistency are defined as 
W < 0.20 (poor consistency), 0.20 ≤ W < 0.40 (minimal consistency), 0.40 ≤ W < 0.60 (weak consistency), 
0.60 ≤ W < 0.80 (moderate consistency), and W ≥ 0.80 (strong consistency).
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within-movement consistency in the affected limb, we found at least 5 of the 10 hand movements had moderate to 
strong consistency. Here, participant SHR-A had the lowest consistency value of W = 0.14 for the cylindrical wrap 
(CW). Participant SHR-B had the second and third lowest consistency values: W = 0.17 in the cylindrical wrap 
(CW) and W = 0.22 in the cylindrical wrap with wrist rotated (CR). Additionally, the MNF within-movement 
consistency for the affected limb showed that all participants except SHR-B had moderate to strong consistency 
values for 4 or more hand movements. SHR-G had the lowest consistency value of W = 0.13 for index flexion (IF). 
Participant SHR-B had only 1 hand movement, wrist flexion (WF), with a moderate consistency value, and had 
the second through the sixth lowest consistency values from poor to weak. All other consistency values for the 
affected limb can be seen in the second column of Fig. 6. Together, we see that 5 of 10 movements for RMS and 
4 of 10 movements for MNF approached moderate to strong consistency (i.e., nearing the consistency for 6–9 
hand movements). In conclusion, this may indicate that participants were able to perform reproducible attempted 
hand movements in their affected limb with a consistency range similar to that of their healthy unaffected limb 
(0.60 ≤ W ≤ 0.99). Statistical comparisons of consistency measures are further investigated in “Consistency across 
limbs” Section to gain a deeper understanding of the differences across limbs.

Across movement dissimilarity
To further understand whether the hand movements were dissimilar or distinguishable from one another, sdRDM 
analysis was performed. This assessment was motivated given the emergence of different muscle excitation pat-
terns observed across hand movements in “Visualization” Section. The objective was to determine whether there 
was sufficient information for distinguishable structure across hand movements within the measures of RMS and 
MNF characteristics. The investigation of the median RMS and MNF enabled us to understand whether the cen-
tral tendency of the hand movement muscle excitation exhibited distinguishable structure. Additionally, assessing 
the spread/variability (i.e., interquartile range (IQR)) of these characteristics allowed us to determine whether 
the reliability of hand movement muscle excitation also exhibited a distinguishable structure. Collectively, this 
analysis provided an indication of typical muscle excitation by assessing the distinguishability between move-
ments for measures of RMS and MNF. It is noteworthy that typical muscle excitation involves the variability in 
sEMG signals across channels from task to task, or even within the same  movement15. Furthermore, we employed 
multidimensional scaling (MDS) to qualitatively visualize the distinguishability across hand movements.

The sdRDM analysis of the median and IQR measures for RMS and MNF indicated that distinguishable 
structures of sEMG data were present when the participants with UCBED attempted to perform missing hand 
movements. This analysis also showed distinguishable structures of sEMG data were present in participants’ 
unaffected limbs, as is expected of typical muscle contractions. However, this was not the case for all partici-
pants e.g., the analysis did not provide sufficient evidence to suggest there was a distinguishable structure for the 
median RMS of SHR-B’s unaffected and affected limbs with p = 0.188 and p = 0.267, respectively. Additionally, 
sdRDM analysis of the affected limb did not provide sufficient evidence to suggest a distinguishable structure 
for the following participants: SHR-D (p = 0.106, RMS IQR), SHR-F (p = 0.118, MNF IQR), and SHR-I (p = 0.163, 
RMS IQR). All other sdRDM analyses for the affected and unaffected limb showed a distinguishable structure of 
the hand movements; all p-values for each limb across participants and characteristics can be found in Table 2.

Further investigation of the sdRDM exemplar discriminability index (EDI) highlighted participants that may 
be good candidates for control of dexterous prostheses i.e., large amplitude-based (median) EDI values suggest 
increased distinguishability of prompted missing hand movements. Additionally, the large EDI values for IQR 
measures indicated two findings. First, typical muscle excitation, which is indicative of distinguishable move-
ments and therefore potentially effective control of dexterous prostheses. Second, variability may be too large 
across sEMG signals which may indicate poor consistency, upon which the muscle excitation plots and measures 
of consistency should be further investigated. Here, maximum and minimum EDI values are highlighted within 
the RMS or MNF measures for the unaffected and affected limbs across participants. SHR-G had the majority 
of maximum EDI values for 3 of the 4 measures of the unaffected limb and 2 of the 4 measures for the affected 
limb. In contrast, SHR-B had the majority of minimum EDI values for 2 of the 4 measures of the unaffected 
and affected limb, respectively. EDI values across limbs for measures of RMS and MNF are highlighted for each 
participant in Table 2.

To qualitatively visualize the differences across hand movements, the complete data set across trials (unsplit) 
was used to create the RDM for each limb. As previously mentioned, nonmetric MDS was used on each limb’s 
RDM to reflect the higher dimensional distances across hand movements in a three-dimensional subspace. The 
MDS illustrated distinguishable differences between the various hand movements with few motions close and/or 
overlapping in the subspace as seen by the separation of points in the top panel of Fig. 7a,b. Figure 7 shows both 
the median and IQR of RMS and MNF characteristics with the MDS (top) and corresponding RDM (bottom). 
Additionally, all MDS and RDM plots for participants can be seen in Supplementary Figs. S19–S27 online. These 
results reveal, through a qualitative visualization, that the measures analyzed provide information to distinguish 
attempted hand movements by visual separation.

Differences across limbs
Consistency across limbs
To get a better understanding of the differences in the participants’ ability to attempt consistent hand movements 
with their affected limb, statistical comparisons were made to the consistency of their unaffected limb. We found 
RMS consistency in the affected limb to be statistically lower than the unaffected limb for participants SHR-A, C, 
D, E, and H. Alternatively for MNF, participants SHR-C, SHR-E, and SHR-I had statistically lower consistency 
in the affected limb when compared to the unaffected limb. In each of the preceding cases, the unaffected limb 
had an overall higher median than the affected limb. The consistency for RMS and MNF across participants with 
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highlighted statistical differences are shown in the top and bottom panels of Fig. 8, respectively. The resulting 
consistencies in RMS and MNF across limbs (Fig. 8) indicated that some participants had difficulty reproducing 
hand movements to a similar degree as that of their unaffected limb. This inability to reproduce movements, in 
turn, may hinder their potential to use multi-grasp prostheses.

Relatedness across limbs
To understand if the structure of the affected limb RDM was related to that of the unaffected limb, the non-
parametric RDM label randomization test was  used33. It was found that the majority of participants had some 
degree of shared information such that the pair-wise distances between hand movements for their affected limb 
was related to that of their unaffected limb. There was relatedness with the exception of the following partici-
pants: SHR-F (p = 0.060, RMS IQR), SHR-B (p = 0.055, median MNF), and SHR-F (p = 0.054, median MNF). 
Additionally, Table 3 shows the non-permuted Kendall’s Tau-a ( τa ) correlations used for the RDM test with 
corresponding p-values. These results indicate that the majority of participants had related information across 
limbs for amplitude and spread of RMS and MNF characteristics.

Discussion
This study investigated the extent to which affected muscles respond when children with UCBED attempted to 
perform various hand movements. We have shown that even though these children were born with limb defi-
ciency and have never used their affected muscles to actuate an intact limb there is still patterned, consistent, 
and distinguishable muscle activity in response to attempted missing hand movements.

Visible patterns of muscle excitation
Across most participants, different sEMG patterns of muscle excitation for both RMS and MNF characteristics 
were seen in the affected limb indicating their ability to excite coordinated muscle excitation as they attempted 
the various hand movements (Figs. 4, 5, and Supplementary Figs. S1–S18 online). Furthermore, as expected in 
the unaffected limb, there were differences in muscle excitation as captured across sEMG channels. Although this 
was true for many participants’ affected limbs, it was not true for all. For example, SHR-A had few visual patterns 
in their RMS muscle excitation across attempted hand movements, which can be seen in the Supplementary 
Fig. S1 online. This finding is likely attributed to the affected limb circumference (15 cm) and length (13 cm), 
the smallest circumference out of the entire cohort. Therefore, due to the size, it is doubtful that the participant 
has developed similar muscular structure and mass to those participants with longer affected limbs. Addition-
ally, participant SHR-B showed a large interquartile range in RMS muscle excitation in their affected limb and 
interestingly, similar results were also observed in their unaffected limb. This large spread in data across the hand 
movements and limbs was likely attributed to the child’s age, as they were the youngest (8 years old) among our 
participants; their short attention span for the experimental task thereby affected movement reproducibility. 

Table 2.  Split-data representational dissimilarity analysis to distinguish the structure of amplitude and 
spread of RMS and MNF characteristics. *Italic p-values from the sdRDM analysis indicate a failure to reject 
the null hypothesis (i.e., there was not sufficient evidence to suggest a distinguishable structure of the hand 
movements), given a significance level of α = 0.05. † Bold EDI values indicate the maximum within a column. 
‡ Underline EDI values indicate the minimum within a column.

Participants

Unaffected Affected

RMS EDI MNF EDI RMS EDI MNF EDI

Median IQR Median IQR Median IQR Median IQR

SHR-A 0.552
p < 0.001

0.483
p < 0.001

0.629
p < 0.001

0.235
p = 0.005

0.319
p = 0.003

0.459
p = 0.006

0.519
p < 0.001

0.452
p < 0.001

SHR-B
0.095‡ 0.546

p < 0.001
0.252‡ 0.728† 0.047‡ 0.256

p = 0.036
0.167‡ 0.510†

p = 0.188* p = 0.018 p < 0.001 p = 0.267* p = 0.023 p < 0.001

SHR-C 0.550
p < 0.001

0.472
p < 0.001

0.720
p < 0.001

0.377
p < 0.001

0.535
p < 0.001

0.294
p = 0.003

0.571
p < 0.001

0.423
p < 0.001

SHR-D 0.455
p < 0.001

0.463
p < 0.001

0.667
p < 0.001

0.205‡ 0.466
p < 0.001

0.114‡ 0.665† 0.199
p = 0.015p = 0.020 p = 0.106* p < 0.001

SHR-E 0.421
p < 0.001

0.453
p < 0.001

0.648
p < 0.001

0.235
p = 0.007

0.489
p < 0.001

0.273
p < 0.001

0.599
p < 0.001

0.212
p = 0.018

SHR-F 0.554
p < 0.001

0.459
p < 0.001

0.438
p < 0.001

0.603
p < 0.001

0.474
p < 0.001

0.254
p = 0.004

0.590
p < 0.001

0.119‡

p = 0.118*

SHR-G
0.635† 0.578† 0.783† 0.449

p < 0.001
0.629† 0.519† 0.529

p < 0.001
0.303
p = 0.007p < 0.001 p < 0.001 p < 0.001 p < 0.001 p = 0.002

SHR-H 0.457
p < 0.001

0.368‡ 0.468
p < 0.001

0.214
p = 0.007

0.351
p < 0.001

0.212
p = 0.008

0.233
p = 0.005

0.364
p < 0.001p < 0.001

SHR-I 0.552
p < 0.001

0.497
p < 0.001

0.453
p < 0.001

0.366
p < 0.001

0.474
p < 0.001

0.116 0.309
p < 0.001

0.180
p = 0.021p = 0.163*
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Finally, when viewing participant SHR-D there was apparent muscle excitation, although few visual patterns 
emerged in the affected limb for both RMS and MNF characteristics across the attempted hand movements. 
Although we believe that the limited observed patterns and large spread across data may have been attributed 
to a premature sensory-motor system in participants SHR-B and SHR-D, given their ages (8 and 9 years old, 
respectively) and the fact that their limbs have not fully developed, further investigation is required. This would 
involve larger cohorts spanning various ages and limb lengths to quantify these effects. Though it is clear that 
most participants can generate coordinated muscle activation in their affected side, it also appears that limb size 
may be a relevant factor in detecting muscle activity. Furthermore, age and cognitive factors such as attention 
spans may also be important in the reproducibility of muscle excitation and ultimately the efficacy of advanced 
prosthesis control systems.

Reproducible attempted hand movements
The participants’ ability to reproduce attempted hand movements was explored through measures of within-
movement consistency. The unaffected limb exhibited quantitatively higher consistency than that of the affected 
limb. However, when comparing the median consistency across limbs for each participant, only a few measures 
were found to be significantly different (Fig. 8). One exception was participant SHR-B who had the lowest 
consistency across both limbs for RMS and MNF characteristics, which aligns with the visualization of muscle 
excitation that depicted large interquartile ranges across sEMG channels (see Supplementary Figs. S3 and S4 

Figure 7.  Visual representation of the correlation distances between hand movements for the amplitude and 
spread of measurement characteristics of SHR-C. The multidimensional scaling plots are provided in three 
dimensions corresponding to the representational dissimilarity matrices for (a) the median RMS and MNF 
characteristics and (b) the RMS and MNF interquartile range (IQR).
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online). Additionally, the MNF consistency was quantitatively lower than that of the RMS across participants. 
This finding may be attributed to MNF itself because although it is a robust measure of muscle excitation, it is 
often used as an assessment of and is sensitive to muscle  fatigue15,28. Even though participants were given multiple 
rest periods, it is possible they became fatigued at various stages which would explain our findings. Fatigue may 
be particularly relevant in this cohort given that despite consistent patterns of movement-to-movement muscle 
excitation, the activity may be deemed as physically demanding because they have never contracted their affected 
muscles in these repeatable, distinct ways. However, MNF remains a relevant measure for investigating muscle 
excitation in this unique population, as it is commonly employed when assessing alternative measures of physi-
ological muscle  activity28. Additionally, participants’ ability to produce repeatable patterns of muscle excitation 
in their affected limb suggests the potential for the use of multi-grasp prostheses. From this, it follows that given 
proper training, consistency is expected to approach that of their unaffected limb (i.e., nearing the consistency 
for 6–9 hand movements). Aside from training, an investigation into optimal sEMG characteristics, apart from 
RMS and MNF, should be explored for device control. The effects of physical conditioning, training, fatigue, and 
optimal sEMG characteristics are all important considerations for the use of advanced prostheses and muscle-
based control systems in this population.

Distinguishable attempted hand movements
There was a distinguishable structure to the RMS and MNF characteristics in the affected limb for the majority of 
the participants (Table 2). Moreover, there was a degree of relatedness across limbs as children attempted miss-
ing hand movements (Table 3). However, this was not true for all participants. For example, participant SHR-B 
did not show a distinguishable structure for median RMS and relatedness for the median MNF across limbs, as 
previously shown in the results. This may support the large spread seen in the muscle excitation across sEMG 
channels and the lack of consistency in hand movements for this individual participant (see Supplementary 
Figs. S3 and S4 online). As discussed previously, these findings are likely attributed to factors of age and limb 
size. For measures of spread, some participants did not demonstrate a distinguishable structure (i.e., SHR-D 
and SHR-I for RMS IQR, and SHR-F for MNF IQR). Moreover, for the latter (SHR-F), we did not find that the 
pair-wise distances between hand movements for the RMS IQR measures were related across limbs. We found 
muscle excitation was conceivably both distinguishable across movements and related across limbs as a result 
of participants simultaneously mirroring hand movements. Accordingly, participants were trying to imagine 
performing the same movement to the same degree with every repetition. As a result, this still strongly indicates 
children’s potential ability to actuate their affected muscles in distinguishable and consistent patterns, and with 
proper training may be able to effectively control dexterous prostheses.

Figure 8.  Comparison of across-limb consistency for the 10 hand movements. Participant comparisons 
are done with a Wilcoxon Signed Rank test given a significance level of α = 0.05. Blue shading refers to the 
unaffected limb while black shading is for the affected limb. *Represents those participants where the across-
limb consistency was found to be in favor of the alternative hypothesis i.e., the difference in the median 
consistency across the two limbs was not zero.
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The EDI values (Table 2) provided additional insight into the distinguishability of the muscle excitation 
structure. To note, participant SHR-G had the majority of maximum EDI values across all participants and limbs. 
This was likely attributed to a more mature sensory-motor system as the participant was 19 years old and uses 
a myoelectric prosthesis; that is, they control their device using the sEMG of their affected muscles. Although 
not a pattern recognition sEMG control system that necessitated contraction of their affected muscles in unique 
patterns, this participant still used 2-site control that required isolation and contraction of larger muscle groups 
in their affected limb. Presumably, this may have ameliorated their ability to generate consistent distinguishable 
muscle excitation patterns when prompted during the experiment. Participant SHR-B had a majority of the low-
est EDI values across limbs, which parallels the previously discussed consistency and distinguishability results. 
Undoubtedly, these two participants can allow us to begin understanding the variability that may be present in 
this population of children and also provides a further appreciation for the improvements possible with regular 
prosthesis use and actuation of affected muscles through training.

The multidimensional scaling (MDS) plots are useful to visualize the distinguishability of the various hand 
movements. Although most participants showed a distinguishable structure across movements (see Supplemen-
tary Figs. S19–S27 online), there were a few exceptions. The RMS and MNF correlation distances between hand 
movements were determined by the median across repetitions. If a participant had low movement consistency 
the median would not be useful to define the motion, and the RDM and MDS plots would not demonstrate the 
distinguishability of hand movements. We can see this clearly demonstrated in participant SHR-B, who exhib-
ited poor RMS and MNF consistency measures of muscle excitation for both the affected and unaffected limb.

Conclusions
We have shown in a limited cohort of children with UCBED that they possess a degree of biological control over 
their affected muscles with the ability to perform consistent and distinguishable hand movements. However, not 
all participants were able to achieve this degree of biological control over their affected muscles which may have 
been attributed to age and limb size, since cognitive demands and robust musculature are important to achieve 
meaningful muscle activation. A limitation of this study that could have affected the results was that we did not 
have a cohort of age- and sex-matched able-bodied participants to serve as a ground truth control for typical 
muscle excitation. Nevertheless, the participants underwent typical development and maturation, aside from 
their affected limb, allowing their unaffected limb to serve as an internal control for comparison. Our findings 
also suggest that children with UCBED may have the ability to use advanced prosthesis control systems. However, 
further work is needed to examine age and limb size with larger cohorts and more statistical power to effectively 
adapt, translate, and prescribe dexterous prostheses to the pediatric population. The bulk of literature for dexter-
ous upper limb prosthetic devices is saturated in adult-based control systems using sEMG. Very limited success 
has been found in prior studies with UCBED  cohorts11,12. Moreover, these studies either did not investigate 
populations of children or simply applied commercially available control systems that were built on research and 
refinement in populations with acquired amputations. Our work shows distinguishable and consistent patterns 
of muscle excitation in children with UCBED when they attempt to perform hand movements. We suggest that 
these findings warrant further investigation into techniques to best tune, adapt, and leverage existing advanced 
control techniques, such that they may be most effective in meeting the unique demand of children, most of 
whom will have a congenital upper limb  absence2.

Table 3.  Relatedness of RDMs across limbs for amplitude and spread of RMS and MNF characteristics. *Italic 
cells highlight values from the RDM label randomization test, which indicate there was not sufficient evidence 
for the relatedness across limbs (with a significance level of α = 0.05).

Participants

RDM relatedness across limbs

RMS correlation MNF correlation

Median IQR Median IQR

SHR-A 0.219
p = 0.002

0.266
p = 0.001

0.234
p = 0.002

0.288
p < 0.001

SHR-B 0.401
p < 0.001

0.182
p = 0.015

0.119
p = 0.055*

0.381
p < 0.001

SHR-C 0.255
p = 0.005

0.159
p = 0.017

0.318
p < 0.001

0.293
p < 0.001

SHR-D 0.272
p < 0.001

0.215
p = 0.005

0.180
p = 0.008

0.364
p = 0.001

SHR-E 0.465
p < 0.001

0.262
p < 0.001

0.298
p = 0.001

0.254
p < 0.001

SHR-F 0.200
p = 0.005

0.116
p = 0.060*

0.123
p = 0.054*

0.200
p = 0.003

SHR-G 0.439
p < 0.001

0.349
p < 0.001

0.204
p = 0.002

0.301
p < 0.001

SHR-H 0.224
p = 0.014

0.158
p = 0.013

0.423
p < 0.001

0.200
p = 0.005

SHR-I 0.179
p = 0.007

0.144
p = 0.030

0.202
p = 0.011

0.137
p = 0.023
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Data availability
The data that support the findings of this study are available from Shriners Children’s—Northern California but 
restrictions apply to the availability of these data, which were used under license for the current study, and so 
are not publicly available. Data are however available from the corresponding author upon reasonable request 
and with permission of Shriners Children’s.
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