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Critical scaling of a two‑orbital 
topological model with extended 
neighboring couplings
Y. R. Kartik 1,2, Ranjith R. Kumar 1,2 & Sujit Sarkar 1*

Extended‑range models are the interesting systems, which has been widely used to understand 
the non‑local properties of the fermions at quantum scale. We aim to study the interplay between 
criticality and extended range couplings under various symmetry constraints. Here, we consider a two 
orbital Bernevig–Hughes–Zhang model in one dimension with longer (finite neighbor) and long‑range 
(infinite neighbor) couplings. We study the behavior of model using scaling laws and universality class 
for models with Hermitian, parity‑time ( PT ) symmetric and broken time‑reversal symmetries. We 
observe the interesting results on multi‑criticalities, where the universality class of critical exponent is 
different than the normal criticalities. Also, the results can be generalized by considering the interplay 
between criticalities and different symmetry classes of Hamiltonian. Also, with the introduction 
of extended‑range of coupling, there occurs different criticalities, and we provide the analogy to 
characterize their universality classes. We also show the violation of Lorentz invariance at multi‑
criticalities and evaluation of short‑range limit in long‑range models as the highlights of this work.

Topological quantum phase transitions (TQPT) are the milestones in the theory of condensed matter physics 
due to their distinctive property which can not be apprehended by the Landau theory of symmetry  breaking1,2. 
The state lacks order parameter, hence geometric phase (topological invariant/winding number) is considered 
for topological characterization, where each topological phase is protected by a bulk  gap3,4. These phases are 
associated with a pair of localized edge modes, which are nothing but the quasi-particle excitation with a fixed 
localization (characteristic) length. The TQPT occurs through the vanishing of bulk gap, at which the geometric 
phase is ill-defined5,6.

In general, TQPTs are the second order quantum phase transitions, in which the characteristic length diverges 
as the system drives towards  criticality7. This kind of non-analyticities give the idea of scaling laws near the 
criticality, where the set of critical exponents yield the universality  class7. In the context of criticality, the study 
of topological state of matter becomes important as it is the platform for the emergence of exotic particles, unlike 
fermions and bosons. There are a number of examples which signals the emergence of Majorana zero  modes8, 
massive edge  modes9, and chiral edge modes in the topological  systems10. Under this scenario, the area has 
become interesting both from experimental and theoretical perspective.

With the introduction of long-range effect through the coupling parameters, the area became more fertile 
both at and out of equilibrium  conditions11,12. Due to the long-range effect, the fermion exhibits its non-local 
nature, which results in the emergence of massive  Dirac9 edge modes and violation of area law of von Neumann 
 entropy13. There are observations of breakdown of conformal symmetry in long-range models and study of effec-
tive field theory to understand the effective Lorentz  invariance14. The long-range nature can even change the 
effective dimension of the  system15,16, as well as can create a transition between two topological phases without 
gap closing in case of topological  systems17. Long-range models also a field of curiosity from the perspective of 
bulk-boundary  correspondence18, simulation of superconducting  circuits19, quantum information  propagation20 
and topology at finite  temperature21.

Topological properties are protected by certain set of symmetries which is called ten fold symmetry 
 classification22. These symmetries are responsible for the topological properties such as geometric phase, locali-
zation and  criticality5. This conventional understanding of symmetries modifies with the introduction of the 
non-Hermiticity. The ten-fold symmetry classification ( AZ ) modifies into 38-fold classification ( AZ

† ), which 
constitutes the non-Hermitian periodic table of  symmetries23. The breaking of certain symmetries results in the 
variation in the topological properties of the systems.
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As a generalized platform for our analysis, we adopt a one dimensional version of a two orbital Ber-
nevig–Hughes–Zhang (BHZ)  model24. Originally, BHZ model is an efficient proposal for the realization of 
quantum spin Hall effect in two  dimension25. Here, Z2 topological insulator is realized in a quantum where HgTe 
is sandwiched between crystals of CdTe. There are numerous works which efficiently explains the topological 
properties of model both experimentally and  theoretically2,5. Here, we consider the one dimensional reduced 
BHZ model to explain the interplay of symmetry and criticality with the extended-range of coupling, and also to 
characterize the topological criticalities especially when two criticalities meet each other, i.e., multi-criticalities.

Model Hamiltonian
We consider BHZ model in 1D with extended-range of couplings. The model consists of spinless non-interacting 
fermions in the s and px orbitals, where the interactions like px ± ipy and the intra-orbital hopping i.e. hopping 
between s ←→ px of same unit cells are excluded. The generalized 1D BHZ Hamiltonian is given  by24

The hopping strength between sj ←→ pj+1(sj+1 ←→ pj) and sj ←→ sj+1(pj ←→ pj+1) is tps(−tps) and tp(ts) 
respectively. Also, the terms s and px orbital consists of on site potentials ǫs and, ǫp respectively. Here the term j 
symbolizes the lattice site, which can take a larger value L. If the coupling occurs only among the nearest neigh-
bors, it is referred as short-range, whereas, if it occurs among ith and i + l th sites, it is called extended-range 
 coupling17,26 (Fig. 1).

After Fourier transformation, the model can be written in the Bloch Hamiltonian as,

with

with j = 0, 1, 2, 3 . Here σ0, σx,y,z and χ0,x,y,z are identity matrix, Pauli spin matrices and winding vectors respec-
tively. Before studying the system in detail, we need to understand the Hermitian behavior of the model. For 
this purpose, we substitute ǫp = −ǫs = ǫ and ts = t∗s = tp = t∗p = t into Eq. (1). Under standard non-interacting 
conditions, the Hamiltonian becomes

with

It is to be noted that for r → ∞ the series involving cos(kl)lα  and sin(kl)lα  terms give rise to polylogarithmic 
 functions11,26. Here, at first we consider finite number of interacting neighbors (r) and analyze the scaling 
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Figure 1.  Schematic representation non-interacting extended-range BHZ model in one dimension. Colored 
rectangles represent the unit cell, with red (yellow) circles representing s ( px ) orbitals. The neighboring coupling 
decays with power law for the lth neighbor.
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properties through momentum space characterization. The model is called as isotropic, as the coupling param-
eters decay with the same strength (i.e., t = tps).

Basically, the symmetric properties of the models are unaltered with the addition of extended interact-
ing neighbors. The tenfold classification includes discrete symmetries such as time reversal symmetry (TRS), 
particle-hole symmetry (PHS) and chiral symmetries (CS). The TRS is an anti-unitary operator, represented as 
the product of unitary ( U ) and complex conjugation ( K ), i.e., T = U K . For the spinless systems , T 2 = 1 
and symmetry is said to be obeyed if the Hamiltonian commutes with the operator, i.e., 

[

T ,H
]

= 0 . PHS sym-
metry is another non-unitary operator with C 2 = 1 which anti commutes with the Hamiltonian as {C ,H} = 0 . 
This signals the transformation between electron and holes under the given range of energy. The product of 
TRS and PHS gives the CS, which is equivalent to the sub-lattice symmetry in the Hermitian systems. This is an 
anti-unitary operator with {S ,H} = −H , which reveals the properties of a symmetric spectrum. The general 
energy spectrum is given by

The topological invariant equation is given by

which yields integer for topological state and W = 0 for trivial states  respectively27. Here we calculate different 
critical exponents using momentum space characterization to understand different criticalities. The universality 
class can be constructed using different exponents such as dynamic (z), localization ( ν ), crossover (y), suscepti-
bility ( γ ) and canonical ( α∗ ) critical exponents as bellow.

Dynamical and crossover critical exponent: This critical exponent can be calculated by expanding Eq. (5) 
around the gap closing points k0 as,

where (g − gc)
2y signals the distance in the parameter space, y is the crossover and z is the dynamical critical 

exponents respectively. Here y and z determine the gap opening/closing and nature of dispersion, which can be 
calculated as

Localization critical exponent: The topological phase possesses the localization of zero energy edge modes, which 
are protected by the topology of bulk Bloch electronic states. In the open boundary condition, the Bloch Ham-
iltonian (Eq. 4) can be written as

with

Here ûn = (un(1), un(2), . . . un(N)) and follows the Hermiticity and time reversal symmetry through the relation 
un = u∗n and vn = v∗n . Here n is the lattice index and the Fourier transformation gives the form 

∑
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†
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which can also be written in the form of Eq. (4). The ratio of amplitudes of the nth localized Eigen state ( ψn ) to 
the first ( ψ0 ) is given  by28,

These zero energy states are localized at the edge of the chain which are ensured by the condition eik0 = −
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For zero energy state, k0 is the complex number which leads to ψn = eik0(n−1) , where n is the system size. Through 
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ĥij =
r

∑

l=1

t

lα
(δj,i+l + δj,i−l)+ ǫδi,j

�̂ij =
r

∑

l=1

tps

lα
(δj,i+l − δj,i−l).

(10)δψn = ψn(E = 0)

ψ1(E = 0)
=

∣

∣

∣

∣

δg

A2,4

∣

∣

∣

∣

n−1

.

(11)k0 = i

(

δg

A2,4

)

,

(12)δψn = e
−(n−1)

ξ ,



4

Vol:.(1234567890)

Scientific Reports |         (2024) 14:4504  | https://doi.org/10.1038/s41598-024-54946-5

www.nature.com/scientificreports/

where ξ = A2,4
|δg|ν → ξ ∝ |δg|−ν , where ν is the localization critical exponent.

Susceptibility critical exponent γ : This critical exponent can be extracted by the integrand of Eq. (6) which 
shows divergence as one approaches  criticality27,29–31. This is also called curvature function (CF), and can be 
written in the Ornstein-Zernike form (which is traditionally famous for relating different correlation factors 
with each other).

Here we characterize the critical point as high symmetry (HSP) and non-high symmetry points (non-HSP) 
based on the behavior of CF around the gap-closing point k0 . If the CF exhibits a symmetric nature of gap-
closing in the Brillouin zone ( k0 = −k0 ), then it is called HSPs. In such case CF acts as an even function, i.e., 
F(k0 + δk, g) = F(k0 − δk, g) around k0 (Here g is the set of parameters). As we approach the critical point from 
one side ( g+ → gc ), the CF shows a Lorentzian peak around k0 and flips as we pass criticality ( gc → g− ). The 
Lorentzian peak becomes non-analytic at k = k0 which results in the ill-defined winding number at criticality. 
On the other hand, non-HSP are the points which do not exhibit even nature around k0 but shows non-analytic 
Lorentzian peak at k017. To obtain the critical exponents, we expand the CF around gap closing points,

where the coefficients of δk2 and δk4 decide the nature of correlation ( ξ ). For our 1D system, we consider Berry 
connection as our CF, whose behavior is characterized by the critical exponents ν and γ . i.e.27,32,

Here γ and ν are the susceptibility and localization critical exponent, which signal the exponent associated with 
the Berry  connection33.

Ground state energy: For a system with real energy spectrum, each energy interval dE contains |k|d occupied 
states, where d is the spacial dimension of the system. The ground state energy (GSE) indicates TQPTs with the 
singularities in the parameter space ( ωsingular ), where the order of the its derivative is related to the order of 
transition. Thus a relation can be established between GSE and other critical exponents as,

where (d + z) is the effective  dimension34. This concept leads to the famous relation

known as Josephson’s hyper-scaling relation which relates the effective dimensionality with the order of phase 
 transition7. (Here α∗ is called canonical critical exponent and not to be confused with decay parameter α ). To 
analyze the order of transition, we perform the scaling of the singular part of the  GSE34. As the GSE is sensitive 
to system size, it needs a multiplication of every length of GSE by localization  factor34i.e.,

which gives the effective dimension of the system.
Thus, the set of critical exponents yield the universality class which is an efficient to categorize different criti-

calities. In the following section, we considers different examples to understand the interplay between criticality 
and extended range coupling under various symmetry constraints.

Results
Here we present three different ranges of coupling, i.e., short-range, extended-range and long-range for Hermi-
tian, broken TRS and P T symmetric respectively.

Hermitian condition
Under the standard Hermitian conditions, we obtain the Hamiltonian,

Here the Hamiltonian follows TRS, PHS and CS as shown in Table 1, which results in AIII symmetry class of AZ 
classification. In general, when the Hamiltonian obeys TRS, PHS and CS symmetries, a topological superconduc-
tor falls under BDI class and makes a 1D model as a Z topological invariant . But in a topological insulator (like 
SSH), the chiral symmetry is enforced and other symmetries are accidental. This is just a matter of choice and 
does not alter the physics of criticality. (This factor becomes significant, when one prefers to characterize the 
topology of the system purely based on the symmetric behavior. Here we just restrict ourselves for the critical 
characterization).
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The operators T is nothing other than the complex conjugate K . The operator C is the combination of two 
terms, i.e., C = UcK . Here Uc is a unitary matrix and for the current case it yields σx . The operator TC is the 
combination of above operators. Here, we consider three different ranges of coupling to understand the behavior 
of criticality, i.e., short-range, extended-range and long-range.

Short‑range
As a first case, we consider the coupling up to first interacting neighbor only, i.e. short-range ( α → ∞ ). The 
winding vectors are given by

Here we consider tps = 1 for the simplicity. The phase diagram is given by Fig. 2a, where the criticality occurs 
with linear dispersion at ǫ = 2t and ǫ = −2t for k = 0 and π respectively (Fig. 2b). Here we obtain topological 
phase for ǫ < 2t and trivial phase for ǫ > 2t.

By using Eqs. (20) and (13), we get CF, which is a HSP around k = 0 and π . The GSE shows the singular-
ity for the second order derivative signaling a second order phase transition where the critical exponents are 
presented in Fig. 2b–e.

Extended‑range
We consider a simple extended-range model having second nearest neighbor ( r = 2 ) coupling with 
t = tps condition. The phase diagram is given by Fig. 3a. The quasi-energy dispersion at k = 0 is given 
by Eq.  (54), which remains linear for all the values of α as the term A2 = 2t

(

1− 4
2α

)

 always dominates 
over A4 . Thus, at k = 0 , the dynamical critical exponent is z = 1 irrespective of the value of α . Due to the 
effect of multi-criticality, the nature of dispersion is quadratic ( z = 2 ) around k = π at α = 1 as the term 
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√

4
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4
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t
(
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(

2
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t
)2  dominates over A2 . This is a nice example of the 

breaking of Lorentz invariance (for α = 1 ), the instances of which are the area of curiosity in the condensed 
matter systems (For analytical calculations, please refer “Method” section). We explain on this more in the fol-
lowing section.

Similarly, the dominating term among A2 and A4 determines the exponent ν . At k = 0 , the term A2 > A4 , and 
contributes majorly to the divergence of localization ξ by yielding ν = 1 for all the values of α . In the vicinity of 
multi-critical point, the behavior is quite different. At k = π , the term A2 > A4 for all values except α = 1 , which 
gives ν = 1 in this regime. At α = 1 the term A4 > A2 and yields ν = 1/2 . Thus, the scaling law zν = 2× 1/2 = 1 
also remains valid at multi-criticality (Fig. 3b–e).

(20)χz =− ǫ − 2t cos(k), χy = 2tps sin(k)

Table 1.  Symmetry operation of a Hermitian model. Here TRS, PHS and CS represent time-reversal, particle-
hole and chiral symmetries respectively.

Symmetry Operation Result

TRS TH(k)T−1 = H(−k) �

PHS C H(k)C −1 = −H(−k) �

CS TC H(k)T−1
C

−1 = −H(−k) �

Figure 2.  (a) Phase diagram of short-range model with tps = 1 . (b–e) Dynamical, crossover, susceptibility and 
localization critical exponents around k = 0 (red) and π (blue) respectively.
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To understand the order of phase transition, we consider Josephson hyper-scaling relation Eq. (17) as

signaling a fractional order of transition at multi-critical points. To understand the nature of scaling, we sub-
stitute into Eq. (18), giving

Thus, the GSE scales similarly for normal criticality and at multi-critical point even though both belong to differ-
ent universality classes. On the other hand, both at criticality and multi-criticality, the GSE shows non-analyticity 
for the second order derivatives (not shown here). This shows that, the bulk topological transitions are the second 
order transitions even at multi-criticality.

At multi-criticality ( k = π ,α = 1, ǫ = 1 ), the two critical lines intersect each other, which separate at least 
three topological phases. This kind of intersection results in fixed point configuration where the CF fails to exhibit 
the even nature around the HSP. Thus, at the multi-criticality, CF does not exhibit non- analyticity, instead shows 
a curve with constant height and varying  width17. This kind of behavior is absent in other transitions. Interest-
ingly, the scaling of CF gives γ = 1 for all criticalities including multi-criticality (Fig. 3d).

The further increase in the neighbor coupling produces different phase diagram and corresponding critical 
lines. As one increases the coupling neighbors (for all r > 2 ), there occurs a staircase of topological transitions 
only among even-to-even and odd-to-odd winding  numbers17. Interestingly, we observe multi-critical behavior, 
only in the presence of even neighbor couplings. Thus, all the topological transitions (irrespective of neighbors) 
falls to single universality class except multi-criticality (Table 2).

Long‑range
When there are infinite number of neighboring coupling, the pseudo-spin parameters takes polylogarithmic 
behavior  as11,17,

The energy (Eq. 5) gap closing occurs for k = 0(α > 1) and π(∀α) . There occurs a diverging energy spectrum 
around k = 0 for α ≤ 1 , due to the polylogarithmic nature of χy11. Thus, one can get the phase diagram as (Fig. 4a) 
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Figure 3.  (a) Phase diagram of extended-range with two interacting neighbors. (b) Dispersion giving z = 2 at 
multi-criticality. The inset represents linear dispersion at normal criticalities. (c–e) crossover, susceptibility and 
localization critical exponents around k = π for multi-criticality (blue) and normal criticality (red) respectively.
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and the corresponding critical lines are ǫ = −2t(21−α − 1)ζ [α] for ∀α at k = π and ǫ = −2tLiα[1] for α > 1 
at k = 0  respectively17,26. Due to the non-analytical nature of the CF, the topological invariant is ill-defined for 
α < 1 . However, here the CF shows an removable singularity, where the singularity can be integrated out and 
the WN yields fractional values (Fig. 4a).

Expansion of polylogarithmic functions is given  by35,

For the detailed study, we can expand the polylogarithmic function around k = 0 as

Thus the pseudo-spin vectors are monitored by the gamma function which depends on α . Here, α can influence 
the properties of the phase diagram, gap closing, energy dispersion and Fermi velocity. The energy dispersion is 
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Table 2.  A comparison of universality class of critical exponents between the short-range, extended-range and 
long-range models. Here IL, D and H represent ill-defined, divergent and higher order quantities.

Model k0 z ν γ y 2− α∗

Short-range
0 1 1 1 1 2

π 1 1 1 1 2

Extended-range
(multi-criticality)

0 1 1 1 1 2

π 2 1/2 1 1 3/2

Extended-range
(normal criticality)

0 1 1 1 1 2

π 1 1 1 1 2

Long-range

α < 1 0 D IL IL IL IL

1 < α < 2 z < 1 – – 1 H

α > 2 1 1 1 1 2

∀ α π 1 1 1 1 2

Figure 4.  (a) Phase diagram of long-range model. (b–e) Dynamical, susceptibility, crossover and localization 
critical exponents for Hermitian long-range model.
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given by the Eq. (5) with pseudo-spin vectors explained in Eq. (23). To understand the polylogarithmic nature, 
we express in terms of Eq. (25) and obtain the dispersion  as11,

where A, B and C are constants. Thus, as k → 0 the energy vanishes only for α > 1 while as k → π , the energy 
vanishes for all values of α . Event though the energy vanishes the derivatives fail to vanish in the limit k → 0 for 
1 < α < 2 which reflects in corresponding critical exponent.

By substituting Eq. (25) into Eq. (5) and expanding the energy dispersion equation around the gap closing 
point k0 , up to a leading order, we get Eq. (7) with coefficients

for k = 0 and π respectively. For k = π , the A2 term dominates for all values of α , which ensures a linear disper-
sion i.e., E(k0, gc) ∝ k . For k = 0 , the A2 term shows a divergence with a factor Ŵ[1− α] . Thus, α > 2 region 
shows a linear dispersion with E(k0, gc) ∝ k , while the 1 < α < 2 region shows a dispersion with z < 1 and 
y = 1 (Fig. 4b,d). Our results are in agreement with the Ref.14, which deals with a similar model through field 
theoretical methods.

The CF is given by Eq. (13). To understand the α dependent non-analyticity, we substitute Eq. (25) into 
Eq. (13) which is expanded around k0 the first leading order and after few steps of simplification, we get the CF 
in Ornstein-Zernike form as

There are three possible cases,

• When α < 1 , the term kα−2 dominates and F(k, g) → ∞ as k → 0 , irrespective of g → gc
• When 1 < α < 2 , the term kα−2 dominates and F(k, g) → ∞ as k → 0 , irrespective of g → gc
• When α > 2 , again the term kα−2 dominates and F(k, g) → ∞ as k → 0 with g → gc

Here we find CF in Ornstein-Zernike form only for α > 2 around k = 0 and for all α around k = π , which yield 
γ = ν = 1 in these regions (Fig. 4c,e). Thus, The long-range model attains the universality class of short-range 
for the range α > 2 , which can be considered as the short-range limit of the model.

Hermitian case with broken TRS
The Hermitian model preserves the time-reversal symmetry and it can be broken with the introduction of a phase 
difference in the hopping term as ts → |t|eiφ , where t is a real quantity. This results in a complex hopping and the 
model shifts from AIII to D symmetry class in AZ symmetry  classification26, where PHS is preserved (Table 3).

The breaking of TRS results in a gapless region along with topological and trivial phases. The analysis shows 
that φ takes the values in the regime [0,π/2] which produces different phase  diagrams26. The Hamiltonian is 
given by,

After Fourier transform the Hamiltonian can be written as

with

The energy dispersion is given by

(26)E(k,M) =
√

Ak2α−2 + Bkα−1 + C,

δg =(−ǫ − 2tLiα[±1]), A4 = t2Liα−2[±1], A2 = 4t2Li2α[±1] − tLiα−2[±1](−ǫ − 2tLiα[±1]).

(27)F(k, g) ∝
Akα−2

Bkα−1 − Ck2α−3

Dk2α−2

1+ ( Ek
α−1

Fkα−1 )
2

(28)

H2 =
L

∑

j=1

r
∑

l=1

(

ǫ(s†j sj + p†j pj)−
tps

lα
s†j pj−l

)

+
L−l
∑

j=1

r
∑

l=1

(

− t

lα
eiφ(s†j sj+l + p†j pj+l)+

tps

lα
s†j pj+l

)

+H .c.

(29)H2(k) = χ0σ0 + χzσz + χyσy

(30)χ0 =
r

∑

l=1

2t

lα
sin(φ) sin(kl), χz = −ǫ −

r
∑

l=1

2t

lα
cos(φl) cos(kl), χy =

r
∑

l=1

2
tps

lα
sin(kl).

Table 3.  Symmetry operation of a Hermitian model with broken time-reversal symmetry. Here TRS, PHS and 
CS represent time-reversal, particle-hole and chiral symmetries respectively.

Symmetry Operation Result

TRS TH(k)T−1 �= H(−k) X

PHS C H(k)C −1 = −H(−k) �

CS TC H(k)T−1
C

−1 = −H(−k) X
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The curvature function is not directly involved in defining the topological invariant or number of edge modes. 
But the topological index can be verified with the presence or absence of the edge modes. The phase diagram 
consists of gapped and gapless phases which can be determined by the  relation26

The quantity sign(η) = ±1 signals the gapped and gapless phases respectively. The transition from gapped to 
gapless phase represents the topological transition and the corresponding critical properties can be measured. 
The topological phase occurs in the  regime26

When the angle φ is independent of the l, i.e., φl = φ the relation becomes

We observe two kind of gapless regions here. The gapless region because of the momentum vector ( k = 0,π ) 
and the phase factor φ . for a finite value of φ , the energy spectrum yields an elliptic equation χ2

0 = χ2
z + χ2

y  . The 
model obeys TRS only for 0,π . Hence for all other finite values of φ , the χ0 term produce a finite value and a 
2D elliptic region is produced with gapless spectrum and an ill-defined topological index. This region contains 
a horizontal boundary (in tps − ǫ parameter space) with tps = ± sin(φ) condition and a vertical boundary with 
ǫ = ± cos(φ) condition. As the number of interacting neighbors increase, vertical boundary gets the multipli-
cative terms. A hemispherical cap is added to the vertical boundaries, which touch the criticality k = 0,π . The 
region outside this elliptical structure contains integer topological invariant and the criticality k = 0,π separates 
topological and trivial phases.

The interface of these two gapless regions constitutes a multi-critical point, which is unique than other criti-
calities. Thus, we consider three ranges of couplings to understand the behavior of these criticalities. Here, our 
interest is to explore the behavior of multi-criticality and for our purpose we consider a single parameter space 
φ = 3π/10 . The further variation of φ alters the phase  diagram26,36, but the general behavior of criticalities fol-
low the similar pattern.

Short‑range
With the coupling up to first nearest neighbor, we write Eq. (30) as

The energy dispersion is given by Eq. (31) and criticality occurs at

The gap closing occurs at k = 0,π with criticality ǫ = ±2t cos(φ) . The parameter φ takes the value between 0 
and π/2 where the horizontal and vertical boundaries are determined by ǫ = ±2t cos(φ) and tps = ±t sin(φ) 
respectively. The ends of the gapless region touches the points (tps, ǫ) = (0,±2) , which creates an elliptical gap-
less region as shown in Fig. 9a.

The energy dispersion shows a linear spectrum at ǫ = ± cos(φ) while at multi-criticalities show linear dis-
persion only at one side. (Fig. 5b). The broken TRS leads to the breaking of even nature of spectrum around 
the gap closing pint. Thus, we get z = 1 and z = 3 around left and right sides of gap closing point respectively 
(Fig. 5d). The crossover critical exponent yields linear curve for both left and right side of the multi-critical point 
(Fig. 5f). The localization of the edge mode can be determined by Eq. (36), which yield linear spectra around 
multi-criticality (Fig. 5e).

Extended‑range
With the coupling up to second nearest neighbor, we write Eq. (30) as

The energy dispersion is given by Eq. (31) and criticality occurs at

(31)Ek =χ0 ±
√

χ2
z + χ2

y .

(32)η = min{k}{E+E−}max{k}{E+E−}.

(33)−2t

r
∑

l=1

cos(φ)

lα
< ǫ < −2t

r
∑

l=1

(−1)l
cos(φ)

lα
.

(34)−2r cos(φ) <
ǫ

t
< −2 cos(φ)

(

1+ (−1)r

2

)

.

(35)χ0 =2t sin(φ) sin(k), χz = −2t cos(φ) cos(k)− ǫ, χy = 2tps sin(k).

(36)(−2t cos(φ) cos(k)− ǫ)2 + (2tps sin(k))
2 = (2t sin(φ) sin(k))2.

(37)
χ0 =2t sin(φ)

(

sin(k)+ sin(2k)

2α

)

, χz = −2t cos(φ)

(

cos(k)+ cos(2k)

2α

)

− ǫ,

χy = 2tps

(

sin(k)+ sin(2k)

2α

)

(38)

(

−2t cos(φ)

(

cos(k)+ cos(2k)

2α

)

− ǫ

)2

+
(

2tps

(

sin(k)+ sin(2k)

2α

))2

=
(

2t sin(φ)

(

sin(k)+ sin(2k)

2α

))2
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The phase diagram consists of an ill-defined topological region with horizontal and vertical boundaries 
at ǫ = −2t cos(φ)(±1+ 1

2α
) and tps = ±t sin(φ) respectively. The spherical cap at the ends of the cyl-

inder touches the point (tps, ǫ) = (0,−2t(±1+ 1
2α
) . The phase diagram consists of multi-criticality at 

( tps = ±0.8090, ǫ = ±0.5877 ) which behaves different than other criticalities. Normal criticalities show single 

Figure 5.  (a) Phase diagram of Hermitian model with broken TRS with φ = 3π/10 . The colored gapless 
region is ill-defined and topological quantities can not be defined in this region. (b) Energy dispersion at 
normal criticality (blue) and multi-criticality (red) respectively. There occurs different dispersion around multi-
criticality. (c) Ground-state energy density which do not recognizes the spherical cap of the elliptical region. The 
peaks represent the criticalities ǫ = ±2t cos(φ) . (d–f) Dynamical, localization and crossover critical exponent 
at right side of a multi-critical point. The inset figures represent corresponding critical exponent towards the left 
side of the multi-critical point.

Figure 6.  (a) Phase diagram of extended-range Hermitian model with broken TRS with φ = 3π/10 . There 
are two coupling neighbors, with parameter space t = α = 1 . The colored gapless region is ill-defined and 
topological quantities can not be defined in this region. (b) Energy dispersion at normal criticality (blue) and 
multi-criticality (red) respectively. There occurs different dispersion around Multi-criticality. (c) Ground-
state energy density which do not recognizes the spherical cap of the elliptical region. The peaks represent 
the criticalities ǫ = ±2t cos(φ) . (d–f) Dynamical, localization and crossover critical exponent at left side of a 
multi-critical point. The inset figures represent corresponding critical exponent towards the right side of the 
multi-critical point.
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gap closing while multi-criticality shows two gap closings at k = π and π/2 respectively (Fig. 6). The normal 
criticality exhibits quadratic dispersion, while the multi-criticality exhibits dispersion with z = 4 and 2 respec-
tively (Fig. 6). The crossover and localization critical exponents can be calculated from Eqs. (54) and (54) with 
y = ν = 1.

Long‑range
Due to the long-range effects, Eq. (30) becomes

Here we consider the value of φ independent of index ’l’, hence they are not expressed in terms of polylogarithmic 
functions. The criticalities occur at ǫ = −2t cos(φ)Liα(±1) producing the phase diagram Fig. 7a. The energy 
dispersion can be obtained by substituting Eq. (39) into Eq. (31) as shown in Fig. 7b,c. At k = 0 , the dispersion 
is divergent with ill-defined critical exponent. For the range 1 < α < 2 and α > 2 , we observe a square root 
( z = 1/2 ) and linear ( z = 1 ) dispersion respectively (Fig. 7b1). For k = π , dispersion remains linear for values of 
α with z = 1 (Fig. 7b2). The crossover critical exponent remains same (y = 1) for all criticalities (Fig. 7c1-c2). The 
CF can not be expressed in terms of Ornstein-Zernike form, hence the critical exponents γ can not be expressed 
with current methodology. But through the relation Eq. (54), we obtain ν = 1 for α > 2 regime (Fig. 7d1-d2). A 
comparison of all critical exponents can be given by Table 4

PT symmetric non‑Hermitian models
In general, the imbalance in the hopping or the addition of complex potential leads to a non-Hermitian behavior 
of the system, with a complex energy spectrum. With the addition of P T symmetry, the space-time reflection 
can be preserved, where the models can be treated equivalent to Hermitian counterpart irrespective of the non-
Hermitian signatures. In our case, non-Hermiticity can be introduced into the model with a non-reciprocity 
parameter δ in the hopping term as

(39)

χ0 =2t cos(φ)

(

Liα[eik] − Liα[e−ik]
2i

)

, χz = −ǫ − 2t cos(φ)

(

Liα[eik] + Liα[e−ik]
2

)

,

χy =2tps

(

Liα[eik] − Liα[e−ik]
2i

)

.

Figure 7.  (a) Phase diagram of long-range Hermitian model with broken TRS with t = 1,φ = 3π/10 . The 
colored region is the topological phase and α < 1 is an ill-defined region. (b1-b2) Dynamical critical exponent 
at k = 0 and k = π criticalities respectively. (c1-c2) Crossover critical exponent at k = 0 and k = π criticalities 
respectively. (d1-d2) Localization critical exponent at k = 0 and k = π criticalities respectively.
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Thus the forward hopping ( sj → pj+l ) and backward ( sj ← pj+l ) becomes t − δ and t + δ respectively. Thus, in 
the region tps > |δ| the Hamiltonian produces the real spectra and tps < |δ| produces complex energy spectrum 
respectively. The real part contributes to the filling of Fermi level, while the imaginary part contributes to the 
phase. Hence, we obtain the information of dynamical and crossover critical exponents from the energy dis-
persion. Through the analysis of bi-orthonormal vectors, the complex Berry phase can be constructed, and the 
integrand can provide the information of the curvature function. The curvature function contains the complex 
form, where the real part contributes to the argument and the imaginary contributes towards amplitude. The 
non-reciprocity in hopping produces a coalescence of Eigen vectors, which results in non-Hermitian skin effect 
and breaking of bulk-edge correspondence. However, here we only concentrate on the critical properties under 
different coupling ranges.

Symmetry properties: The non-reciprocity term changes the Hamiltonian from Hermitian to non-Hermitian 
without altering the TRS and PHS. In, non-Hermitian systems, the CS and sub-lattice symmetries are different 
unlike Hermitian  systems24. In the current model, the SLS is broken while CS is obeyed (Table 5). In addition 
to this, the combination of parity and time reversal P T symmetry obeyed for the region tps > |δ| , which gives 
rise to a real energy spectrum.

Complex Berry phase: Under Hermitian case, the Berry phase is a real quantity and remains quantized under 
certain symmetries by reflecting the topological order of the system. In case of non-Hermitian systems, the 
periodic table of symmetry is different and the structure of the topological invariant may not behave similar to 
that of Hermitian systems. This creates a necessity to generalize the structure of topological invariants to a wide 
spectrum of non-Hermitian systems, which leads to the concept of complex Berry  phase37–39. The geometry is 
constructed in the bi-orthonormal basis, where the structure behaves similar to that of Hermitian Berry phase. 
The complex Berry phase can be obtained through the Fourier transform of Eq. (40) as

with

(40)H3(k) = H1 +
r

∑

l=1

δ

lα

(

N−1
∑

i=1

(s†j pj+l − p†j+l sj)−
N
∑

i=1

(s†j+1pj − p†j sj+1)

)

+H .c.

(41)HBdG(k) =





χz χy

−χy − χz



.

χz =− ǫs −
r

∑

l=1

2t

lα
cos(kl), χy =

r
∑

l=1

2i

(

tps

lα
sin(kl)+ δ

lα
sin(kl)

)

Table 4.  A comparison of universality class of critical exponents between short, extended and long-range 
of Hermitian model with broken time-reversal symmetry. Here IL and D represent ill-defined and divergent 
quantities.

Model k0 z y ν

Short-range
0 1 1 1

π 1 1 1

Extended-range
0 1 1 1

π 1 1 1

Multi-criticality (3,1) 1 1

Long-range

α < 1 0 D IL IL

1 < α < 2 z < 1 1 IL

α > 2 1 1 1

∀ α π 1 1 1

Table 5.  Symmetry operation of a P T symmetric non-Hermitian model. Here TRS, PHS, CS and SLS 
represent time-reversal, particle-hole, chiral and sub-lattice symmetries respectively.

Symmetry Operation Result

TRS TH(k)T−1 = H(−k) �

PHS C H(k)C −1 = −H(−k) �

CS TC H(k)T−1
C

−1 �= −H(−k) X

SLS SH(k)S −1 = −H(k) �
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The basis of the Bloch Hamiltonian can be rotated through the unitary generator U(n) . The Hamiltonian in new 
basis can be written as

where χ ′
x ,χ

′
y and χ ′

z are the modified winding vectors. The energy dispersion is given by

The dispersion remains real for the P T symmetric regime, where we consider the spectra to calculate the criti-
cal exponents. For the P T broken regime, the spectra become complex, and we consider the absolute spectra 
to calculate the critical exponents. Sometimes, the real spectra produces different critical exponents around the 
single gap closing point, based on the symmetry behavior. To avoid such ambiguity, we consider the absolute 
spectra which may produce different critical exponents at some parameter  space34. To understand the geometric 
phase and associated critical exponents, we introduce bi-orthonormal basis vectors  as24

Here κ is independent of k with

with β∗
1β2 = 1

2
(1− cos(θ)) which are periodic in k. At exceptional point we get ��±(k)|ψpm(k)� = 0 . The complex 

Berry phase is given  by37,40,41

Complex Berry phase gives the Hermitian equivalence of the geometric phase by deploying the left and right 
eigenvectors. The integrand of Eq. (46) can be used as a curvature function to determine critical exponents. Here, 
we consider three different ranges of couplings to understand the behavior of the system. Due to the structure of 
energy dispersion (Eq. 43), for each range of couplings, the criticality condition remains similar to that of their 
Hermitian counterparts. Hence the phase diagram remains similar in Hermitian and P T symmetric models, 
but the symmetry behavior changes for different parameter spaces.

Short‑range
Here, the winding vectors in rotated basis is given by,

The energy dispersion and complex Berry phase is given by

where the spectrum preserves P T symmetry for t > δ . At t = δ there occurs a transition from P T symmetric 
to P T broken phase and the spectrum becomes complex for δ > t . The universality class of critical exponents 
remain similar to that of Hermitian system under P T symmetry, and we consider the P T broken phase and 
P T transition point for critical analysis.

At tps = δ , the dispersion becomes linear and the crossover exponent shows a linear fitting. The exponents 
γ and ν can be calculated through Eqs. (54) and (54) respectively, which yield linear fittings (Fig. 8a1–d1). For 
the value tps < δ the Hamiltonian becomes P T broken producing the non-Hermitian skin effect. The energy 
spectrum yields the complex values, where the exponents may differ for real and absolute spectra. Here we 
consider only absolute spectrum and get the universality class z = y = ν = γ = 1 respectively (Fig. 8a2–d2).

Extended‑range
For the case r = 2 , we get winding vectors in rotated basis as,

(42)

(

χ
′
z χ

′
x + χ

′
y

χ
′
x − χ

′
y − χ

′
z

)

(43)E =
√

(χ
′
x)

2 + (χ
′
y)

2 + (χ
′
z)

2

(44)|�±(k)� = ± 1√
2
β1e

±iκ∗
(

sin(θ∗k )e
−iφ

±1+ cos(θ∗)

)

, |ψ±(k)� = ± 1√
2
β2e

±iκ

(

sin(θk)e
−iφ

±1− cos(θ∗)

)

(45)φ = tan−1

�−χy

χz

�

θ = tan−1





�

χ2
y + χ2

x

χz





(46)W± =i

∮

BZ
��±(k)|

�

k

|ψ±(k)�dk = 1

2

∮

BZ

∂φ

∂k
(1+ cos(θ))dk.

χ
′
x =− ǫ − 2t(cos(k)), χ

′
y = −2tps(sin(k)) χ

′
z = −2iδ(sin(k))

(47)

E =
�

(−ǫ − 2t cos(k))2 + 4(t2ps − δ2)(sin(k))2

W =1

2

�

BZ

(2tps(ǫ cos(k)− 2t))

4t2ps sin
2(k)+ (2t cos(k)− ǫ)2

.









1+ 2iδ sin(k)
�

4

�

t2ps − δ2
�

sin2(k)+ (2t cos(k)− ǫ)2









dk

χ
′
x =− ǫ − 2t(cos(k)+ cos(2k)

2α
), χ

′
y = −2tps(sin(k)+

sin(2k)

2α
) χ

′
z = −2iδ(sin(k)+ sin(2k)

2α
)
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The energy dispersion and complex Berry phase are given by

The universality class of critical exponents yield z = y = ν = γ = 1 for all criticalities except at multi-critical 
point (not shown here). At multi-critical point, z = 2 at tps = δ where the P T symmetry breaks. Interestingly, 
ν = 1 calculated from Eq. (54), resulting in the violation of zν = 1 scaling relation (Fig. 9 a1–d1). For tps < δ , 
we consider absolute spectrum z = 2 and y = ν = γ = 1 (Fig. 9 a2–d2).

Long‑range
Here, the winding vectors in rotated basis is given by,

The energy dispersion and complex Berry phase is given by

(48)

E =
�

�

ǫ + 2t

�

cos(k)+ cos(2k)

2α

��2

+ 4(t2 − δ2)

�

sin(k)+ sin(2k)

2α

�2

W =1

2

�

BZ

(2tps(ǫ(cos(k)+ cos(2k)/2α)− 2t))

4t2ps(sin(k)+ sin(2k)/2α)+ (2t(cos(k)+ cos(2k)/2α)− ǫ)2
.









1+ 2iδ(sin(k)+ sin(2k)/2α)
�

4

�

t2ps − δ2
�

(sin(k)+ sin(2k)/2α)2 + (2t(cos(k)+ cos(2k)/2α)− ǫ)2









dk

χ
′
x =− ǫ − 2t(

Liα[eik] + Liα[e−ik]
2

), χ
′
y = −2tps(

Liα[eik] − Liα[e−ik]
2i

) χ
′
z = −2iδ(

Liα[eik] − Liα[e−ik]
2i

)

Figure 8.  (a1–d1) Dynamic, crossover, localization and susceptibility critical exponents of short-range 
Hamiltonian at P T symmetry breaking point. (a2–d2) The insets represent the same critical exponents with 
absolute spectra in the P T broken regime.
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Figure 9.  (a) (a1–d1) Dynamic, crossover, localization and susceptibility critical exponents of short-range 
Hamiltonian at P T symmetry breaking point. (a2–d2) The insets represent the same critical exponents with 
absolute spectra in the P T broken regime.

Figure 10.  Dynamic, crossover, localization and susceptibility critical exponents of long-range Hamiltonian 
in the regime α > 2 (a1–d1) at P T symmetry breaking point. (a2–d2) The insets represent the same critical 
exponents with absolute spectra in the P T broken regime.
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For tps < δ , the universality class of critical exponents yield z = y = ν = γ = 1 in the regime α > 2 . Here we 
consider absolute spectrum, which results in the domination of non-Hermitian properties (Fig. 10a2–d2). At 
the point of P T symmetry breaking ( tps = δ ), the localization exponent vanishes as the localization length 
becomes slop less (Fig. 10a1–d1). In the regime 1 < α < 2 , the dynamical exponent yields fractional values with 
crossover exponent y = 1 . The susceptibility and localization exponents are ill-defined in this regime (not shown 
here). A comparison of critical exponents are presented in Table 6

Discussion
Manifestation of Lorentz invariance at multi‑critical points
As per the scaling law, the linear dispersion of energy (at gap closing point/Dirac points) always preserves the 
Lorentz invariance . Dynamical critical exponent (z) is the quantity which reflects the zero mass condition, 
including the information about the Lorentz  invariance42. At Fermi surface, the energy dispersion is similar to 
relativistic form (which is a Lorentz invariant), i.e., E2 = c2p2 +m2c4 , which can reduce to massless case (under 
criticality). Hence, it becomes a linear equation which connects the energy and momentum ( E2 = c2p2).

• In longer-range model, due to the multi-criticality effect, the dispersion relation acquires some correction 
term i.e., E2 = c2p2 +m2c4 + Ap4 , where A is a  constant43. This results in the violation of Lorentz invariance 
and gives rise to quadratic dispersion of energy z = 2 . The velocity of quasi-particles around k = π criticality 
is given by, 

 where A, B and C are constants. For criticality, the velocity vanishes as g → g . But for multi-criticality, the 
velocity becomes indeterminate as α → 1.

• In long-range model, the dimensionality of the system may change depending on the strength of  coupling15,16. 
In the 1 < α < 2 region, the Lorentz invariance breaks and the quasi-particles near the criticality feel the 
effective dimension. The velocity of quasi-particles around k = 0 criticality is given by, 

 where A, B and C are constants. For the limit α > 2 , the velocity vanishes as k → 0 . When z = 1 , the exited 
quasi-particles near the gapless states feel a fixed speed. For z > 1 , the speed is not fixed and for z < 1 , the 
exited quasi-particles possess very small momenta and contains no upper limit to the  speed44,45.In long-range 
models, the conservation of Lorentz invariance in the low excitation spectrum validates the correlation expo-
nents through Ornstein-Zernike equations. As the Lorentz invariance is broken in the region 1 < α < 2 , the 
CF fails to express the correlation and susceptibility exponents.

(49)

E =
�

�

−ǫ − 2t
Liα[eik] + Liα[e−ik]

2

�2

+ 4(t2ps − δ2)

�

Liα[eik] − Liα[e−ik]
2i

�2

W =1

2

�

BZ

(2tps(−ǫ Liα [eik]+Liα [e−ik]
2

− 2t))

4t2ps(
Liα [eik]−Liα [e−ik]

2i )2 + (2t Liα [e
ik]+Liα [e−ik]

2
− ǫ)2

.









1+ 2iδ Liα [eik]−Liα [e−ik]
2i

�

4

�

t2ps − δ2
�

( Liα [e
ik]−Liα [e−ik]

2i )2 + (2t Liα [e
ik+Liα [e−ik]

2
− ǫ)2









dk

(50)
dEk

dk
=

A(−1+ 1
2α−1 )

3k2
√

( B
2α−1 ))

2 + (C(−1+ 2
2α
)k)2

,

(51)
dEk

dk
= Ak2α−3 + Bkα−1 + Ck√

A2k2α−2 + Bkα + C2k2
.

Table 6.  A comparison of universality class of critical exponents between short, extended and long-range of 
P T symmetric non-Hermitian model for different regimes of parameters. Here IL and D represent ill-defined 
and divergent quantities.

PT breaking point PT broken regime

z y ν γ z y ν γ

Short-range 1 1 1 1 1 1 1 1

Extended-range 1 1 1 1 2 1 1 1

(normal criticalities)

Extended-range 2 1 1 1 2 1 1 1

(multi-criticalities)

Long-range 1 1 IL 1 1 1 IL 1

(α > 2)
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• With the broken time reversal symmetry, the Hermitian model produces the real spectrum with different 
dispersion around single gap closing point. The multi-critical point exhibits the dispersion with a coefficient 
higher than z = 2 . The χ0 term contributes majorly to this kind of dispersion and we observe the breaking 
of Lorentz invariance.

• The P T symmetric Hamiltonian preserves the Lorentz invariance except at some multi-criticalities 
(extended-range) and 1 < α < 2 region of a long-range model for the case t > δ . For the values t < δ , the 
P T symmetry breaks and produces the complex spectra with z = 1/2 (this is for real part, where the 
absolute spectra produce z = 1 ). Thus the system becomes non-Hermitian and shows the signatures of non-
Hermitian skin effect. This kind of Hamiltonian naturally breaks the Lorentz invariance including multi-
critical  point46.

There are a number of examples where one can observe the violation of Lorentz invariance like in  graphene47, 
3D Weyl semi-metals48,49 and transition from Dirac semi-metal to band  insulator50. However, in longer-range 
models, the topological transitions are found to be Lorentz invariant except transitions across some multi-critical 
 points29,51.

Extended‑range effects
One of the main motivation of this work is to understand the behavior of criticality with extended-range of 
coupling parameters.

• In Hermitian systems, with the increasing number of couplings, we observe the staircase of transitions, 
where the uppermost winding number will be directly related to the number of coupling  neighbor17. For 
the even (odd) number of neighbors ( r > 2 ), we obtain the staircase of transitions occurs only among even 
(odd) winding numbers. The formation of multi-criticality occurs only during the even neighbors, where 
we observe the breaking of Lorentz invariance. The transition among odd winding numbers resembles the 
universality class of that of short-range models.

• With broken TRS, the model do not shows any staircase of transitions. In fact, there occurs only two regions 
namely gapped and gapless, where there are no proper tools to characterize the topological invariant. The 
multi-criticality can occur irrespective of the number of neighbors and the formation of multi-criticality 
depends on the value of φ . This multi-criticality is different that the normal criticality and shows the Lorentz 
violations.

• With P T symmetric and P T broken models, we observe staircase of transitions similar to Hermitian 
case, where the multi-criticalities show the violation of Lorentz invariance.

Method
Analytical calculation of critical exponents
The quasi-particle excitation energy is given by

where ∂g = t − tc , which is the distance to the  criticality28,29. With the gap closing ( t = tc ), the edge mode decays 
into the bulk with ξ ∝ |g |−ν , where ξ is the correlation length and ν is the corresponding critical exponent. 
At t = tc (QCP), Ek ∝ kz where z is the dynamical critical exponent, which determines the nature of energy 
dispersion.

The expansion of pseudo-spin vector around the QCP at k = k0 gives the nature of dispersion. i.e.,

Plugging this into the energy dispersion in Eq. (52),

where A4 = C2 and A2 = 2δgC + D2 . The coefficient of k2 and k4 are responsible for linear and quadratic dis-
persion respectively. The dominant term among A4 and A2 decides the nature of dispersion, which gives the 
dynamical critical exponent z.

Correlation critical exponent can be calculated through the Eq. (14), we get Ornstein-Zernike form. i.e.,

(52)E(k) = ±
√

(χz(k))2 + (χy(k))2 =
√

|∂g|2νz + k2z .

(53)χ(k0) = χ(k0)+ χ ′(k0)k + χ ′′(k0)k2/2.

(54)
Ek =

√

(δg + Ck2)2 + (Dk)2

=
√

δg + A4k4 + A2k2,

(55)

F(k,M) |k=k0=
A.δk(2B.δk)− (δg + Bδk2)A

δg2 + (2Bδg + A2)δk2 + B2δk4

=
2ABδk2−A(δg+Bδk2)

δg2

1+
(

2δg .B+A2

δg2

)

δk2 +
(

B2

δg2

)

δk4

= F(k0, δg)

1+ ξ 2δk2 + ξ 4δk4
,
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where ξ is the correlation function. In Eq. (55), there are two terms which decides the correlation function. (1) 
ξ ∝

√

2B
δg + A2

δg2
 , where the term A

2

δg2
 dominates over 2B

δg  . Hence ξ ∝ 1/|δg | ⇒ ν = 1 . (2) ξ ∝ 4

√

B2

δg2
 and 

ξ ∝ 1|δg |−1/2 . Thus the dominating term among A and B decides the correlation critical exponent.
Through Table 7, we observe that, the quadratic dispersion occurs only for the systems with even number of 

couplings. This observation holds true for higher number of couplings also.

Conclusion
Multi-criticalities in the longer-range (finite neighbors) models are the combinations of criticalities of different 
nature. The localization property and the behavior of topological invariant at criticality ignites the curiosity in this 
area. This kind of multi-criticality also witness different possible transitions which can also be recognized by the 
universality class of critical exponents. It also helps to categorize the criticalities and to recognize the breaking of 
Lorentz invariance. The behavior is consistent with multi-criticalities with different symmetry behaviors. At some 
stage, multi-criticalities in an extended model with broken time-reversal symmetry exhibits an exponent with 
z = 4 , which is similar to the flat band structures. The methodology is extended to long-range models (infinite 
neighbors), where the universality class of critical exponents recognizes 1 < α < 2 as Lorentz violated region 
and α = 2 as short-range limit. To summarize, we present a theoretical study of criticality for a short, extended 
and long-range topological chain under different symmetry conditions. Instances of interplay of criticality and 
extended-range under symmetry constrains are rare in literature, and we hope our work will be interesting in 
understanding such systems.
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